aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/include/llvm/CodeGen/GlobalISel/IRTranslator.h
blob: 79f3dfd8d7e58aa6ed604b54d1828cc6d4a212d8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
#pragma once

#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif

//===- llvm/CodeGen/GlobalISel/IRTranslator.h - IRTranslator ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file declares the IRTranslator pass.
/// This pass is responsible for translating LLVM IR into MachineInstr.
/// It uses target hooks to lower the ABI but aside from that, the pass
/// generated code is generic. This is the default translator used for
/// GlobalISel.
///
/// \todo Replace the comments with actual doxygen comments.
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_GLOBALISEL_IRTRANSLATOR_H
#define LLVM_CODEGEN_GLOBALISEL_IRTRANSLATOR_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/CodeGenCommonISel.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/GlobalISel/CSEMIRBuilder.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/SwiftErrorValueTracking.h"
#include "llvm/CodeGen/SwitchLoweringUtils.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CodeGen.h"
#include <memory>
#include <utility>

namespace llvm {

class AllocaInst;
class BasicBlock;
class CallInst;
class CallLowering;
class Constant;
class ConstrainedFPIntrinsic;
class DataLayout;
class Instruction;
class MachineBasicBlock;
class MachineFunction;
class MachineInstr;
class MachineRegisterInfo;
class OptimizationRemarkEmitter;
class PHINode;
class TargetPassConfig;
class User;
class Value;

// Technically the pass should run on an hypothetical MachineModule,
// since it should translate Global into some sort of MachineGlobal.
// The MachineGlobal should ultimately just be a transfer of ownership of
// the interesting bits that are relevant to represent a global value.
// That being said, we could investigate what would it cost to just duplicate
// the information from the LLVM IR.
// The idea is that ultimately we would be able to free up the memory used
// by the LLVM IR as soon as the translation is over.
class IRTranslator : public MachineFunctionPass {
public:
  static char ID;

private:
  /// Interface used to lower the everything related to calls.
  const CallLowering *CLI;

  /// This class contains the mapping between the Values to vreg related data.
  class ValueToVRegInfo {
  public:
    ValueToVRegInfo() = default;

    using VRegListT = SmallVector<Register, 1>;
    using OffsetListT = SmallVector<uint64_t, 1>;

    using const_vreg_iterator =
        DenseMap<const Value *, VRegListT *>::const_iterator;
    using const_offset_iterator =
        DenseMap<const Value *, OffsetListT *>::const_iterator;

    inline const_vreg_iterator vregs_end() const { return ValToVRegs.end(); }

    VRegListT *getVRegs(const Value &V) {
      auto It = ValToVRegs.find(&V);
      if (It != ValToVRegs.end())
        return It->second;

      return insertVRegs(V);
    }

    OffsetListT *getOffsets(const Value &V) {
      auto It = TypeToOffsets.find(V.getType());
      if (It != TypeToOffsets.end())
        return It->second;

      return insertOffsets(V);
    }

    const_vreg_iterator findVRegs(const Value &V) const {
      return ValToVRegs.find(&V);
    }

    bool contains(const Value &V) const {
      return ValToVRegs.find(&V) != ValToVRegs.end();
    }

    void reset() {
      ValToVRegs.clear();
      TypeToOffsets.clear();
      VRegAlloc.DestroyAll();
      OffsetAlloc.DestroyAll();
    }

  private:
    VRegListT *insertVRegs(const Value &V) {
      assert(ValToVRegs.find(&V) == ValToVRegs.end() && "Value already exists");

      // We placement new using our fast allocator since we never try to free
      // the vectors until translation is finished.
      auto *VRegList = new (VRegAlloc.Allocate()) VRegListT();
      ValToVRegs[&V] = VRegList;
      return VRegList;
    }

    OffsetListT *insertOffsets(const Value &V) {
      assert(TypeToOffsets.find(V.getType()) == TypeToOffsets.end() &&
             "Type already exists");

      auto *OffsetList = new (OffsetAlloc.Allocate()) OffsetListT();
      TypeToOffsets[V.getType()] = OffsetList;
      return OffsetList;
    }
    SpecificBumpPtrAllocator<VRegListT> VRegAlloc;
    SpecificBumpPtrAllocator<OffsetListT> OffsetAlloc;

    // We store pointers to vectors here since references may be invalidated
    // while we hold them if we stored the vectors directly.
    DenseMap<const Value *, VRegListT*> ValToVRegs;
    DenseMap<const Type *, OffsetListT*> TypeToOffsets;
  };

  /// Mapping of the values of the current LLVM IR function to the related
  /// virtual registers and offsets.
  ValueToVRegInfo VMap;

  // N.b. it's not completely obvious that this will be sufficient for every
  // LLVM IR construct (with "invoke" being the obvious candidate to mess up our
  // lives.
  DenseMap<const BasicBlock *, MachineBasicBlock *> BBToMBB;

  // One BasicBlock can be translated to multiple MachineBasicBlocks.  For such
  // BasicBlocks translated to multiple MachineBasicBlocks, MachinePreds retains
  // a mapping between the edges arriving at the BasicBlock to the corresponding
  // created MachineBasicBlocks. Some BasicBlocks that get translated to a
  // single MachineBasicBlock may also end up in this Map.
  using CFGEdge = std::pair<const BasicBlock *, const BasicBlock *>;
  DenseMap<CFGEdge, SmallVector<MachineBasicBlock *, 1>> MachinePreds;

  // List of stubbed PHI instructions, for values and basic blocks to be filled
  // in once all MachineBasicBlocks have been created.
  SmallVector<std::pair<const PHINode *, SmallVector<MachineInstr *, 1>>, 4>
      PendingPHIs;

  /// Record of what frame index has been allocated to specified allocas for
  /// this function.
  DenseMap<const AllocaInst *, int> FrameIndices;

  SwiftErrorValueTracking SwiftError;

  /// \name Methods for translating form LLVM IR to MachineInstr.
  /// \see ::translate for general information on the translate methods.
  /// @{

  /// Translate \p Inst into its corresponding MachineInstr instruction(s).
  /// Insert the newly translated instruction(s) right where the CurBuilder
  /// is set.
  ///
  /// The general algorithm is:
  /// 1. Look for a virtual register for each operand or
  ///    create one.
  /// 2 Update the VMap accordingly.
  /// 2.alt. For constant arguments, if they are compile time constants,
  ///   produce an immediate in the right operand and do not touch
  ///   ValToReg. Actually we will go with a virtual register for each
  ///   constants because it may be expensive to actually materialize the
  ///   constant. Moreover, if the constant spans on several instructions,
  ///   CSE may not catch them.
  ///   => Update ValToVReg and remember that we saw a constant in Constants.
  ///   We will materialize all the constants in finalize.
  /// Note: we would need to do something so that we can recognize such operand
  ///       as constants.
  /// 3. Create the generic instruction.
  ///
  /// \return true if the translation succeeded.
  bool translate(const Instruction &Inst);

  /// Materialize \p C into virtual-register \p Reg. The generic instructions
  /// performing this materialization will be inserted into the entry block of
  /// the function.
  ///
  /// \return true if the materialization succeeded.
  bool translate(const Constant &C, Register Reg);

  // Translate U as a copy of V.
  bool translateCopy(const User &U, const Value &V,
                     MachineIRBuilder &MIRBuilder);

  /// Translate an LLVM bitcast into generic IR. Either a COPY or a G_BITCAST is
  /// emitted.
  bool translateBitCast(const User &U, MachineIRBuilder &MIRBuilder);

  /// Translate an LLVM load instruction into generic IR.
  bool translateLoad(const User &U, MachineIRBuilder &MIRBuilder);

  /// Translate an LLVM store instruction into generic IR.
  bool translateStore(const User &U, MachineIRBuilder &MIRBuilder);

  /// Translate an LLVM string intrinsic (memcpy, memset, ...).
  bool translateMemFunc(const CallInst &CI, MachineIRBuilder &MIRBuilder,
                        unsigned Opcode);

  void getStackGuard(Register DstReg, MachineIRBuilder &MIRBuilder);

  bool translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
                                  MachineIRBuilder &MIRBuilder);
  bool translateFixedPointIntrinsic(unsigned Op, const CallInst &CI,
                                    MachineIRBuilder &MIRBuilder);

  /// Helper function for translateSimpleIntrinsic.
  /// \return The generic opcode for \p IntrinsicID if \p IntrinsicID is a
  /// simple intrinsic (ceil, fabs, etc.). Otherwise, returns
  /// Intrinsic::not_intrinsic.
  unsigned getSimpleIntrinsicOpcode(Intrinsic::ID ID);

  /// Translates the intrinsics defined in getSimpleIntrinsicOpcode.
  /// \return true if the translation succeeded.
  bool translateSimpleIntrinsic(const CallInst &CI, Intrinsic::ID ID,
                                MachineIRBuilder &MIRBuilder);

  bool translateConstrainedFPIntrinsic(const ConstrainedFPIntrinsic &FPI,
                                       MachineIRBuilder &MIRBuilder);

  bool translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
                               MachineIRBuilder &MIRBuilder);

  bool translateInlineAsm(const CallBase &CB, MachineIRBuilder &MIRBuilder);

  /// Returns true if the value should be split into multiple LLTs.
  /// If \p Offsets is given then the split type's offsets will be stored in it.
  /// If \p Offsets is not empty it will be cleared first.
  bool valueIsSplit(const Value &V,
                    SmallVectorImpl<uint64_t> *Offsets = nullptr);

  /// Common code for translating normal calls or invokes.
  bool translateCallBase(const CallBase &CB, MachineIRBuilder &MIRBuilder);

  /// Translate call instruction.
  /// \pre \p U is a call instruction.
  bool translateCall(const User &U, MachineIRBuilder &MIRBuilder);

  /// When an invoke or a cleanupret unwinds to the next EH pad, there are
  /// many places it could ultimately go. In the IR, we have a single unwind
  /// destination, but in the machine CFG, we enumerate all the possible blocks.
  /// This function skips over imaginary basic blocks that hold catchswitch
  /// instructions, and finds all the "real" machine
  /// basic block destinations. As those destinations may not be successors of
  /// EHPadBB, here we also calculate the edge probability to those
  /// destinations. The passed-in Prob is the edge probability to EHPadBB.
  bool findUnwindDestinations(
      const BasicBlock *EHPadBB, BranchProbability Prob,
      SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
          &UnwindDests);

  bool translateInvoke(const User &U, MachineIRBuilder &MIRBuilder);

  bool translateCallBr(const User &U, MachineIRBuilder &MIRBuilder);

  bool translateLandingPad(const User &U, MachineIRBuilder &MIRBuilder);

  /// Translate one of LLVM's cast instructions into MachineInstrs, with the
  /// given generic Opcode.
  bool translateCast(unsigned Opcode, const User &U,
                     MachineIRBuilder &MIRBuilder);

  /// Translate a phi instruction.
  bool translatePHI(const User &U, MachineIRBuilder &MIRBuilder);

  /// Translate a comparison (icmp or fcmp) instruction or constant.
  bool translateCompare(const User &U, MachineIRBuilder &MIRBuilder);

  /// Translate an integer compare instruction (or constant).
  bool translateICmp(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateCompare(U, MIRBuilder);
  }

  /// Translate a floating-point compare instruction (or constant).
  bool translateFCmp(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateCompare(U, MIRBuilder);
  }

  /// Add remaining operands onto phis we've translated. Executed after all
  /// MachineBasicBlocks for the function have been created.
  void finishPendingPhis();

  /// Translate \p Inst into a unary operation \p Opcode.
  /// \pre \p U is a unary operation.
  bool translateUnaryOp(unsigned Opcode, const User &U,
                        MachineIRBuilder &MIRBuilder);

  /// Translate \p Inst into a binary operation \p Opcode.
  /// \pre \p U is a binary operation.
  bool translateBinaryOp(unsigned Opcode, const User &U,
                         MachineIRBuilder &MIRBuilder);

  /// If the set of cases should be emitted as a series of branches, return
  /// true. If we should emit this as a bunch of and/or'd together conditions,
  /// return false.
  bool shouldEmitAsBranches(const std::vector<SwitchCG::CaseBlock> &Cases);
  /// Helper method for findMergedConditions.
  /// This function emits a branch and is used at the leaves of an OR or an
  /// AND operator tree.
  void emitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
                                    MachineBasicBlock *FBB,
                                    MachineBasicBlock *CurBB,
                                    MachineBasicBlock *SwitchBB,
                                    BranchProbability TProb,
                                    BranchProbability FProb, bool InvertCond);
  /// Used during condbr translation to find trees of conditions that can be
  /// optimized.
  void findMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
                            MachineBasicBlock *SwitchBB,
                            Instruction::BinaryOps Opc, BranchProbability TProb,
                            BranchProbability FProb, bool InvertCond);

  /// Translate branch (br) instruction.
  /// \pre \p U is a branch instruction.
  bool translateBr(const User &U, MachineIRBuilder &MIRBuilder);

  // Begin switch lowering functions.
  bool emitJumpTableHeader(SwitchCG::JumpTable &JT,
                           SwitchCG::JumpTableHeader &JTH,
                           MachineBasicBlock *HeaderBB);
  void emitJumpTable(SwitchCG::JumpTable &JT, MachineBasicBlock *MBB);

  void emitSwitchCase(SwitchCG::CaseBlock &CB, MachineBasicBlock *SwitchBB,
                      MachineIRBuilder &MIB);

  /// Generate for for the BitTest header block, which precedes each sequence of
  /// BitTestCases.
  void emitBitTestHeader(SwitchCG::BitTestBlock &BTB,
                         MachineBasicBlock *SwitchMBB);
  /// Generate code to produces one "bit test" for a given BitTestCase \p B.
  void emitBitTestCase(SwitchCG::BitTestBlock &BB, MachineBasicBlock *NextMBB,
                       BranchProbability BranchProbToNext, Register Reg,
                       SwitchCG::BitTestCase &B, MachineBasicBlock *SwitchBB);

  bool lowerJumpTableWorkItem(
      SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB,
      MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB,
      MachineIRBuilder &MIB, MachineFunction::iterator BBI,
      BranchProbability UnhandledProbs, SwitchCG::CaseClusterIt I,
      MachineBasicBlock *Fallthrough, bool FallthroughUnreachable);

  bool lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, Value *Cond,
                                MachineBasicBlock *Fallthrough,
                                bool FallthroughUnreachable,
                                BranchProbability UnhandledProbs,
                                MachineBasicBlock *CurMBB,
                                MachineIRBuilder &MIB,
                                MachineBasicBlock *SwitchMBB);

  bool lowerBitTestWorkItem(
      SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB,
      MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB,
      MachineIRBuilder &MIB, MachineFunction::iterator BBI,
      BranchProbability DefaultProb, BranchProbability UnhandledProbs,
      SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough,
      bool FallthroughUnreachable);

  bool lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, Value *Cond,
                           MachineBasicBlock *SwitchMBB,
                           MachineBasicBlock *DefaultMBB,
                           MachineIRBuilder &MIB);

  bool translateSwitch(const User &U, MachineIRBuilder &MIRBuilder);
  // End switch lowering section.

  bool translateIndirectBr(const User &U, MachineIRBuilder &MIRBuilder);

  bool translateExtractValue(const User &U, MachineIRBuilder &MIRBuilder);

  bool translateInsertValue(const User &U, MachineIRBuilder &MIRBuilder);

  bool translateSelect(const User &U, MachineIRBuilder &MIRBuilder);

  bool translateGetElementPtr(const User &U, MachineIRBuilder &MIRBuilder);

  bool translateAlloca(const User &U, MachineIRBuilder &MIRBuilder);

  /// Translate return (ret) instruction.
  /// The target needs to implement CallLowering::lowerReturn for
  /// this to succeed.
  /// \pre \p U is a return instruction.
  bool translateRet(const User &U, MachineIRBuilder &MIRBuilder);

  bool translateFNeg(const User &U, MachineIRBuilder &MIRBuilder);

  bool translateAdd(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateBinaryOp(TargetOpcode::G_ADD, U, MIRBuilder);
  }
  bool translateSub(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateBinaryOp(TargetOpcode::G_SUB, U, MIRBuilder);
  }
  bool translateAnd(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateBinaryOp(TargetOpcode::G_AND, U, MIRBuilder);
  }
  bool translateMul(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateBinaryOp(TargetOpcode::G_MUL, U, MIRBuilder);
  }
  bool translateOr(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateBinaryOp(TargetOpcode::G_OR, U, MIRBuilder);
  }
  bool translateXor(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateBinaryOp(TargetOpcode::G_XOR, U, MIRBuilder);
  }

  bool translateUDiv(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateBinaryOp(TargetOpcode::G_UDIV, U, MIRBuilder);
  }
  bool translateSDiv(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateBinaryOp(TargetOpcode::G_SDIV, U, MIRBuilder);
  }
  bool translateURem(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateBinaryOp(TargetOpcode::G_UREM, U, MIRBuilder);
  }
  bool translateSRem(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateBinaryOp(TargetOpcode::G_SREM, U, MIRBuilder);
  }
  bool translateIntToPtr(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateCast(TargetOpcode::G_INTTOPTR, U, MIRBuilder);
  }
  bool translatePtrToInt(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateCast(TargetOpcode::G_PTRTOINT, U, MIRBuilder);
  }
  bool translateTrunc(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateCast(TargetOpcode::G_TRUNC, U, MIRBuilder);
  }
  bool translateFPTrunc(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateCast(TargetOpcode::G_FPTRUNC, U, MIRBuilder);
  }
  bool translateFPExt(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateCast(TargetOpcode::G_FPEXT, U, MIRBuilder);
  }
  bool translateFPToUI(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateCast(TargetOpcode::G_FPTOUI, U, MIRBuilder);
  }
  bool translateFPToSI(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateCast(TargetOpcode::G_FPTOSI, U, MIRBuilder);
  }
  bool translateUIToFP(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateCast(TargetOpcode::G_UITOFP, U, MIRBuilder);
  }
  bool translateSIToFP(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateCast(TargetOpcode::G_SITOFP, U, MIRBuilder);
  }
  bool translateUnreachable(const User &U, MachineIRBuilder &MIRBuilder);

  bool translateSExt(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateCast(TargetOpcode::G_SEXT, U, MIRBuilder);
  }

  bool translateZExt(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateCast(TargetOpcode::G_ZEXT, U, MIRBuilder);
  }

  bool translateShl(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateBinaryOp(TargetOpcode::G_SHL, U, MIRBuilder);
  }
  bool translateLShr(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateBinaryOp(TargetOpcode::G_LSHR, U, MIRBuilder);
  }
  bool translateAShr(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateBinaryOp(TargetOpcode::G_ASHR, U, MIRBuilder);
  }

  bool translateFAdd(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateBinaryOp(TargetOpcode::G_FADD, U, MIRBuilder);
  }
  bool translateFSub(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder);
  }
  bool translateFMul(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateBinaryOp(TargetOpcode::G_FMUL, U, MIRBuilder);
  }
  bool translateFDiv(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateBinaryOp(TargetOpcode::G_FDIV, U, MIRBuilder);
  }
  bool translateFRem(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateBinaryOp(TargetOpcode::G_FREM, U, MIRBuilder);
  }

  bool translateVAArg(const User &U, MachineIRBuilder &MIRBuilder);

  bool translateInsertElement(const User &U, MachineIRBuilder &MIRBuilder);

  bool translateExtractElement(const User &U, MachineIRBuilder &MIRBuilder);

  bool translateShuffleVector(const User &U, MachineIRBuilder &MIRBuilder);

  bool translateAtomicCmpXchg(const User &U, MachineIRBuilder &MIRBuilder);
  bool translateAtomicRMW(const User &U, MachineIRBuilder &MIRBuilder);
  bool translateFence(const User &U, MachineIRBuilder &MIRBuilder);
  bool translateFreeze(const User &U, MachineIRBuilder &MIRBuilder);

  // Stubs to keep the compiler happy while we implement the rest of the
  // translation.
  bool translateResume(const User &U, MachineIRBuilder &MIRBuilder) {
    return false;
  }
  bool translateCleanupRet(const User &U, MachineIRBuilder &MIRBuilder) {
    return false;
  }
  bool translateCatchRet(const User &U, MachineIRBuilder &MIRBuilder) {
    return false;
  }
  bool translateCatchSwitch(const User &U, MachineIRBuilder &MIRBuilder) {
    return false;
  }
  bool translateAddrSpaceCast(const User &U, MachineIRBuilder &MIRBuilder) {
    return translateCast(TargetOpcode::G_ADDRSPACE_CAST, U, MIRBuilder);
  }
  bool translateCleanupPad(const User &U, MachineIRBuilder &MIRBuilder) {
    return false;
  }
  bool translateCatchPad(const User &U, MachineIRBuilder &MIRBuilder) {
    return false;
  }
  bool translateUserOp1(const User &U, MachineIRBuilder &MIRBuilder) {
    return false;
  }
  bool translateUserOp2(const User &U, MachineIRBuilder &MIRBuilder) {
    return false;
  }

  /// @}

  // Builder for machine instruction a la IRBuilder.
  // I.e., compared to regular MIBuilder, this one also inserts the instruction
  // in the current block, it can creates block, etc., basically a kind of
  // IRBuilder, but for Machine IR.
  // CSEMIRBuilder CurBuilder;
  std::unique_ptr<MachineIRBuilder> CurBuilder;

  // Builder set to the entry block (just after ABI lowering instructions). Used
  // as a convenient location for Constants.
  // CSEMIRBuilder EntryBuilder;
  std::unique_ptr<MachineIRBuilder> EntryBuilder;

  // The MachineFunction currently being translated.
  MachineFunction *MF;

  /// MachineRegisterInfo used to create virtual registers.
  MachineRegisterInfo *MRI = nullptr;

  const DataLayout *DL;

  /// Current target configuration. Controls how the pass handles errors.
  const TargetPassConfig *TPC;

  CodeGenOpt::Level OptLevel;

  /// Current optimization remark emitter. Used to report failures.
  std::unique_ptr<OptimizationRemarkEmitter> ORE;

  FunctionLoweringInfo FuncInfo;

  // True when either the Target Machine specifies no optimizations or the
  // function has the optnone attribute.
  bool EnableOpts = false;

  /// True when the block contains a tail call. This allows the IRTranslator to
  /// stop translating such blocks early.
  bool HasTailCall = false;

  StackProtectorDescriptor SPDescriptor;

  /// Switch analysis and optimization.
  class GISelSwitchLowering : public SwitchCG::SwitchLowering {
  public:
    GISelSwitchLowering(IRTranslator *irt, FunctionLoweringInfo &funcinfo)
        : SwitchLowering(funcinfo), IRT(irt) {
      assert(irt && "irt is null!");
    }

    virtual void addSuccessorWithProb(
        MachineBasicBlock *Src, MachineBasicBlock *Dst,
        BranchProbability Prob = BranchProbability::getUnknown()) override {
      IRT->addSuccessorWithProb(Src, Dst, Prob);
    }

    virtual ~GISelSwitchLowering() = default;

  private:
    IRTranslator *IRT;
  };

  std::unique_ptr<GISelSwitchLowering> SL;

  // * Insert all the code needed to materialize the constants
  // at the proper place. E.g., Entry block or dominator block
  // of each constant depending on how fancy we want to be.
  // * Clear the different maps.
  void finalizeFunction();

  // Processing steps done per block. E.g. emitting jump tables, stack
  // protectors etc. Returns true if no errors, false if there was a problem
  // that caused an abort.
  bool finalizeBasicBlock(const BasicBlock &BB, MachineBasicBlock &MBB);

  /// Codegen a new tail for a stack protector check ParentMBB which has had its
  /// tail spliced into a stack protector check success bb.
  ///
  /// For a high level explanation of how this fits into the stack protector
  /// generation see the comment on the declaration of class
  /// StackProtectorDescriptor.
  ///
  /// \return true if there were no problems.
  bool emitSPDescriptorParent(StackProtectorDescriptor &SPD,
                              MachineBasicBlock *ParentBB);

  /// Codegen the failure basic block for a stack protector check.
  ///
  /// A failure stack protector machine basic block consists simply of a call to
  /// __stack_chk_fail().
  ///
  /// For a high level explanation of how this fits into the stack protector
  /// generation see the comment on the declaration of class
  /// StackProtectorDescriptor.
  ///
  /// \return true if there were no problems.
  bool emitSPDescriptorFailure(StackProtectorDescriptor &SPD,
                               MachineBasicBlock *FailureBB);

  /// Get the VRegs that represent \p Val.
  /// Non-aggregate types have just one corresponding VReg and the list can be
  /// used as a single "unsigned". Aggregates get flattened. If such VRegs do
  /// not exist, they are created.
  ArrayRef<Register> getOrCreateVRegs(const Value &Val);

  Register getOrCreateVReg(const Value &Val) {
    auto Regs = getOrCreateVRegs(Val);
    if (Regs.empty())
      return 0;
    assert(Regs.size() == 1 &&
           "attempt to get single VReg for aggregate or void");
    return Regs[0];
  }

  /// Allocate some vregs and offsets in the VMap. Then populate just the
  /// offsets while leaving the vregs empty.
  ValueToVRegInfo::VRegListT &allocateVRegs(const Value &Val);

  /// Get the frame index that represents \p Val.
  /// If such VReg does not exist, it is created.
  int getOrCreateFrameIndex(const AllocaInst &AI);

  /// Get the alignment of the given memory operation instruction. This will
  /// either be the explicitly specified value or the ABI-required alignment for
  /// the type being accessed (according to the Module's DataLayout).
  Align getMemOpAlign(const Instruction &I);

  /// Get the MachineBasicBlock that represents \p BB. Specifically, the block
  /// returned will be the head of the translated block (suitable for branch
  /// destinations).
  MachineBasicBlock &getMBB(const BasicBlock &BB);

  /// Record \p NewPred as a Machine predecessor to `Edge.second`, corresponding
  /// to `Edge.first` at the IR level. This is used when IRTranslation creates
  /// multiple MachineBasicBlocks for a given IR block and the CFG is no longer
  /// represented simply by the IR-level CFG.
  void addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred);

  /// Returns the Machine IR predecessors for the given IR CFG edge. Usually
  /// this is just the single MachineBasicBlock corresponding to the predecessor
  /// in the IR. More complex lowering can result in multiple MachineBasicBlocks
  /// preceding the original though (e.g. switch instructions).
  SmallVector<MachineBasicBlock *, 1> getMachinePredBBs(CFGEdge Edge) {
    auto RemappedEdge = MachinePreds.find(Edge);
    if (RemappedEdge != MachinePreds.end())
      return RemappedEdge->second;
    return SmallVector<MachineBasicBlock *, 4>(1, &getMBB(*Edge.first));
  }

  /// Return branch probability calculated by BranchProbabilityInfo for IR
  /// blocks.
  BranchProbability getEdgeProbability(const MachineBasicBlock *Src,
                                       const MachineBasicBlock *Dst) const;

  void addSuccessorWithProb(
      MachineBasicBlock *Src, MachineBasicBlock *Dst,
      BranchProbability Prob = BranchProbability::getUnknown());

public:
  IRTranslator(CodeGenOpt::Level OptLevel = CodeGenOpt::None);

  StringRef getPassName() const override { return "IRTranslator"; }

  void getAnalysisUsage(AnalysisUsage &AU) const override;

  // Algo:
  //   CallLowering = MF.subtarget.getCallLowering()
  //   F = MF.getParent()
  //   MIRBuilder.reset(MF)
  //   getMBB(F.getEntryBB())
  //   CallLowering->translateArguments(MIRBuilder, F, ValToVReg)
  //   for each bb in F
  //     getMBB(bb)
  //     for each inst in bb
  //       if (!translate(MIRBuilder, inst, ValToVReg, ConstantToSequence))
  //         report_fatal_error("Don't know how to translate input");
  //   finalize()
  bool runOnMachineFunction(MachineFunction &MF) override;
};

} // end namespace llvm

#endif // LLVM_CODEGEN_GLOBALISEL_IRTRANSLATOR_H

#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif