aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/include/llvm/Analysis/ScalarEvolution.h
blob: ad80b02e014f544461f013738fa01a15f74df960 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
#pragma once

#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif

//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The ScalarEvolution class is an LLVM pass which can be used to analyze and
// categorize scalar expressions in loops.  It specializes in recognizing
// general induction variables, representing them with the abstract and opaque
// SCEV class.  Given this analysis, trip counts of loops and other important
// properties can be obtained.
//
// This analysis is primarily useful for induction variable substitution and
// strength reduction.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
#define LLVM_ANALYSIS_SCALAREVOLUTION_H

#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/ValueMap.h"
#include "llvm/Pass.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <memory>
#include <utility>

namespace llvm {

class AssumptionCache;
class BasicBlock;
class Constant;
class ConstantInt;
class DataLayout;
class DominatorTree;
class GEPOperator;
class Instruction;
class LLVMContext;
class Loop;
class LoopInfo;
class raw_ostream;
class ScalarEvolution;
class SCEVAddRecExpr;
class SCEVUnknown;
class StructType;
class TargetLibraryInfo;
class Type;
class Value;
enum SCEVTypes : unsigned short;

/// This class represents an analyzed expression in the program.  These are
/// opaque objects that the client is not allowed to do much with directly.
///
class SCEV : public FoldingSetNode {
  friend struct FoldingSetTrait<SCEV>;

  /// A reference to an Interned FoldingSetNodeID for this node.  The
  /// ScalarEvolution's BumpPtrAllocator holds the data.
  FoldingSetNodeIDRef FastID;

  // The SCEV baseclass this node corresponds to
  const SCEVTypes SCEVType;

protected:
  // Estimated complexity of this node's expression tree size.
  const unsigned short ExpressionSize;

  /// This field is initialized to zero and may be used in subclasses to store
  /// miscellaneous information.
  unsigned short SubclassData = 0;

public:
  /// NoWrapFlags are bitfield indices into SubclassData.
  ///
  /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
  /// no-signed-wrap <NSW> properties, which are derived from the IR
  /// operator. NSW is a misnomer that we use to mean no signed overflow or
  /// underflow.
  ///
  /// AddRec expressions may have a no-self-wraparound <NW> property if, in
  /// the integer domain, abs(step) * max-iteration(loop) <=
  /// unsigned-max(bitwidth).  This means that the recurrence will never reach
  /// its start value if the step is non-zero.  Computing the same value on
  /// each iteration is not considered wrapping, and recurrences with step = 0
  /// are trivially <NW>.  <NW> is independent of the sign of step and the
  /// value the add recurrence starts with.
  ///
  /// Note that NUW and NSW are also valid properties of a recurrence, and
  /// either implies NW. For convenience, NW will be set for a recurrence
  /// whenever either NUW or NSW are set.
  ///
  /// We require that the flag on a SCEV apply to the entire scope in which
  /// that SCEV is defined.  A SCEV's scope is set of locations dominated by
  /// a defining location, which is in turn described by the following rules:
  /// * A SCEVUnknown is at the point of definition of the Value.
  /// * A SCEVConstant is defined at all points.
  /// * A SCEVAddRec is defined starting with the header of the associated
  ///   loop.
  /// * All other SCEVs are defined at the earlest point all operands are
  ///   defined.
  ///
  /// The above rules describe a maximally hoisted form (without regards to
  /// potential control dependence).  A SCEV is defined anywhere a
  /// corresponding instruction could be defined in said maximally hoisted
  /// form.  Note that SCEVUDivExpr (currently the only expression type which
  /// can trap) can be defined per these rules in regions where it would trap
  /// at runtime.  A SCEV being defined does not require the existence of any
  /// instruction within the defined scope.
  enum NoWrapFlags {
    FlagAnyWrap = 0,    // No guarantee.
    FlagNW = (1 << 0),  // No self-wrap.
    FlagNUW = (1 << 1), // No unsigned wrap.
    FlagNSW = (1 << 2), // No signed wrap.
    NoWrapMask = (1 << 3) - 1
  };

  explicit SCEV(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
                unsigned short ExpressionSize)
      : FastID(ID), SCEVType(SCEVTy), ExpressionSize(ExpressionSize) {}
  SCEV(const SCEV &) = delete;
  SCEV &operator=(const SCEV &) = delete;

  SCEVTypes getSCEVType() const { return SCEVType; }

  /// Return the LLVM type of this SCEV expression.
  Type *getType() const;

  /// Return true if the expression is a constant zero.
  bool isZero() const;

  /// Return true if the expression is a constant one.
  bool isOne() const;

  /// Return true if the expression is a constant all-ones value.
  bool isAllOnesValue() const;

  /// Return true if the specified scev is negated, but not a constant.
  bool isNonConstantNegative() const;

  // Returns estimated size of the mathematical expression represented by this
  // SCEV. The rules of its calculation are following:
  // 1) Size of a SCEV without operands (like constants and SCEVUnknown) is 1;
  // 2) Size SCEV with operands Op1, Op2, ..., OpN is calculated by formula:
  //    (1 + Size(Op1) + ... + Size(OpN)).
  // This value gives us an estimation of time we need to traverse through this
  // SCEV and all its operands recursively. We may use it to avoid performing
  // heavy transformations on SCEVs of excessive size for sake of saving the
  // compilation time.
  unsigned short getExpressionSize() const {
    return ExpressionSize;
  }

  /// Print out the internal representation of this scalar to the specified
  /// stream.  This should really only be used for debugging purposes.
  void print(raw_ostream &OS) const;

  /// This method is used for debugging.
  void dump() const;
};

// Specialize FoldingSetTrait for SCEV to avoid needing to compute
// temporary FoldingSetNodeID values.
template <> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
  static void Profile(const SCEV &X, FoldingSetNodeID &ID) { ID = X.FastID; }

  static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash,
                     FoldingSetNodeID &TempID) {
    return ID == X.FastID;
  }

  static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
    return X.FastID.ComputeHash();
  }
};

inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
  S.print(OS);
  return OS;
}

/// An object of this class is returned by queries that could not be answered.
/// For example, if you ask for the number of iterations of a linked-list
/// traversal loop, you will get one of these.  None of the standard SCEV
/// operations are valid on this class, it is just a marker.
struct SCEVCouldNotCompute : public SCEV {
  SCEVCouldNotCompute();

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const SCEV *S);
};

/// This class represents an assumption made using SCEV expressions which can
/// be checked at run-time.
class SCEVPredicate : public FoldingSetNode {
  friend struct FoldingSetTrait<SCEVPredicate>;

  /// A reference to an Interned FoldingSetNodeID for this node.  The
  /// ScalarEvolution's BumpPtrAllocator holds the data.
  FoldingSetNodeIDRef FastID;

public:
  enum SCEVPredicateKind { P_Union, P_Equal, P_Wrap };

protected:
  SCEVPredicateKind Kind;
  ~SCEVPredicate() = default;
  SCEVPredicate(const SCEVPredicate &) = default;
  SCEVPredicate &operator=(const SCEVPredicate &) = default;

public:
  SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind);

  SCEVPredicateKind getKind() const { return Kind; }

  /// Returns the estimated complexity of this predicate.  This is roughly
  /// measured in the number of run-time checks required.
  virtual unsigned getComplexity() const { return 1; }

  /// Returns true if the predicate is always true. This means that no
  /// assumptions were made and nothing needs to be checked at run-time.
  virtual bool isAlwaysTrue() const = 0;

  /// Returns true if this predicate implies \p N.
  virtual bool implies(const SCEVPredicate *N) const = 0;

  /// Prints a textual representation of this predicate with an indentation of
  /// \p Depth.
  virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;

  /// Returns the SCEV to which this predicate applies, or nullptr if this is
  /// a SCEVUnionPredicate.
  virtual const SCEV *getExpr() const = 0;
};

inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) {
  P.print(OS);
  return OS;
}

// Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
// temporary FoldingSetNodeID values.
template <>
struct FoldingSetTrait<SCEVPredicate> : DefaultFoldingSetTrait<SCEVPredicate> {
  static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
    ID = X.FastID;
  }

  static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
                     unsigned IDHash, FoldingSetNodeID &TempID) {
    return ID == X.FastID;
  }

  static unsigned ComputeHash(const SCEVPredicate &X,
                              FoldingSetNodeID &TempID) {
    return X.FastID.ComputeHash();
  }
};

/// This class represents an assumption that two SCEV expressions are equal,
/// and this can be checked at run-time.
class SCEVEqualPredicate final : public SCEVPredicate {
  /// We assume that LHS == RHS.
  const SCEV *LHS;
  const SCEV *RHS;

public:
  SCEVEqualPredicate(const FoldingSetNodeIDRef ID, const SCEV *LHS,
                     const SCEV *RHS);

  /// Implementation of the SCEVPredicate interface
  bool implies(const SCEVPredicate *N) const override;
  void print(raw_ostream &OS, unsigned Depth = 0) const override;
  bool isAlwaysTrue() const override;
  const SCEV *getExpr() const override;

  /// Returns the left hand side of the equality.
  const SCEV *getLHS() const { return LHS; }

  /// Returns the right hand side of the equality.
  const SCEV *getRHS() const { return RHS; }

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const SCEVPredicate *P) {
    return P->getKind() == P_Equal;
  }
};

/// This class represents an assumption made on an AddRec expression. Given an
/// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw
/// flags (defined below) in the first X iterations of the loop, where X is a
/// SCEV expression returned by getPredicatedBackedgeTakenCount).
///
/// Note that this does not imply that X is equal to the backedge taken
/// count. This means that if we have a nusw predicate for i32 {0,+,1} with a
/// predicated backedge taken count of X, we only guarantee that {0,+,1} has
/// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we
/// have more than X iterations.
class SCEVWrapPredicate final : public SCEVPredicate {
public:
  /// Similar to SCEV::NoWrapFlags, but with slightly different semantics
  /// for FlagNUSW. The increment is considered to be signed, and a + b
  /// (where b is the increment) is considered to wrap if:
  ///    zext(a + b) != zext(a) + sext(b)
  ///
  /// If Signed is a function that takes an n-bit tuple and maps to the
  /// integer domain as the tuples value interpreted as twos complement,
  /// and Unsigned a function that takes an n-bit tuple and maps to the
  /// integer domain as as the base two value of input tuple, then a + b
  /// has IncrementNUSW iff:
  ///
  /// 0 <= Unsigned(a) + Signed(b) < 2^n
  ///
  /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW.
  ///
  /// Note that the IncrementNUSW flag is not commutative: if base + inc
  /// has IncrementNUSW, then inc + base doesn't neccessarily have this
  /// property. The reason for this is that this is used for sign/zero
  /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is
  /// assumed. A {base,+,inc} expression is already non-commutative with
  /// regards to base and inc, since it is interpreted as:
  ///     (((base + inc) + inc) + inc) ...
  enum IncrementWrapFlags {
    IncrementAnyWrap = 0,     // No guarantee.
    IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap.
    IncrementNSSW = (1 << 1), // No signed with signed increment wrap
                              // (equivalent with SCEV::NSW)
    IncrementNoWrapMask = (1 << 2) - 1
  };

  /// Convenient IncrementWrapFlags manipulation methods.
  LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
  clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
             SCEVWrapPredicate::IncrementWrapFlags OffFlags) {
    assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
    assert((OffFlags & IncrementNoWrapMask) == OffFlags &&
           "Invalid flags value!");
    return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags);
  }

  LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
  maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask) {
    assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
    assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!");

    return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask);
  }

  LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
  setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
           SCEVWrapPredicate::IncrementWrapFlags OnFlags) {
    assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
    assert((OnFlags & IncrementNoWrapMask) == OnFlags &&
           "Invalid flags value!");

    return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags);
  }

  /// Returns the set of SCEVWrapPredicate no wrap flags implied by a
  /// SCEVAddRecExpr.
  LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
  getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE);

private:
  const SCEVAddRecExpr *AR;
  IncrementWrapFlags Flags;

public:
  explicit SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
                             const SCEVAddRecExpr *AR,
                             IncrementWrapFlags Flags);

  /// Returns the set assumed no overflow flags.
  IncrementWrapFlags getFlags() const { return Flags; }

  /// Implementation of the SCEVPredicate interface
  const SCEV *getExpr() const override;
  bool implies(const SCEVPredicate *N) const override;
  void print(raw_ostream &OS, unsigned Depth = 0) const override;
  bool isAlwaysTrue() const override;

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const SCEVPredicate *P) {
    return P->getKind() == P_Wrap;
  }
};

/// This class represents a composition of other SCEV predicates, and is the
/// class that most clients will interact with.  This is equivalent to a
/// logical "AND" of all the predicates in the union.
///
/// NB! Unlike other SCEVPredicate sub-classes this class does not live in the
/// ScalarEvolution::Preds folding set.  This is why the \c add function is sound.
class SCEVUnionPredicate final : public SCEVPredicate {
private:
  using PredicateMap =
      DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>;

  /// Vector with references to all predicates in this union.
  SmallVector<const SCEVPredicate *, 16> Preds;

  /// Maps SCEVs to predicates for quick look-ups.
  PredicateMap SCEVToPreds;

public:
  SCEVUnionPredicate();

  const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const {
    return Preds;
  }

  /// Adds a predicate to this union.
  void add(const SCEVPredicate *N);

  /// Returns a reference to a vector containing all predicates which apply to
  /// \p Expr.
  ArrayRef<const SCEVPredicate *> getPredicatesForExpr(const SCEV *Expr);

  /// Implementation of the SCEVPredicate interface
  bool isAlwaysTrue() const override;
  bool implies(const SCEVPredicate *N) const override;
  void print(raw_ostream &OS, unsigned Depth) const override;
  const SCEV *getExpr() const override;

  /// We estimate the complexity of a union predicate as the size number of
  /// predicates in the union.
  unsigned getComplexity() const override { return Preds.size(); }

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const SCEVPredicate *P) {
    return P->getKind() == P_Union;
  }
};

/// The main scalar evolution driver. Because client code (intentionally)
/// can't do much with the SCEV objects directly, they must ask this class
/// for services.
class ScalarEvolution {
  friend class ScalarEvolutionsTest;

public:
  /// An enum describing the relationship between a SCEV and a loop.
  enum LoopDisposition {
    LoopVariant,   ///< The SCEV is loop-variant (unknown).
    LoopInvariant, ///< The SCEV is loop-invariant.
    LoopComputable ///< The SCEV varies predictably with the loop.
  };

  /// An enum describing the relationship between a SCEV and a basic block.
  enum BlockDisposition {
    DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
    DominatesBlock,        ///< The SCEV dominates the block.
    ProperlyDominatesBlock ///< The SCEV properly dominates the block.
  };

  /// Convenient NoWrapFlags manipulation that hides enum casts and is
  /// visible in the ScalarEvolution name space.
  LLVM_NODISCARD static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags,
                                                    int Mask) {
    return (SCEV::NoWrapFlags)(Flags & Mask);
  }
  LLVM_NODISCARD static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
                                                   SCEV::NoWrapFlags OnFlags) {
    return (SCEV::NoWrapFlags)(Flags | OnFlags);
  }
  LLVM_NODISCARD static SCEV::NoWrapFlags
  clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
    return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
  }
  LLVM_NODISCARD static bool hasFlags(SCEV::NoWrapFlags Flags,
                                      SCEV::NoWrapFlags TestFlags) {
    return TestFlags == maskFlags(Flags, TestFlags);
  };

  ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC,
                  DominatorTree &DT, LoopInfo &LI);
  ScalarEvolution(ScalarEvolution &&Arg);
  ~ScalarEvolution();

  LLVMContext &getContext() const { return F.getContext(); }

  /// Test if values of the given type are analyzable within the SCEV
  /// framework. This primarily includes integer types, and it can optionally
  /// include pointer types if the ScalarEvolution class has access to
  /// target-specific information.
  bool isSCEVable(Type *Ty) const;

  /// Return the size in bits of the specified type, for which isSCEVable must
  /// return true.
  uint64_t getTypeSizeInBits(Type *Ty) const;

  /// Return a type with the same bitwidth as the given type and which
  /// represents how SCEV will treat the given type, for which isSCEVable must
  /// return true. For pointer types, this is the pointer-sized integer type.
  Type *getEffectiveSCEVType(Type *Ty) const;

  // Returns a wider type among {Ty1, Ty2}.
  Type *getWiderType(Type *Ty1, Type *Ty2) const;

  /// Return true if there exists a point in the program at which both
  /// A and B could be operands to the same instruction.
  /// SCEV expressions are generally assumed to correspond to instructions
  /// which could exists in IR.  In general, this requires that there exists
  /// a use point in the program where all operands dominate the use.
  ///
  /// Example:
  /// loop {
  ///   if
  ///     loop { v1 = load @global1; }
  ///   else
  ///     loop { v2 = load @global2; }
  /// }
  /// No SCEV with operand V1, and v2 can exist in this program.
  bool instructionCouldExistWitthOperands(const SCEV *A, const SCEV *B);

  /// Return true if the SCEV is a scAddRecExpr or it contains
  /// scAddRecExpr. The result will be cached in HasRecMap.
  bool containsAddRecurrence(const SCEV *S);

  /// Is operation \p BinOp between \p LHS and \p RHS provably does not have
  /// a signed/unsigned overflow (\p Signed)?
  bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
                       const SCEV *LHS, const SCEV *RHS);

  /// Parse NSW/NUW flags from add/sub/mul IR binary operation \p Op into
  /// SCEV no-wrap flags, and deduce flag[s] that aren't known yet.
  /// Does not mutate the original instruction.
  std::pair<SCEV::NoWrapFlags, bool /*Deduced*/>
  getStrengthenedNoWrapFlagsFromBinOp(const OverflowingBinaryOperator *OBO);

  /// Notify this ScalarEvolution that \p User directly uses SCEVs in \p Ops.
  void registerUser(const SCEV *User, ArrayRef<const SCEV *> Ops);

  /// Return true if the SCEV expression contains an undef value.
  bool containsUndefs(const SCEV *S) const;

  /// Return a SCEV expression for the full generality of the specified
  /// expression.
  const SCEV *getSCEV(Value *V);

  const SCEV *getConstant(ConstantInt *V);
  const SCEV *getConstant(const APInt &Val);
  const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
  const SCEV *getLosslessPtrToIntExpr(const SCEV *Op, unsigned Depth = 0);
  const SCEV *getPtrToIntExpr(const SCEV *Op, Type *Ty);
  const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
  const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
  const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
  const SCEV *getCastExpr(SCEVTypes Kind, const SCEV *Op, Type *Ty);
  const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
  const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
                         unsigned Depth = 0);
  const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
                         unsigned Depth = 0) {
    SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
    return getAddExpr(Ops, Flags, Depth);
  }
  const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
                         unsigned Depth = 0) {
    SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
    return getAddExpr(Ops, Flags, Depth);
  }
  const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
                         unsigned Depth = 0);
  const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
                         unsigned Depth = 0) {
    SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
    return getMulExpr(Ops, Flags, Depth);
  }
  const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
                         unsigned Depth = 0) {
    SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
    return getMulExpr(Ops, Flags, Depth);
  }
  const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
  const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
  const SCEV *getURemExpr(const SCEV *LHS, const SCEV *RHS);
  const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L,
                            SCEV::NoWrapFlags Flags);
  const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
                            const Loop *L, SCEV::NoWrapFlags Flags);
  const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
                            const Loop *L, SCEV::NoWrapFlags Flags) {
    SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
    return getAddRecExpr(NewOp, L, Flags);
  }

  /// Checks if \p SymbolicPHI can be rewritten as an AddRecExpr under some
  /// Predicates. If successful return these <AddRecExpr, Predicates>;
  /// The function is intended to be called from PSCEV (the caller will decide
  /// whether to actually add the predicates and carry out the rewrites).
  Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
  createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI);

  /// Returns an expression for a GEP
  ///
  /// \p GEP The GEP. The indices contained in the GEP itself are ignored,
  /// instead we use IndexExprs.
  /// \p IndexExprs The expressions for the indices.
  const SCEV *getGEPExpr(GEPOperator *GEP,
                         const SmallVectorImpl<const SCEV *> &IndexExprs);
  const SCEV *getAbsExpr(const SCEV *Op, bool IsNSW);
  const SCEV *getMinMaxExpr(SCEVTypes Kind,
                            SmallVectorImpl<const SCEV *> &Operands);
  const SCEV *getSequentialMinMaxExpr(SCEVTypes Kind,
                                      SmallVectorImpl<const SCEV *> &Operands);
  const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
  const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
  const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
  const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
  const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
  const SCEV *getSMinExpr(SmallVectorImpl<const SCEV *> &Operands);
  const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS,
                          bool Sequential = false);
  const SCEV *getUMinExpr(SmallVectorImpl<const SCEV *> &Operands,
                          bool Sequential = false);
  const SCEV *getUnknown(Value *V);
  const SCEV *getCouldNotCompute();

  /// Return a SCEV for the constant 0 of a specific type.
  const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }

  /// Return a SCEV for the constant 1 of a specific type.
  const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }

  /// Return a SCEV for the constant -1 of a specific type.
  const SCEV *getMinusOne(Type *Ty) {
    return getConstant(Ty, -1, /*isSigned=*/true);
  }

  /// Return an expression for sizeof ScalableTy that is type IntTy, where
  /// ScalableTy is a scalable vector type.
  const SCEV *getSizeOfScalableVectorExpr(Type *IntTy,
                                          ScalableVectorType *ScalableTy);

  /// Return an expression for the alloc size of AllocTy that is type IntTy
  const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);

  /// Return an expression for the store size of StoreTy that is type IntTy
  const SCEV *getStoreSizeOfExpr(Type *IntTy, Type *StoreTy);

  /// Return an expression for offsetof on the given field with type IntTy
  const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);

  /// Return the SCEV object corresponding to -V.
  const SCEV *getNegativeSCEV(const SCEV *V,
                              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);

  /// Return the SCEV object corresponding to ~V.
  const SCEV *getNotSCEV(const SCEV *V);

  /// Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
  ///
  /// If the LHS and RHS are pointers which don't share a common base
  /// (according to getPointerBase()), this returns a SCEVCouldNotCompute.
  /// To compute the difference between two unrelated pointers, you can
  /// explicitly convert the arguments using getPtrToIntExpr(), for pointer
  /// types that support it.
  const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
                           unsigned Depth = 0);

  /// Compute ceil(N / D). N and D are treated as unsigned values.
  ///
  /// Since SCEV doesn't have native ceiling division, this generates a
  /// SCEV expression of the following form:
  ///
  /// umin(N, 1) + floor((N - umin(N, 1)) / D)
  ///
  /// A denominator of zero or poison is handled the same way as getUDivExpr().
  const SCEV *getUDivCeilSCEV(const SCEV *N, const SCEV *D);

  /// Return a SCEV corresponding to a conversion of the input value to the
  /// specified type.  If the type must be extended, it is zero extended.
  const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
                                      unsigned Depth = 0);

  /// Return a SCEV corresponding to a conversion of the input value to the
  /// specified type.  If the type must be extended, it is sign extended.
  const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty,
                                      unsigned Depth = 0);

  /// Return a SCEV corresponding to a conversion of the input value to the
  /// specified type.  If the type must be extended, it is zero extended.  The
  /// conversion must not be narrowing.
  const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);

  /// Return a SCEV corresponding to a conversion of the input value to the
  /// specified type.  If the type must be extended, it is sign extended.  The
  /// conversion must not be narrowing.
  const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);

  /// Return a SCEV corresponding to a conversion of the input value to the
  /// specified type. If the type must be extended, it is extended with
  /// unspecified bits. The conversion must not be narrowing.
  const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);

  /// Return a SCEV corresponding to a conversion of the input value to the
  /// specified type.  The conversion must not be widening.
  const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);

  /// Promote the operands to the wider of the types using zero-extension, and
  /// then perform a umax operation with them.
  const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS);

  /// Promote the operands to the wider of the types using zero-extension, and
  /// then perform a umin operation with them.
  const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS,
                                         bool Sequential = false);

  /// Promote the operands to the wider of the types using zero-extension, and
  /// then perform a umin operation with them. N-ary function.
  const SCEV *getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops,
                                         bool Sequential = false);

  /// Transitively follow the chain of pointer-type operands until reaching a
  /// SCEV that does not have a single pointer operand. This returns a
  /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
  /// cases do exist.
  const SCEV *getPointerBase(const SCEV *V);

  /// Compute an expression equivalent to S - getPointerBase(S).
  const SCEV *removePointerBase(const SCEV *S);

  /// Return a SCEV expression for the specified value at the specified scope
  /// in the program.  The L value specifies a loop nest to evaluate the
  /// expression at, where null is the top-level or a specified loop is
  /// immediately inside of the loop.
  ///
  /// This method can be used to compute the exit value for a variable defined
  /// in a loop by querying what the value will hold in the parent loop.
  ///
  /// In the case that a relevant loop exit value cannot be computed, the
  /// original value V is returned.
  const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);

  /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
  const SCEV *getSCEVAtScope(Value *V, const Loop *L);

  /// Test whether entry to the loop is protected by a conditional between LHS
  /// and RHS.  This is used to help avoid max expressions in loop trip
  /// counts, and to eliminate casts.
  bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
                                const SCEV *LHS, const SCEV *RHS);

  /// Test whether entry to the basic block is protected by a conditional
  /// between LHS and RHS.
  bool isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
                                      ICmpInst::Predicate Pred, const SCEV *LHS,
                                      const SCEV *RHS);

  /// Test whether the backedge of the loop is protected by a conditional
  /// between LHS and RHS.  This is used to eliminate casts.
  bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
                                   const SCEV *LHS, const SCEV *RHS);

  /// Convert from an "exit count" (i.e. "backedge taken count") to a "trip
  /// count".  A "trip count" is the number of times the header of the loop
  /// will execute if an exit is taken after the specified number of backedges
  /// have been taken.  (e.g. TripCount = ExitCount + 1).  Note that the
  /// expression can overflow if ExitCount = UINT_MAX.  \p Extend controls
  /// how potential overflow is handled.  If true, a wider result type is
  /// returned. ex: EC = 255 (i8), TC = 256 (i9).  If false, result unsigned
  /// wraps with 2s-complement semantics.  ex: EC = 255 (i8), TC = 0 (i8)
  const SCEV *getTripCountFromExitCount(const SCEV *ExitCount,
                                        bool Extend = true);

  /// Returns the exact trip count of the loop if we can compute it, and
  /// the result is a small constant.  '0' is used to represent an unknown
  /// or non-constant trip count.  Note that a trip count is simply one more
  /// than the backedge taken count for the loop.
  unsigned getSmallConstantTripCount(const Loop *L);

  /// Return the exact trip count for this loop if we exit through ExitingBlock.
  /// '0' is used to represent an unknown or non-constant trip count.  Note
  /// that a trip count is simply one more than the backedge taken count for
  /// the same exit.
  /// This "trip count" assumes that control exits via ExitingBlock. More
  /// precisely, it is the number of times that control will reach ExitingBlock
  /// before taking the branch. For loops with multiple exits, it may not be
  /// the number times that the loop header executes if the loop exits
  /// prematurely via another branch.
  unsigned getSmallConstantTripCount(const Loop *L,
                                     const BasicBlock *ExitingBlock);

  /// Returns the upper bound of the loop trip count as a normal unsigned
  /// value.
  /// Returns 0 if the trip count is unknown or not constant.
  unsigned getSmallConstantMaxTripCount(const Loop *L);

  /// Returns the upper bound of the loop trip count infered from array size.
  /// Can not access bytes starting outside the statically allocated size
  /// without being immediate UB.
  /// Returns SCEVCouldNotCompute if the trip count could not inferred
  /// from array accesses.
  const SCEV *getConstantMaxTripCountFromArray(const Loop *L);

  /// Returns the largest constant divisor of the trip count as a normal
  /// unsigned value, if possible. This means that the actual trip count is
  /// always a multiple of the returned value. Returns 1 if the trip count is
  /// unknown or not guaranteed to be the multiple of a constant., Will also
  /// return 1 if the trip count is very large (>= 2^32).
  /// Note that the argument is an exit count for loop L, NOT a trip count.
  unsigned getSmallConstantTripMultiple(const Loop *L,
                                        const SCEV *ExitCount);

  /// Returns the largest constant divisor of the trip count of the
  /// loop.  Will return 1 if no trip count could be computed, or if a
  /// divisor could not be found.
  unsigned getSmallConstantTripMultiple(const Loop *L);

  /// Returns the largest constant divisor of the trip count of this loop as a
  /// normal unsigned value, if possible. This means that the actual trip
  /// count is always a multiple of the returned value (don't forget the trip
  /// count could very well be zero as well!). As explained in the comments
  /// for getSmallConstantTripCount, this assumes that control exits the loop
  /// via ExitingBlock.
  unsigned getSmallConstantTripMultiple(const Loop *L,
                                        const BasicBlock *ExitingBlock);

  /// The terms "backedge taken count" and "exit count" are used
  /// interchangeably to refer to the number of times the backedge of a loop 
  /// has executed before the loop is exited.
  enum ExitCountKind {
    /// An expression exactly describing the number of times the backedge has
    /// executed when a loop is exited.
    Exact,
    /// A constant which provides an upper bound on the exact trip count.
    ConstantMaximum,
    /// An expression which provides an upper bound on the exact trip count.
    SymbolicMaximum,
  };

  /// Return the number of times the backedge executes before the given exit
  /// would be taken; if not exactly computable, return SCEVCouldNotCompute. 
  /// For a single exit loop, this value is equivelent to the result of
  /// getBackedgeTakenCount.  The loop is guaranteed to exit (via *some* exit)
  /// before the backedge is executed (ExitCount + 1) times.  Note that there
  /// is no guarantee about *which* exit is taken on the exiting iteration.
  const SCEV *getExitCount(const Loop *L, const BasicBlock *ExitingBlock,
                           ExitCountKind Kind = Exact);

  /// If the specified loop has a predictable backedge-taken count, return it,
  /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count is
  /// the number of times the loop header will be branched to from within the
  /// loop, assuming there are no abnormal exists like exception throws. This is
  /// one less than the trip count of the loop, since it doesn't count the first
  /// iteration, when the header is branched to from outside the loop.
  ///
  /// Note that it is not valid to call this method on a loop without a
  /// loop-invariant backedge-taken count (see
  /// hasLoopInvariantBackedgeTakenCount).
  const SCEV *getBackedgeTakenCount(const Loop *L, ExitCountKind Kind = Exact);

  /// Similar to getBackedgeTakenCount, except it will add a set of
  /// SCEV predicates to Predicates that are required to be true in order for
  /// the answer to be correct. Predicates can be checked with run-time
  /// checks and can be used to perform loop versioning.
  const SCEV *getPredicatedBackedgeTakenCount(const Loop *L,
                                              SCEVUnionPredicate &Predicates);

  /// When successful, this returns a SCEVConstant that is greater than or equal
  /// to (i.e. a "conservative over-approximation") of the value returend by
  /// getBackedgeTakenCount.  If such a value cannot be computed, it returns the
  /// SCEVCouldNotCompute object.
  const SCEV *getConstantMaxBackedgeTakenCount(const Loop *L) {
    return getBackedgeTakenCount(L, ConstantMaximum);
  }

  /// When successful, this returns a SCEV that is greater than or equal
  /// to (i.e. a "conservative over-approximation") of the value returend by
  /// getBackedgeTakenCount.  If such a value cannot be computed, it returns the
  /// SCEVCouldNotCompute object.
  const SCEV *getSymbolicMaxBackedgeTakenCount(const Loop *L) {
    return getBackedgeTakenCount(L, SymbolicMaximum);
  }

  /// Return true if the backedge taken count is either the value returned by
  /// getConstantMaxBackedgeTakenCount or zero.
  bool isBackedgeTakenCountMaxOrZero(const Loop *L);

  /// Return true if the specified loop has an analyzable loop-invariant
  /// backedge-taken count.
  bool hasLoopInvariantBackedgeTakenCount(const Loop *L);

  // This method should be called by the client when it made any change that
  // would invalidate SCEV's answers, and the client wants to remove all loop
  // information held internally by ScalarEvolution. This is intended to be used
  // when the alternative to forget a loop is too expensive (i.e. large loop
  // bodies).
  void forgetAllLoops();

  /// This method should be called by the client when it has changed a loop in
  /// a way that may effect ScalarEvolution's ability to compute a trip count,
  /// or if the loop is deleted.  This call is potentially expensive for large
  /// loop bodies.
  void forgetLoop(const Loop *L);

  // This method invokes forgetLoop for the outermost loop of the given loop
  // \p L, making ScalarEvolution forget about all this subtree. This needs to
  // be done whenever we make a transform that may affect the parameters of the
  // outer loop, such as exit counts for branches.
  void forgetTopmostLoop(const Loop *L);

  /// This method should be called by the client when it has changed a value
  /// in a way that may effect its value, or which may disconnect it from a
  /// def-use chain linking it to a loop.
  void forgetValue(Value *V);

  /// Called when the client has changed the disposition of values in
  /// this loop.
  ///
  /// We don't have a way to invalidate per-loop dispositions. Clear and
  /// recompute is simpler.
  void forgetLoopDispositions(const Loop *L);

  /// Determine the minimum number of zero bits that S is guaranteed to end in
  /// (at every loop iteration).  It is, at the same time, the minimum number
  /// of times S is divisible by 2.  For example, given {4,+,8} it returns 2.
  /// If S is guaranteed to be 0, it returns the bitwidth of S.
  uint32_t GetMinTrailingZeros(const SCEV *S);

  /// Determine the unsigned range for a particular SCEV.
  /// NOTE: This returns a copy of the reference returned by getRangeRef.
  ConstantRange getUnsignedRange(const SCEV *S) {
    return getRangeRef(S, HINT_RANGE_UNSIGNED);
  }

  /// Determine the min of the unsigned range for a particular SCEV.
  APInt getUnsignedRangeMin(const SCEV *S) {
    return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMin();
  }

  /// Determine the max of the unsigned range for a particular SCEV.
  APInt getUnsignedRangeMax(const SCEV *S) {
    return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMax();
  }

  /// Determine the signed range for a particular SCEV.
  /// NOTE: This returns a copy of the reference returned by getRangeRef.
  ConstantRange getSignedRange(const SCEV *S) {
    return getRangeRef(S, HINT_RANGE_SIGNED);
  }

  /// Determine the min of the signed range for a particular SCEV.
  APInt getSignedRangeMin(const SCEV *S) {
    return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMin();
  }

  /// Determine the max of the signed range for a particular SCEV.
  APInt getSignedRangeMax(const SCEV *S) {
    return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMax();
  }

  /// Test if the given expression is known to be negative.
  bool isKnownNegative(const SCEV *S);

  /// Test if the given expression is known to be positive.
  bool isKnownPositive(const SCEV *S);

  /// Test if the given expression is known to be non-negative.
  bool isKnownNonNegative(const SCEV *S);

  /// Test if the given expression is known to be non-positive.
  bool isKnownNonPositive(const SCEV *S);

  /// Test if the given expression is known to be non-zero.
  bool isKnownNonZero(const SCEV *S);

  /// Splits SCEV expression \p S into two SCEVs. One of them is obtained from
  /// \p S by substitution of all AddRec sub-expression related to loop \p L
  /// with initial value of that SCEV. The second is obtained from \p S by
  /// substitution of all AddRec sub-expressions related to loop \p L with post
  /// increment of this AddRec in the loop \p L. In both cases all other AddRec
  /// sub-expressions (not related to \p L) remain the same.
  /// If the \p S contains non-invariant unknown SCEV the function returns
  /// CouldNotCompute SCEV in both values of std::pair.
  /// For example, for SCEV S={0, +, 1}<L1> + {0, +, 1}<L2> and loop L=L1
  /// the function returns pair:
  /// first = {0, +, 1}<L2>
  /// second = {1, +, 1}<L1> + {0, +, 1}<L2>
  /// We can see that for the first AddRec sub-expression it was replaced with
  /// 0 (initial value) for the first element and to {1, +, 1}<L1> (post
  /// increment value) for the second one. In both cases AddRec expression
  /// related to L2 remains the same.
  std::pair<const SCEV *, const SCEV *> SplitIntoInitAndPostInc(const Loop *L,
                                                                const SCEV *S);

  /// We'd like to check the predicate on every iteration of the most dominated
  /// loop between loops used in LHS and RHS.
  /// To do this we use the following list of steps:
  /// 1. Collect set S all loops on which either LHS or RHS depend.
  /// 2. If S is non-empty
  /// a. Let PD be the element of S which is dominated by all other elements.
  /// b. Let E(LHS) be value of LHS on entry of PD.
  ///    To get E(LHS), we should just take LHS and replace all AddRecs that are
  ///    attached to PD on with their entry values.
  ///    Define E(RHS) in the same way.
  /// c. Let B(LHS) be value of L on backedge of PD.
  ///    To get B(LHS), we should just take LHS and replace all AddRecs that are
  ///    attached to PD on with their backedge values.
  ///    Define B(RHS) in the same way.
  /// d. Note that E(LHS) and E(RHS) are automatically available on entry of PD,
  ///    so we can assert on that.
  /// e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) &&
  ///                   isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS))
  bool isKnownViaInduction(ICmpInst::Predicate Pred, const SCEV *LHS,
                           const SCEV *RHS);

  /// Test if the given expression is known to satisfy the condition described
  /// by Pred, LHS, and RHS.
  bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
                        const SCEV *RHS);

  /// Check whether the condition described by Pred, LHS, and RHS is true or
  /// false. If we know it, return the evaluation of this condition. If neither
  /// is proved, return None.
  Optional<bool> evaluatePredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
                                   const SCEV *RHS);

  /// Test if the given expression is known to satisfy the condition described
  /// by Pred, LHS, and RHS in the given Context.
  bool isKnownPredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
                          const SCEV *RHS, const Instruction *CtxI);

  /// Check whether the condition described by Pred, LHS, and RHS is true or
  /// false in the given \p Context. If we know it, return the evaluation of
  /// this condition. If neither is proved, return None.
  Optional<bool> evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
                                     const SCEV *RHS, const Instruction *CtxI);

  /// Test if the condition described by Pred, LHS, RHS is known to be true on
  /// every iteration of the loop of the recurrency LHS.
  bool isKnownOnEveryIteration(ICmpInst::Predicate Pred,
                               const SCEVAddRecExpr *LHS, const SCEV *RHS);

  /// A predicate is said to be monotonically increasing if may go from being
  /// false to being true as the loop iterates, but never the other way
  /// around.  A predicate is said to be monotonically decreasing if may go
  /// from being true to being false as the loop iterates, but never the other
  /// way around.
  enum MonotonicPredicateType {
    MonotonicallyIncreasing,
    MonotonicallyDecreasing
  };

  /// If, for all loop invariant X, the predicate "LHS `Pred` X" is
  /// monotonically increasing or decreasing, returns
  /// Some(MonotonicallyIncreasing) and Some(MonotonicallyDecreasing)
  /// respectively. If we could not prove either of these facts, returns None.
  Optional<MonotonicPredicateType>
  getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
                            ICmpInst::Predicate Pred);

  struct LoopInvariantPredicate {
    ICmpInst::Predicate Pred;
    const SCEV *LHS;
    const SCEV *RHS;

    LoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
                           const SCEV *RHS)
        : Pred(Pred), LHS(LHS), RHS(RHS) {}
  };
  /// If the result of the predicate LHS `Pred` RHS is loop invariant with
  /// respect to L, return a LoopInvariantPredicate with LHS and RHS being
  /// invariants, available at L's entry. Otherwise, return None.
  Optional<LoopInvariantPredicate>
  getLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
                            const SCEV *RHS, const Loop *L);

  /// If the result of the predicate LHS `Pred` RHS is loop invariant with
  /// respect to L at given Context during at least first MaxIter iterations,
  /// return a LoopInvariantPredicate with LHS and RHS being invariants,
  /// available at L's entry. Otherwise, return None. The predicate should be
  /// the loop's exit condition.
  Optional<LoopInvariantPredicate>
  getLoopInvariantExitCondDuringFirstIterations(ICmpInst::Predicate Pred,
                                                const SCEV *LHS,
                                                const SCEV *RHS, const Loop *L,
                                                const Instruction *CtxI,
                                                const SCEV *MaxIter);

  /// Simplify LHS and RHS in a comparison with predicate Pred. Return true
  /// iff any changes were made. If the operands are provably equal or
  /// unequal, LHS and RHS are set to the same value and Pred is set to either
  /// ICMP_EQ or ICMP_NE. ControllingFiniteLoop is set if this comparison
  /// controls the exit of a loop known to have a finite number of iterations.
  bool SimplifyICmpOperands(ICmpInst::Predicate &Pred, const SCEV *&LHS,
                            const SCEV *&RHS, unsigned Depth = 0,
                            bool ControllingFiniteLoop = false);

  /// Return the "disposition" of the given SCEV with respect to the given
  /// loop.
  LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);

  /// Return true if the value of the given SCEV is unchanging in the
  /// specified loop.
  bool isLoopInvariant(const SCEV *S, const Loop *L);

  /// Determine if the SCEV can be evaluated at loop's entry. It is true if it
  /// doesn't depend on a SCEVUnknown of an instruction which is dominated by
  /// the header of loop L.
  bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L);

  /// Return true if the given SCEV changes value in a known way in the
  /// specified loop.  This property being true implies that the value is
  /// variant in the loop AND that we can emit an expression to compute the
  /// value of the expression at any particular loop iteration.
  bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);

  /// Return the "disposition" of the given SCEV with respect to the given
  /// block.
  BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);

  /// Return true if elements that makes up the given SCEV dominate the
  /// specified basic block.
  bool dominates(const SCEV *S, const BasicBlock *BB);

  /// Return true if elements that makes up the given SCEV properly dominate
  /// the specified basic block.
  bool properlyDominates(const SCEV *S, const BasicBlock *BB);

  /// Test whether the given SCEV has Op as a direct or indirect operand.
  bool hasOperand(const SCEV *S, const SCEV *Op) const;

  /// Return the size of an element read or written by Inst.
  const SCEV *getElementSize(Instruction *Inst);

  void print(raw_ostream &OS) const;
  void verify() const;
  bool invalidate(Function &F, const PreservedAnalyses &PA,
                  FunctionAnalysisManager::Invalidator &Inv);

  /// Return the DataLayout associated with the module this SCEV instance is
  /// operating on.
  const DataLayout &getDataLayout() const {
    return F.getParent()->getDataLayout();
  }

  const SCEVPredicate *getEqualPredicate(const SCEV *LHS, const SCEV *RHS);

  const SCEVPredicate *
  getWrapPredicate(const SCEVAddRecExpr *AR,
                   SCEVWrapPredicate::IncrementWrapFlags AddedFlags);

  /// Re-writes the SCEV according to the Predicates in \p A.
  const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L,
                                    SCEVUnionPredicate &A);
  /// Tries to convert the \p S expression to an AddRec expression,
  /// adding additional predicates to \p Preds as required.
  const SCEVAddRecExpr *convertSCEVToAddRecWithPredicates(
      const SCEV *S, const Loop *L,
      SmallPtrSetImpl<const SCEVPredicate *> &Preds);

  /// Compute \p LHS - \p RHS and returns the result as an APInt if it is a
  /// constant, and None if it isn't.
  ///
  /// This is intended to be a cheaper version of getMinusSCEV.  We can be
  /// frugal here since we just bail out of actually constructing and
  /// canonicalizing an expression in the cases where the result isn't going
  /// to be a constant.
  Optional<APInt> computeConstantDifference(const SCEV *LHS, const SCEV *RHS);

  /// Update no-wrap flags of an AddRec. This may drop the cached info about
  /// this AddRec (such as range info) in case if new flags may potentially
  /// sharpen it.
  void setNoWrapFlags(SCEVAddRecExpr *AddRec, SCEV::NoWrapFlags Flags);

  /// Try to apply information from loop guards for \p L to \p Expr.
  const SCEV *applyLoopGuards(const SCEV *Expr, const Loop *L);

  /// Return true if the loop has no abnormal exits. That is, if the loop
  /// is not infinite, it must exit through an explicit edge in the CFG.
  /// (As opposed to either a) throwing out of the function or b) entering a
  /// well defined infinite loop in some callee.)
  bool loopHasNoAbnormalExits(const Loop *L) {
    return getLoopProperties(L).HasNoAbnormalExits;
  }

  /// Return true if this loop is finite by assumption.  That is,
  /// to be infinite, it must also be undefined.
  bool loopIsFiniteByAssumption(const Loop *L);

private:
  /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
  /// Value is deleted.
  class SCEVCallbackVH final : public CallbackVH {
    ScalarEvolution *SE;

    void deleted() override;
    void allUsesReplacedWith(Value *New) override;

  public:
    SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
  };

  friend class SCEVCallbackVH;
  friend class SCEVExpander;
  friend class SCEVUnknown;

  /// The function we are analyzing.
  Function &F;

  /// Does the module have any calls to the llvm.experimental.guard intrinsic
  /// at all?  If this is false, we avoid doing work that will only help if
  /// thare are guards present in the IR.
  bool HasGuards;

  /// The target library information for the target we are targeting.
  TargetLibraryInfo &TLI;

  /// The tracker for \@llvm.assume intrinsics in this function.
  AssumptionCache &AC;

  /// The dominator tree.
  DominatorTree &DT;

  /// The loop information for the function we are currently analyzing.
  LoopInfo &LI;

  /// This SCEV is used to represent unknown trip counts and things.
  std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;

  /// The type for HasRecMap.
  using HasRecMapType = DenseMap<const SCEV *, bool>;

  /// This is a cache to record whether a SCEV contains any scAddRecExpr.
  HasRecMapType HasRecMap;

  /// The type for ExprValueMap.
  using ValueOffsetPair = std::pair<Value *, ConstantInt *>;
  using ValueOffsetPairSetVector = SmallSetVector<ValueOffsetPair, 4>;
  using ExprValueMapType = DenseMap<const SCEV *, ValueOffsetPairSetVector>;

  /// ExprValueMap -- This map records the original values from which
  /// the SCEV expr is generated from.
  ///
  /// We want to represent the mapping as SCEV -> ValueOffsetPair instead
  /// of SCEV -> Value:
  /// Suppose we know S1 expands to V1, and
  ///  S1 = S2 + C_a
  ///  S3 = S2 + C_b
  /// where C_a and C_b are different SCEVConstants. Then we'd like to
  /// expand S3 as V1 - C_a + C_b instead of expanding S2 literally.
  /// It is helpful when S2 is a complex SCEV expr.
  ///
  /// In order to do that, we represent ExprValueMap as a mapping from
  /// SCEV to ValueOffsetPair. We will save both S1->{V1, 0} and
  /// S2->{V1, C_a} into the map when we create SCEV for V1. When S3
  /// is expanded, it will first expand S2 to V1 - C_a because of
  /// S2->{V1, C_a} in the map, then expand S3 to V1 - C_a + C_b.
  ///
  /// Note: S->{V, Offset} in the ExprValueMap means S can be expanded
  /// to V - Offset.
  ExprValueMapType ExprValueMap;

  /// The type for ValueExprMap.
  using ValueExprMapType =
      DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *>>;

  /// This is a cache of the values we have analyzed so far.
  ValueExprMapType ValueExprMap;

  /// Mark predicate values currently being processed by isImpliedCond.
  SmallPtrSet<const Value *, 6> PendingLoopPredicates;

  /// Mark SCEVUnknown Phis currently being processed by getRangeRef.
  SmallPtrSet<const PHINode *, 6> PendingPhiRanges;

  // Mark SCEVUnknown Phis currently being processed by isImpliedViaMerge.
  SmallPtrSet<const PHINode *, 6> PendingMerges;

  /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
  /// conditions dominating the backedge of a loop.
  bool WalkingBEDominatingConds = false;

  /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
  /// predicate by splitting it into a set of independent predicates.
  bool ProvingSplitPredicate = false;

  /// Memoized values for the GetMinTrailingZeros
  DenseMap<const SCEV *, uint32_t> MinTrailingZerosCache;

  /// Return the Value set from which the SCEV expr is generated.
  ValueOffsetPairSetVector *getSCEVValues(const SCEV *S);

  /// Private helper method for the GetMinTrailingZeros method
  uint32_t GetMinTrailingZerosImpl(const SCEV *S);

  /// Information about the number of loop iterations for which a loop exit's
  /// branch condition evaluates to the not-taken path.  This is a temporary
  /// pair of exact and max expressions that are eventually summarized in
  /// ExitNotTakenInfo and BackedgeTakenInfo.
  struct ExitLimit {
    const SCEV *ExactNotTaken; // The exit is not taken exactly this many times
    const SCEV *MaxNotTaken; // The exit is not taken at most this many times

    // Not taken either exactly MaxNotTaken or zero times
    bool MaxOrZero = false;

    /// A set of predicate guards for this ExitLimit. The result is only valid
    /// if all of the predicates in \c Predicates evaluate to 'true' at
    /// run-time.
    SmallPtrSet<const SCEVPredicate *, 4> Predicates;

    void addPredicate(const SCEVPredicate *P) {
      assert(!isa<SCEVUnionPredicate>(P) && "Only add leaf predicates here!");
      Predicates.insert(P);
    }

    /// Construct either an exact exit limit from a constant, or an unknown
    /// one from a SCEVCouldNotCompute.  No other types of SCEVs are allowed
    /// as arguments and asserts enforce that internally.
    /*implicit*/ ExitLimit(const SCEV *E);

    ExitLimit(
        const SCEV *E, const SCEV *M, bool MaxOrZero,
        ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList);

    ExitLimit(const SCEV *E, const SCEV *M, bool MaxOrZero,
              const SmallPtrSetImpl<const SCEVPredicate *> &PredSet);

    ExitLimit(const SCEV *E, const SCEV *M, bool MaxOrZero);

    /// Test whether this ExitLimit contains any computed information, or
    /// whether it's all SCEVCouldNotCompute values.
    bool hasAnyInfo() const {
      return !isa<SCEVCouldNotCompute>(ExactNotTaken) ||
             !isa<SCEVCouldNotCompute>(MaxNotTaken);
    }

    /// Test whether this ExitLimit contains all information.
    bool hasFullInfo() const {
      return !isa<SCEVCouldNotCompute>(ExactNotTaken);
    }
  };

  /// Information about the number of times a particular loop exit may be
  /// reached before exiting the loop.
  struct ExitNotTakenInfo {
    PoisoningVH<BasicBlock> ExitingBlock;
    const SCEV *ExactNotTaken;
    const SCEV *MaxNotTaken;
    std::unique_ptr<SCEVUnionPredicate> Predicate;

    explicit ExitNotTakenInfo(PoisoningVH<BasicBlock> ExitingBlock,
                              const SCEV *ExactNotTaken,
                              const SCEV *MaxNotTaken,
                              std::unique_ptr<SCEVUnionPredicate> Predicate)
      : ExitingBlock(ExitingBlock), ExactNotTaken(ExactNotTaken),
        MaxNotTaken(ExactNotTaken), Predicate(std::move(Predicate)) {}

    bool hasAlwaysTruePredicate() const {
      return !Predicate || Predicate->isAlwaysTrue();
    }
  };

  /// Information about the backedge-taken count of a loop. This currently
  /// includes an exact count and a maximum count.
  ///
  class BackedgeTakenInfo {
    friend class ScalarEvolution;

    /// A list of computable exits and their not-taken counts.  Loops almost
    /// never have more than one computable exit.
    SmallVector<ExitNotTakenInfo, 1> ExitNotTaken;

    /// Expression indicating the least constant maximum backedge-taken count of
    /// the loop that is known, or a SCEVCouldNotCompute. This expression is
    /// only valid if the redicates associated with all loop exits are true.
    const SCEV *ConstantMax;

    /// Indicating if \c ExitNotTaken has an element for every exiting block in
    /// the loop.
    bool IsComplete;

    /// Expression indicating the least maximum backedge-taken count of the loop
    /// that is known, or a SCEVCouldNotCompute. Lazily computed on first query.
    const SCEV *SymbolicMax = nullptr;

    /// True iff the backedge is taken either exactly Max or zero times.
    bool MaxOrZero = false;

    bool isComplete() const { return IsComplete; }
    const SCEV *getConstantMax() const { return ConstantMax; }

  public:
    BackedgeTakenInfo() : ConstantMax(nullptr), IsComplete(false) {}
    BackedgeTakenInfo(BackedgeTakenInfo &&) = default;
    BackedgeTakenInfo &operator=(BackedgeTakenInfo &&) = default;

    using EdgeExitInfo = std::pair<BasicBlock *, ExitLimit>;

    /// Initialize BackedgeTakenInfo from a list of exact exit counts.
    BackedgeTakenInfo(ArrayRef<EdgeExitInfo> ExitCounts, bool IsComplete,
                      const SCEV *ConstantMax, bool MaxOrZero);

    /// Test whether this BackedgeTakenInfo contains any computed information,
    /// or whether it's all SCEVCouldNotCompute values.
    bool hasAnyInfo() const {
      return !ExitNotTaken.empty() ||
             !isa<SCEVCouldNotCompute>(getConstantMax());
    }

    /// Test whether this BackedgeTakenInfo contains complete information.
    bool hasFullInfo() const { return isComplete(); }

    /// Return an expression indicating the exact *backedge-taken*
    /// count of the loop if it is known or SCEVCouldNotCompute
    /// otherwise.  If execution makes it to the backedge on every
    /// iteration (i.e. there are no abnormal exists like exception
    /// throws and thread exits) then this is the number of times the
    /// loop header will execute minus one.
    ///
    /// If the SCEV predicate associated with the answer can be different
    /// from AlwaysTrue, we must add a (non null) Predicates argument.
    /// The SCEV predicate associated with the answer will be added to
    /// Predicates. A run-time check needs to be emitted for the SCEV
    /// predicate in order for the answer to be valid.
    ///
    /// Note that we should always know if we need to pass a predicate
    /// argument or not from the way the ExitCounts vector was computed.
    /// If we allowed SCEV predicates to be generated when populating this
    /// vector, this information can contain them and therefore a
    /// SCEVPredicate argument should be added to getExact.
    const SCEV *getExact(const Loop *L, ScalarEvolution *SE,
                         SCEVUnionPredicate *Predicates = nullptr) const;

    /// Return the number of times this loop exit may fall through to the back
    /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
    /// this block before this number of iterations, but may exit via another
    /// block.
    const SCEV *getExact(const BasicBlock *ExitingBlock,
                         ScalarEvolution *SE) const;

    /// Get the constant max backedge taken count for the loop.
    const SCEV *getConstantMax(ScalarEvolution *SE) const;

    /// Get the constant max backedge taken count for the particular loop exit.
    const SCEV *getConstantMax(const BasicBlock *ExitingBlock,
                               ScalarEvolution *SE) const;

    /// Get the symbolic max backedge taken count for the loop.
    const SCEV *getSymbolicMax(const Loop *L, ScalarEvolution *SE);

    /// Return true if the number of times this backedge is taken is either the
    /// value returned by getConstantMax or zero.
    bool isConstantMaxOrZero(ScalarEvolution *SE) const;
  };

  /// Cache the backedge-taken count of the loops for this function as they
  /// are computed.
  DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts;

  /// Cache the predicated backedge-taken count of the loops for this
  /// function as they are computed.
  DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts;

  /// Loops whose backedge taken counts directly use this non-constant SCEV.
  DenseMap<const SCEV *, SmallPtrSet<PointerIntPair<const Loop *, 1, bool>, 4>>
      BECountUsers;

  /// This map contains entries for all of the PHI instructions that we
  /// attempt to compute constant evolutions for.  This allows us to avoid
  /// potentially expensive recomputation of these properties.  An instruction
  /// maps to null if we are unable to compute its exit value.
  DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue;

  /// This map contains entries for all the expressions that we attempt to
  /// compute getSCEVAtScope information for, which can be expensive in
  /// extreme cases.
  DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
      ValuesAtScopes;

  /// Reverse map for invalidation purposes: Stores of which SCEV and which
  /// loop this is the value-at-scope of.
  DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
      ValuesAtScopesUsers;

  /// Memoized computeLoopDisposition results.
  DenseMap<const SCEV *,
           SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
      LoopDispositions;

  struct LoopProperties {
    /// Set to true if the loop contains no instruction that can abnormally exit
    /// the loop (i.e. via throwing an exception, by terminating the thread
    /// cleanly or by infinite looping in a called function).  Strictly
    /// speaking, the last one is not leaving the loop, but is identical to
    /// leaving the loop for reasoning about undefined behavior.
    bool HasNoAbnormalExits;

    /// Set to true if the loop contains no instruction that can have side
    /// effects (i.e. via throwing an exception, volatile or atomic access).
    bool HasNoSideEffects;
  };

  /// Cache for \c getLoopProperties.
  DenseMap<const Loop *, LoopProperties> LoopPropertiesCache;

  /// Return a \c LoopProperties instance for \p L, creating one if necessary.
  LoopProperties getLoopProperties(const Loop *L);

  bool loopHasNoSideEffects(const Loop *L) {
    return getLoopProperties(L).HasNoSideEffects;
  }

  /// Compute a LoopDisposition value.
  LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);

  /// Memoized computeBlockDisposition results.
  DenseMap<
      const SCEV *,
      SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
      BlockDispositions;

  /// Compute a BlockDisposition value.
  BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);

  /// Stores all SCEV that use a given SCEV as its direct operand.
  DenseMap<const SCEV *, SmallPtrSet<const SCEV *, 8> > SCEVUsers;

  /// Memoized results from getRange
  DenseMap<const SCEV *, ConstantRange> UnsignedRanges;

  /// Memoized results from getRange
  DenseMap<const SCEV *, ConstantRange> SignedRanges;

  /// Used to parameterize getRange
  enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };

  /// Set the memoized range for the given SCEV.
  const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
                                ConstantRange CR) {
    DenseMap<const SCEV *, ConstantRange> &Cache =
        Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;

    auto Pair = Cache.try_emplace(S, std::move(CR));
    if (!Pair.second)
      Pair.first->second = std::move(CR);
    return Pair.first->second;
  }

  /// Determine the range for a particular SCEV.
  /// NOTE: This returns a reference to an entry in a cache. It must be
  /// copied if its needed for longer.
  const ConstantRange &getRangeRef(const SCEV *S, RangeSignHint Hint);

  /// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Step}.
  /// Helper for \c getRange.
  ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Step,
                                    const SCEV *MaxBECount, unsigned BitWidth);

  /// Determines the range for the affine non-self-wrapping SCEVAddRecExpr {\p
  /// Start,+,\p Step}<nw>.
  ConstantRange getRangeForAffineNoSelfWrappingAR(const SCEVAddRecExpr *AddRec,
                                                  const SCEV *MaxBECount,
                                                  unsigned BitWidth,
                                                  RangeSignHint SignHint);

  /// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p
  /// Step} by "factoring out" a ternary expression from the add recurrence.
  /// Helper called by \c getRange.
  ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Step,
                                     const SCEV *MaxBECount, unsigned BitWidth);

  /// If the unknown expression U corresponds to a simple recurrence, return
  /// a constant range which represents the entire recurrence.  Note that
  /// *add* recurrences with loop invariant steps aren't represented by
  /// SCEVUnknowns and thus don't use this mechanism.
  ConstantRange getRangeForUnknownRecurrence(const SCEVUnknown *U);

  /// We know that there is no SCEV for the specified value.  Analyze the
  /// expression.
  const SCEV *createSCEV(Value *V);

  /// Provide the special handling we need to analyze PHI SCEVs.
  const SCEV *createNodeForPHI(PHINode *PN);

  /// Helper function called from createNodeForPHI.
  const SCEV *createAddRecFromPHI(PHINode *PN);

  /// A helper function for createAddRecFromPHI to handle simple cases.
  const SCEV *createSimpleAffineAddRec(PHINode *PN, Value *BEValueV,
                                            Value *StartValueV);

  /// Helper function called from createNodeForPHI.
  const SCEV *createNodeFromSelectLikePHI(PHINode *PN);

  /// Provide special handling for a select-like instruction (currently this
  /// is either a select instruction or a phi node).  \p I is the instruction
  /// being processed, and it is assumed equivalent to "Cond ? TrueVal :
  /// FalseVal".
  const SCEV *createNodeForSelectOrPHI(Instruction *I, Value *Cond,
                                       Value *TrueVal, Value *FalseVal);

  /// Provide the special handling we need to analyze GEP SCEVs.
  const SCEV *createNodeForGEP(GEPOperator *GEP);

  /// Implementation code for getSCEVAtScope; called at most once for each
  /// SCEV+Loop pair.
  const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);

  /// Return the BackedgeTakenInfo for the given loop, lazily computing new
  /// values if the loop hasn't been analyzed yet. The returned result is
  /// guaranteed not to be predicated.
  BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);

  /// Similar to getBackedgeTakenInfo, but will add predicates as required
  /// with the purpose of returning complete information.
  const BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L);

  /// Compute the number of times the specified loop will iterate.
  /// If AllowPredicates is set, we will create new SCEV predicates as
  /// necessary in order to return an exact answer.
  BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L,
                                              bool AllowPredicates = false);

  /// Compute the number of times the backedge of the specified loop will
  /// execute if it exits via the specified block. If AllowPredicates is set,
  /// this call will try to use a minimal set of SCEV predicates in order to
  /// return an exact answer.
  ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
                             bool AllowPredicates = false);

  /// Compute the number of times the backedge of the specified loop will
  /// execute if its exit condition were a conditional branch of ExitCond.
  ///
  /// \p ControlsExit is true if ExitCond directly controls the exit
  /// branch. In this case, we can assume that the loop exits only if the
  /// condition is true and can infer that failing to meet the condition prior
  /// to integer wraparound results in undefined behavior.
  ///
  /// If \p AllowPredicates is set, this call will try to use a minimal set of
  /// SCEV predicates in order to return an exact answer.
  ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond,
                                     bool ExitIfTrue, bool ControlsExit,
                                     bool AllowPredicates = false);

  /// Return a symbolic upper bound for the backedge taken count of the loop.
  /// This is more general than getConstantMaxBackedgeTakenCount as it returns
  /// an arbitrary expression as opposed to only constants.
  const SCEV *computeSymbolicMaxBackedgeTakenCount(const Loop *L);

  // Helper functions for computeExitLimitFromCond to avoid exponential time
  // complexity.

  class ExitLimitCache {
    // It may look like we need key on the whole (L, ExitIfTrue, ControlsExit,
    // AllowPredicates) tuple, but recursive calls to
    // computeExitLimitFromCondCached from computeExitLimitFromCondImpl only
    // vary the in \c ExitCond and \c ControlsExit parameters.  We remember the
    // initial values of the other values to assert our assumption.
    SmallDenseMap<PointerIntPair<Value *, 1>, ExitLimit> TripCountMap;

    const Loop *L;
    bool ExitIfTrue;
    bool AllowPredicates;

  public:
    ExitLimitCache(const Loop *L, bool ExitIfTrue, bool AllowPredicates)
        : L(L), ExitIfTrue(ExitIfTrue), AllowPredicates(AllowPredicates) {}

    Optional<ExitLimit> find(const Loop *L, Value *ExitCond, bool ExitIfTrue,
                             bool ControlsExit, bool AllowPredicates);

    void insert(const Loop *L, Value *ExitCond, bool ExitIfTrue,
                bool ControlsExit, bool AllowPredicates, const ExitLimit &EL);
  };

  using ExitLimitCacheTy = ExitLimitCache;

  ExitLimit computeExitLimitFromCondCached(ExitLimitCacheTy &Cache,
                                           const Loop *L, Value *ExitCond,
                                           bool ExitIfTrue,
                                           bool ControlsExit,
                                           bool AllowPredicates);
  ExitLimit computeExitLimitFromCondImpl(ExitLimitCacheTy &Cache, const Loop *L,
                                         Value *ExitCond, bool ExitIfTrue,
                                         bool ControlsExit,
                                         bool AllowPredicates);
  Optional<ScalarEvolution::ExitLimit>
  computeExitLimitFromCondFromBinOp(ExitLimitCacheTy &Cache, const Loop *L,
                                    Value *ExitCond, bool ExitIfTrue,
                                    bool ControlsExit, bool AllowPredicates);

  /// Compute the number of times the backedge of the specified loop will
  /// execute if its exit condition were a conditional branch of the ICmpInst
  /// ExitCond and ExitIfTrue. If AllowPredicates is set, this call will try
  /// to use a minimal set of SCEV predicates in order to return an exact
  /// answer.
  ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond,
                                     bool ExitIfTrue,
                                     bool IsSubExpr,
                                     bool AllowPredicates = false);

  /// Variant of previous which takes the components representing an ICmp
  /// as opposed to the ICmpInst itself.  Note that the prior version can
  /// return more precise results in some cases and is preferred when caller
  /// has a materialized ICmp.
  ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst::Predicate Pred,
                                     const SCEV *LHS, const SCEV *RHS,
                                     bool IsSubExpr,
                                     bool AllowPredicates = false);

  /// Compute the number of times the backedge of the specified loop will
  /// execute if its exit condition were a switch with a single exiting case
  /// to ExitingBB.
  ExitLimit computeExitLimitFromSingleExitSwitch(const Loop *L,
                                                 SwitchInst *Switch,
                                                 BasicBlock *ExitingBB,
                                                 bool IsSubExpr);

  /// Compute the exit limit of a loop that is controlled by a
  /// "(IV >> 1) != 0" type comparison.  We cannot compute the exact trip
  /// count in these cases (since SCEV has no way of expressing them), but we
  /// can still sometimes compute an upper bound.
  ///
  /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
  /// RHS`.
  ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS, const Loop *L,
                                         ICmpInst::Predicate Pred);

  /// If the loop is known to execute a constant number of times (the
  /// condition evolves only from constants), try to evaluate a few iterations
  /// of the loop until we get the exit condition gets a value of ExitWhen
  /// (true or false).  If we cannot evaluate the exit count of the loop,
  /// return CouldNotCompute.
  const SCEV *computeExitCountExhaustively(const Loop *L, Value *Cond,
                                           bool ExitWhen);

  /// Return the number of times an exit condition comparing the specified
  /// value to zero will execute.  If not computable, return CouldNotCompute.
  /// If AllowPredicates is set, this call will try to use a minimal set of
  /// SCEV predicates in order to return an exact answer.
  ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr,
                         bool AllowPredicates = false);

  /// Return the number of times an exit condition checking the specified
  /// value for nonzero will execute.  If not computable, return
  /// CouldNotCompute.
  ExitLimit howFarToNonZero(const SCEV *V, const Loop *L);

  /// Return the number of times an exit condition containing the specified
  /// less-than comparison will execute.  If not computable, return
  /// CouldNotCompute.
  ///
  /// \p isSigned specifies whether the less-than is signed.
  ///
  /// \p ControlsExit is true when the LHS < RHS condition directly controls
  /// the branch (loops exits only if condition is true). In this case, we can
  /// use NoWrapFlags to skip overflow checks.
  ///
  /// If \p AllowPredicates is set, this call will try to use a minimal set of
  /// SCEV predicates in order to return an exact answer.
  ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
                             bool isSigned, bool ControlsExit,
                             bool AllowPredicates = false);

  ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
                                bool isSigned, bool IsSubExpr,
                                bool AllowPredicates = false);

  /// Return a predecessor of BB (which may not be an immediate predecessor)
  /// which has exactly one successor from which BB is reachable, or null if
  /// no such block is found.
  std::pair<const BasicBlock *, const BasicBlock *>
  getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) const;

  /// Test whether the condition described by Pred, LHS, and RHS is true
  /// whenever the given FoundCondValue value evaluates to true in given
  /// Context. If Context is nullptr, then the found predicate is true
  /// everywhere. LHS and FoundLHS may have different type width.
  bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
                     const Value *FoundCondValue, bool Inverse,
                     const Instruction *Context = nullptr);

  /// Test whether the condition described by Pred, LHS, and RHS is true
  /// whenever the given FoundCondValue value evaluates to true in given
  /// Context. If Context is nullptr, then the found predicate is true
  /// everywhere. LHS and FoundLHS must have same type width.
  bool isImpliedCondBalancedTypes(ICmpInst::Predicate Pred, const SCEV *LHS,
                                  const SCEV *RHS,
                                  ICmpInst::Predicate FoundPred,
                                  const SCEV *FoundLHS, const SCEV *FoundRHS,
                                  const Instruction *CtxI);

  /// Test whether the condition described by Pred, LHS, and RHS is true
  /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
  /// true in given Context. If Context is nullptr, then the found predicate is
  /// true everywhere.
  bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
                     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS,
                     const SCEV *FoundRHS,
                     const Instruction *Context = nullptr);

  /// Test whether the condition described by Pred, LHS, and RHS is true
  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
  /// true in given Context. If Context is nullptr, then the found predicate is
  /// true everywhere.
  bool isImpliedCondOperands(ICmpInst::Predicate Pred, const SCEV *LHS,
                             const SCEV *RHS, const SCEV *FoundLHS,
                             const SCEV *FoundRHS,
                             const Instruction *Context = nullptr);

  /// Test whether the condition described by Pred, LHS, and RHS is true
  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
  /// true. Here LHS is an operation that includes FoundLHS as one of its
  /// arguments.
  bool isImpliedViaOperations(ICmpInst::Predicate Pred,
                              const SCEV *LHS, const SCEV *RHS,
                              const SCEV *FoundLHS, const SCEV *FoundRHS,
                              unsigned Depth = 0);

  /// Test whether the condition described by Pred, LHS, and RHS is true.
  /// Use only simple non-recursive types of checks, such as range analysis etc.
  bool isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
                                       const SCEV *LHS, const SCEV *RHS);

  /// Test whether the condition described by Pred, LHS, and RHS is true
  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
  /// true.
  bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, const SCEV *LHS,
                                   const SCEV *RHS, const SCEV *FoundLHS,
                                   const SCEV *FoundRHS);

  /// Test whether the condition described by Pred, LHS, and RHS is true
  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
  /// true.  Utility function used by isImpliedCondOperands.  Tries to get
  /// cases like "X `sgt` 0 => X - 1 `sgt` -1".
  bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, const SCEV *LHS,
                                      const SCEV *RHS, const SCEV *FoundLHS,
                                      const SCEV *FoundRHS);

  /// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied
  /// by a call to @llvm.experimental.guard in \p BB.
  bool isImpliedViaGuard(const BasicBlock *BB, ICmpInst::Predicate Pred,
                         const SCEV *LHS, const SCEV *RHS);

  /// Test whether the condition described by Pred, LHS, and RHS is true
  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
  /// true.
  ///
  /// This routine tries to rule out certain kinds of integer overflow, and
  /// then tries to reason about arithmetic properties of the predicates.
  bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,
                                          const SCEV *LHS, const SCEV *RHS,
                                          const SCEV *FoundLHS,
                                          const SCEV *FoundRHS);

  /// Test whether the condition described by Pred, LHS, and RHS is true
  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
  /// true.
  ///
  /// This routine tries to weaken the known condition basing on fact that
  /// FoundLHS is an AddRec.
  bool isImpliedCondOperandsViaAddRecStart(ICmpInst::Predicate Pred,
                                           const SCEV *LHS, const SCEV *RHS,
                                           const SCEV *FoundLHS,
                                           const SCEV *FoundRHS,
                                           const Instruction *CtxI);

  /// Test whether the condition described by Pred, LHS, and RHS is true
  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
  /// true.
  ///
  /// This routine tries to figure out predicate for Phis which are SCEVUnknown
  /// if it is true for every possible incoming value from their respective
  /// basic blocks.
  bool isImpliedViaMerge(ICmpInst::Predicate Pred,
                         const SCEV *LHS, const SCEV *RHS,
                         const SCEV *FoundLHS, const SCEV *FoundRHS,
                         unsigned Depth);

  /// Test whether the condition described by Pred, LHS, and RHS is true
  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
  /// true.
  ///
  /// This routine tries to reason about shifts.
  bool isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, const SCEV *LHS,
                                     const SCEV *RHS, const SCEV *FoundLHS,
                                     const SCEV *FoundRHS);

  /// If we know that the specified Phi is in the header of its containing
  /// loop, we know the loop executes a constant number of times, and the PHI
  /// node is just a recurrence involving constants, fold it.
  Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt &BEs,
                                              const Loop *L);

  /// Test if the given expression is known to satisfy the condition described
  /// by Pred and the known constant ranges of LHS and RHS.
  bool isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,
                                         const SCEV *LHS, const SCEV *RHS);

  /// Try to prove the condition described by "LHS Pred RHS" by ruling out
  /// integer overflow.
  ///
  /// For instance, this will return true for "A s< (A + C)<nsw>" if C is
  /// positive.
  bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, const SCEV *LHS,
                                     const SCEV *RHS);

  /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
  /// prove them individually.
  bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS,
                                    const SCEV *RHS);

  /// Try to match the Expr as "(L + R)<Flags>".
  bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
                      SCEV::NoWrapFlags &Flags);

  /// Forget predicated/non-predicated backedge taken counts for the given loop.
  void forgetBackedgeTakenCounts(const Loop *L, bool Predicated);

  /// Drop memoized information for all \p SCEVs.
  void forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs);

  /// Helper for forgetMemoizedResults.
  void forgetMemoizedResultsImpl(const SCEV *S);

  /// Return an existing SCEV for V if there is one, otherwise return nullptr.
  const SCEV *getExistingSCEV(Value *V);

  /// Erase Value from ValueExprMap and ExprValueMap.
  void eraseValueFromMap(Value *V);

  /// Insert V to S mapping into ValueExprMap and ExprValueMap.
  void insertValueToMap(Value *V, const SCEV *S);

  /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
  /// pointer.
  bool checkValidity(const SCEV *S) const;

  /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
  /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}.  This is
  /// equivalent to proving no signed (resp. unsigned) wrap in
  /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
  /// (resp. `SCEVZeroExtendExpr`).
  template <typename ExtendOpTy>
  bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
                                 const Loop *L);

  /// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation.
  SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR);

  /// Try to prove NSW on \p AR by proving facts about conditions known  on
  /// entry and backedge.
  SCEV::NoWrapFlags proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR);

  /// Try to prove NUW on \p AR by proving facts about conditions known on
  /// entry and backedge.
  SCEV::NoWrapFlags proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR);

  Optional<MonotonicPredicateType>
  getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
                                ICmpInst::Predicate Pred);

  /// Return SCEV no-wrap flags that can be proven based on reasoning about
  /// how poison produced from no-wrap flags on this value (e.g. a nuw add)
  /// would trigger undefined behavior on overflow.
  SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);

  /// Return a scope which provides an upper bound on the defining scope of
  /// 'S'. Specifically, return the first instruction in said bounding scope.
  /// Return nullptr if the scope is trivial (function entry).
  /// (See scope definition rules associated with flag discussion above)
  const Instruction *getNonTrivialDefiningScopeBound(const SCEV *S);

  /// Return a scope which provides an upper bound on the defining scope for
  /// a SCEV with the operands in Ops.  The outparam Precise is set if the
  /// bound found is a precise bound (i.e. must be the defining scope.)
  const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
                                           bool &Precise);

  /// Wrapper around the above for cases which don't care if the bound
  /// is precise.
  const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops);

  /// Given two instructions in the same function, return true if we can
  /// prove B must execute given A executes.
  bool isGuaranteedToTransferExecutionTo(const Instruction *A,
                                         const Instruction *B);

  /// Return true if the SCEV corresponding to \p I is never poison.  Proving
  /// this is more complex than proving that just \p I is never poison, since
  /// SCEV commons expressions across control flow, and you can have cases
  /// like:
  ///
  ///   idx0 = a + b;
  ///   ptr[idx0] = 100;
  ///   if (<condition>) {
  ///     idx1 = a +nsw b;
  ///     ptr[idx1] = 200;
  ///   }
  ///
  /// where the SCEV expression (+ a b) is guaranteed to not be poison (and
  /// hence not sign-overflow) only if "<condition>" is true.  Since both
  /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b),
  /// it is not okay to annotate (+ a b) with <nsw> in the above example.
  bool isSCEVExprNeverPoison(const Instruction *I);

  /// This is like \c isSCEVExprNeverPoison but it specifically works for
  /// instructions that will get mapped to SCEV add recurrences.  Return true
  /// if \p I will never generate poison under the assumption that \p I is an
  /// add recurrence on the loop \p L.
  bool isAddRecNeverPoison(const Instruction *I, const Loop *L);

  /// Similar to createAddRecFromPHI, but with the additional flexibility of
  /// suggesting runtime overflow checks in case casts are encountered.
  /// If successful, the analysis records that for this loop, \p SymbolicPHI,
  /// which is the UnknownSCEV currently representing the PHI, can be rewritten
  /// into an AddRec, assuming some predicates; The function then returns the
  /// AddRec and the predicates as a pair, and caches this pair in
  /// PredicatedSCEVRewrites.
  /// If the analysis is not successful, a mapping from the \p SymbolicPHI to
  /// itself (with no predicates) is recorded, and a nullptr with an empty
  /// predicates vector is returned as a pair.
  Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
  createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI);

  /// Compute the maximum backedge count based on the range of values
  /// permitted by Start, End, and Stride. This is for loops of the form
  /// {Start, +, Stride} LT End.
  ///
  /// Preconditions:
  /// * the induction variable is known to be positive.
  /// * the induction variable is assumed not to overflow (i.e. either it
  ///   actually doesn't, or we'd have to immediately execute UB)
  /// We *don't* assert these preconditions so please be careful.
  const SCEV *computeMaxBECountForLT(const SCEV *Start, const SCEV *Stride,
                                     const SCEV *End, unsigned BitWidth,
                                     bool IsSigned);

  /// Verify if an linear IV with positive stride can overflow when in a
  /// less-than comparison, knowing the invariant term of the comparison,
  /// the stride.
  bool canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);

  /// Verify if an linear IV with negative stride can overflow when in a
  /// greater-than comparison, knowing the invariant term of the comparison,
  /// the stride.
  bool canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);

  /// Get add expr already created or create a new one.
  const SCEV *getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
                                 SCEV::NoWrapFlags Flags);

  /// Get mul expr already created or create a new one.
  const SCEV *getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
                                 SCEV::NoWrapFlags Flags);

  // Get addrec expr already created or create a new one.
  const SCEV *getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
                                    const Loop *L, SCEV::NoWrapFlags Flags);

  /// Return x if \p Val is f(x) where f is a 1-1 function.
  const SCEV *stripInjectiveFunctions(const SCEV *Val) const;

  /// Find all of the loops transitively used in \p S, and fill \p LoopsUsed.
  /// A loop is considered "used" by an expression if it contains
  /// an add rec on said loop.
  void getUsedLoops(const SCEV *S, SmallPtrSetImpl<const Loop *> &LoopsUsed);

  /// Try to match the pattern generated by getURemExpr(A, B). If successful,
  /// Assign A and B to LHS and RHS, respectively.
  bool matchURem(const SCEV *Expr, const SCEV *&LHS, const SCEV *&RHS);

  /// Look for a SCEV expression with type `SCEVType` and operands `Ops` in
  /// `UniqueSCEVs`.  Return if found, else nullptr.
  SCEV *findExistingSCEVInCache(SCEVTypes SCEVType, ArrayRef<const SCEV *> Ops);

  FoldingSet<SCEV> UniqueSCEVs;
  FoldingSet<SCEVPredicate> UniquePreds;
  BumpPtrAllocator SCEVAllocator;

  /// This maps loops to a list of addrecs that directly use said loop.
  DenseMap<const Loop *, SmallVector<const SCEVAddRecExpr *, 4>> LoopUsers;

  /// Cache tentative mappings from UnknownSCEVs in a Loop, to a SCEV expression
  /// they can be rewritten into under certain predicates.
  DenseMap<std::pair<const SCEVUnknown *, const Loop *>,
           std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
      PredicatedSCEVRewrites;

  /// The head of a linked list of all SCEVUnknown values that have been
  /// allocated. This is used by releaseMemory to locate them all and call
  /// their destructors.
  SCEVUnknown *FirstUnknown = nullptr;
};

/// Analysis pass that exposes the \c ScalarEvolution for a function.
class ScalarEvolutionAnalysis
    : public AnalysisInfoMixin<ScalarEvolutionAnalysis> {
  friend AnalysisInfoMixin<ScalarEvolutionAnalysis>;

  static AnalysisKey Key;

public:
  using Result = ScalarEvolution;

  ScalarEvolution run(Function &F, FunctionAnalysisManager &AM);
};

/// Verifier pass for the \c ScalarEvolutionAnalysis results.
class ScalarEvolutionVerifierPass
    : public PassInfoMixin<ScalarEvolutionVerifierPass> {
public:
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
};

/// Printer pass for the \c ScalarEvolutionAnalysis results.
class ScalarEvolutionPrinterPass
    : public PassInfoMixin<ScalarEvolutionPrinterPass> {
  raw_ostream &OS;

public:
  explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}

  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
};

class ScalarEvolutionWrapperPass : public FunctionPass {
  std::unique_ptr<ScalarEvolution> SE;

public:
  static char ID;

  ScalarEvolutionWrapperPass();

  ScalarEvolution &getSE() { return *SE; }
  const ScalarEvolution &getSE() const { return *SE; }

  bool runOnFunction(Function &F) override;
  void releaseMemory() override;
  void getAnalysisUsage(AnalysisUsage &AU) const override;
  void print(raw_ostream &OS, const Module * = nullptr) const override;
  void verifyAnalysis() const override;
};

/// An interface layer with SCEV used to manage how we see SCEV expressions
/// for values in the context of existing predicates. We can add new
/// predicates, but we cannot remove them.
///
/// This layer has multiple purposes:
///   - provides a simple interface for SCEV versioning.
///   - guarantees that the order of transformations applied on a SCEV
///     expression for a single Value is consistent across two different
///     getSCEV calls. This means that, for example, once we've obtained
///     an AddRec expression for a certain value through expression
///     rewriting, we will continue to get an AddRec expression for that
///     Value.
///   - lowers the number of expression rewrites.
class PredicatedScalarEvolution {
public:
  PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L);

  const SCEVUnionPredicate &getUnionPredicate() const;

  /// Returns the SCEV expression of V, in the context of the current SCEV
  /// predicate.  The order of transformations applied on the expression of V
  /// returned by ScalarEvolution is guaranteed to be preserved, even when
  /// adding new predicates.
  const SCEV *getSCEV(Value *V);

  /// Get the (predicated) backedge count for the analyzed loop.
  const SCEV *getBackedgeTakenCount();

  /// Adds a new predicate.
  void addPredicate(const SCEVPredicate &Pred);

  /// Attempts to produce an AddRecExpr for V by adding additional SCEV
  /// predicates. If we can't transform the expression into an AddRecExpr we
  /// return nullptr and not add additional SCEV predicates to the current
  /// context.
  const SCEVAddRecExpr *getAsAddRec(Value *V);

  /// Proves that V doesn't overflow by adding SCEV predicate.
  void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);

  /// Returns true if we've proved that V doesn't wrap by means of a SCEV
  /// predicate.
  bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);

  /// Returns the ScalarEvolution analysis used.
  ScalarEvolution *getSE() const { return &SE; }

  /// We need to explicitly define the copy constructor because of FlagsMap.
  PredicatedScalarEvolution(const PredicatedScalarEvolution &);

  /// Print the SCEV mappings done by the Predicated Scalar Evolution.
  /// The printed text is indented by \p Depth.
  void print(raw_ostream &OS, unsigned Depth) const;

  /// Check if \p AR1 and \p AR2 are equal, while taking into account
  /// Equal predicates in Preds.
  bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1,
                                const SCEVAddRecExpr *AR2) const;

private:
  /// Increments the version number of the predicate.  This needs to be called
  /// every time the SCEV predicate changes.
  void updateGeneration();

  /// Holds a SCEV and the version number of the SCEV predicate used to
  /// perform the rewrite of the expression.
  using RewriteEntry = std::pair<unsigned, const SCEV *>;

  /// Maps a SCEV to the rewrite result of that SCEV at a certain version
  /// number. If this number doesn't match the current Generation, we will
  /// need to do a rewrite. To preserve the transformation order of previous
  /// rewrites, we will rewrite the previous result instead of the original
  /// SCEV.
  DenseMap<const SCEV *, RewriteEntry> RewriteMap;

  /// Records what NoWrap flags we've added to a Value *.
  ValueMap<Value *, SCEVWrapPredicate::IncrementWrapFlags> FlagsMap;

  /// The ScalarEvolution analysis.
  ScalarEvolution &SE;

  /// The analyzed Loop.
  const Loop &L;

  /// The SCEVPredicate that forms our context. We will rewrite all
  /// expressions assuming that this predicate true.
  SCEVUnionPredicate Preds;

  /// Marks the version of the SCEV predicate used. When rewriting a SCEV
  /// expression we mark it with the version of the predicate. We use this to
  /// figure out if the predicate has changed from the last rewrite of the
  /// SCEV. If so, we need to perform a new rewrite.
  unsigned Generation = 0;

  /// The backedge taken count.
  const SCEV *BackedgeCount = nullptr;
};

} // end namespace llvm

#endif // LLVM_ANALYSIS_SCALAREVOLUTION_H

#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif