1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===- MemorySSA.h - Build Memory SSA ---------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file exposes an interface to building/using memory SSA to
/// walk memory instructions using a use/def graph.
///
/// Memory SSA class builds an SSA form that links together memory access
/// instructions such as loads, stores, atomics, and calls. Additionally, it
/// does a trivial form of "heap versioning" Every time the memory state changes
/// in the program, we generate a new heap version. It generates
/// MemoryDef/Uses/Phis that are overlayed on top of the existing instructions.
///
/// As a trivial example,
/// define i32 @main() #0 {
/// entry:
/// %call = call noalias i8* @_Znwm(i64 4) #2
/// %0 = bitcast i8* %call to i32*
/// %call1 = call noalias i8* @_Znwm(i64 4) #2
/// %1 = bitcast i8* %call1 to i32*
/// store i32 5, i32* %0, align 4
/// store i32 7, i32* %1, align 4
/// %2 = load i32* %0, align 4
/// %3 = load i32* %1, align 4
/// %add = add nsw i32 %2, %3
/// ret i32 %add
/// }
///
/// Will become
/// define i32 @main() #0 {
/// entry:
/// ; 1 = MemoryDef(0)
/// %call = call noalias i8* @_Znwm(i64 4) #3
/// %2 = bitcast i8* %call to i32*
/// ; 2 = MemoryDef(1)
/// %call1 = call noalias i8* @_Znwm(i64 4) #3
/// %4 = bitcast i8* %call1 to i32*
/// ; 3 = MemoryDef(2)
/// store i32 5, i32* %2, align 4
/// ; 4 = MemoryDef(3)
/// store i32 7, i32* %4, align 4
/// ; MemoryUse(3)
/// %7 = load i32* %2, align 4
/// ; MemoryUse(4)
/// %8 = load i32* %4, align 4
/// %add = add nsw i32 %7, %8
/// ret i32 %add
/// }
///
/// Given this form, all the stores that could ever effect the load at %8 can be
/// gotten by using the MemoryUse associated with it, and walking from use to
/// def until you hit the top of the function.
///
/// Each def also has a list of users associated with it, so you can walk from
/// both def to users, and users to defs. Note that we disambiguate MemoryUses,
/// but not the RHS of MemoryDefs. You can see this above at %7, which would
/// otherwise be a MemoryUse(4). Being disambiguated means that for a given
/// store, all the MemoryUses on its use lists are may-aliases of that store
/// (but the MemoryDefs on its use list may not be).
///
/// MemoryDefs are not disambiguated because it would require multiple reaching
/// definitions, which would require multiple phis, and multiple memoryaccesses
/// per instruction.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_MEMORYSSA_H
#define LLVM_ANALYSIS_MEMORYSSA_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/ADT/simple_ilist.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/PHITransAddr.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DerivedUser.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <iterator>
#include <memory>
#include <utility>
namespace llvm {
class Function;
class Instruction;
class MemoryAccess;
class MemorySSAWalker;
class LLVMContext;
class raw_ostream;
namespace MSSAHelpers {
struct AllAccessTag {};
struct DefsOnlyTag {};
} // end namespace MSSAHelpers
enum : unsigned {
// Used to signify what the default invalid ID is for MemoryAccess's
// getID()
INVALID_MEMORYACCESS_ID = -1U
};
template <class T> class memoryaccess_def_iterator_base;
using memoryaccess_def_iterator = memoryaccess_def_iterator_base<MemoryAccess>;
using const_memoryaccess_def_iterator =
memoryaccess_def_iterator_base<const MemoryAccess>;
// The base for all memory accesses. All memory accesses in a block are
// linked together using an intrusive list.
class MemoryAccess
: public DerivedUser,
public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>,
public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>> {
public:
using AllAccessType =
ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>;
using DefsOnlyType =
ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>;
MemoryAccess(const MemoryAccess &) = delete;
MemoryAccess &operator=(const MemoryAccess &) = delete;
void *operator new(size_t) = delete;
// Methods for support type inquiry through isa, cast, and
// dyn_cast
static bool classof(const Value *V) {
unsigned ID = V->getValueID();
return ID == MemoryUseVal || ID == MemoryPhiVal || ID == MemoryDefVal;
}
BasicBlock *getBlock() const { return Block; }
void print(raw_ostream &OS) const;
void dump() const;
/// The user iterators for a memory access
using iterator = user_iterator;
using const_iterator = const_user_iterator;
/// This iterator walks over all of the defs in a given
/// MemoryAccess. For MemoryPhi nodes, this walks arguments. For
/// MemoryUse/MemoryDef, this walks the defining access.
memoryaccess_def_iterator defs_begin();
const_memoryaccess_def_iterator defs_begin() const;
memoryaccess_def_iterator defs_end();
const_memoryaccess_def_iterator defs_end() const;
/// Get the iterators for the all access list and the defs only list
/// We default to the all access list.
AllAccessType::self_iterator getIterator() {
return this->AllAccessType::getIterator();
}
AllAccessType::const_self_iterator getIterator() const {
return this->AllAccessType::getIterator();
}
AllAccessType::reverse_self_iterator getReverseIterator() {
return this->AllAccessType::getReverseIterator();
}
AllAccessType::const_reverse_self_iterator getReverseIterator() const {
return this->AllAccessType::getReverseIterator();
}
DefsOnlyType::self_iterator getDefsIterator() {
return this->DefsOnlyType::getIterator();
}
DefsOnlyType::const_self_iterator getDefsIterator() const {
return this->DefsOnlyType::getIterator();
}
DefsOnlyType::reverse_self_iterator getReverseDefsIterator() {
return this->DefsOnlyType::getReverseIterator();
}
DefsOnlyType::const_reverse_self_iterator getReverseDefsIterator() const {
return this->DefsOnlyType::getReverseIterator();
}
protected:
friend class MemoryDef;
friend class MemoryPhi;
friend class MemorySSA;
friend class MemoryUse;
friend class MemoryUseOrDef;
/// Used by MemorySSA to change the block of a MemoryAccess when it is
/// moved.
void setBlock(BasicBlock *BB) { Block = BB; }
/// Used for debugging and tracking things about MemoryAccesses.
/// Guaranteed unique among MemoryAccesses, no guarantees otherwise.
inline unsigned getID() const;
MemoryAccess(LLVMContext &C, unsigned Vty, DeleteValueTy DeleteValue,
BasicBlock *BB, unsigned NumOperands)
: DerivedUser(Type::getVoidTy(C), Vty, nullptr, NumOperands, DeleteValue),
Block(BB) {}
// Use deleteValue() to delete a generic MemoryAccess.
~MemoryAccess() = default;
private:
BasicBlock *Block;
};
template <>
struct ilist_alloc_traits<MemoryAccess> {
static void deleteNode(MemoryAccess *MA) { MA->deleteValue(); }
};
inline raw_ostream &operator<<(raw_ostream &OS, const MemoryAccess &MA) {
MA.print(OS);
return OS;
}
/// Class that has the common methods + fields of memory uses/defs. It's
/// a little awkward to have, but there are many cases where we want either a
/// use or def, and there are many cases where uses are needed (defs aren't
/// acceptable), and vice-versa.
///
/// This class should never be instantiated directly; make a MemoryUse or
/// MemoryDef instead.
class MemoryUseOrDef : public MemoryAccess {
public:
void *operator new(size_t) = delete;
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
/// Get the instruction that this MemoryUse represents.
Instruction *getMemoryInst() const { return MemoryInstruction; }
/// Get the access that produces the memory state used by this Use.
MemoryAccess *getDefiningAccess() const { return getOperand(0); }
static bool classof(const Value *MA) {
return MA->getValueID() == MemoryUseVal || MA->getValueID() == MemoryDefVal;
}
// Sadly, these have to be public because they are needed in some of the
// iterators.
inline bool isOptimized() const;
inline MemoryAccess *getOptimized() const;
inline void setOptimized(MemoryAccess *);
// Retrieve AliasResult type of the optimized access. Ideally this would be
// returned by the caching walker and may go away in the future.
Optional<AliasResult> getOptimizedAccessType() const {
return isOptimized() ? OptimizedAccessAlias : None;
}
/// Reset the ID of what this MemoryUse was optimized to, causing it to
/// be rewalked by the walker if necessary.
/// This really should only be called by tests.
inline void resetOptimized();
protected:
friend class MemorySSA;
friend class MemorySSAUpdater;
MemoryUseOrDef(LLVMContext &C, MemoryAccess *DMA, unsigned Vty,
DeleteValueTy DeleteValue, Instruction *MI, BasicBlock *BB,
unsigned NumOperands)
: MemoryAccess(C, Vty, DeleteValue, BB, NumOperands),
MemoryInstruction(MI), OptimizedAccessAlias(AliasResult::MayAlias) {
setDefiningAccess(DMA);
}
// Use deleteValue() to delete a generic MemoryUseOrDef.
~MemoryUseOrDef() = default;
void setOptimizedAccessType(Optional<AliasResult> AR) {
OptimizedAccessAlias = AR;
}
void setDefiningAccess(
MemoryAccess *DMA, bool Optimized = false,
Optional<AliasResult> AR = AliasResult(AliasResult::MayAlias)) {
if (!Optimized) {
setOperand(0, DMA);
return;
}
setOptimized(DMA);
setOptimizedAccessType(AR);
}
private:
Instruction *MemoryInstruction;
Optional<AliasResult> OptimizedAccessAlias;
};
/// Represents read-only accesses to memory
///
/// In particular, the set of Instructions that will be represented by
/// MemoryUse's is exactly the set of Instructions for which
/// AliasAnalysis::getModRefInfo returns "Ref".
class MemoryUse final : public MemoryUseOrDef {
public:
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
MemoryUse(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB)
: MemoryUseOrDef(C, DMA, MemoryUseVal, deleteMe, MI, BB,
/*NumOperands=*/1) {}
// allocate space for exactly one operand
void *operator new(size_t S) { return User::operator new(S, 1); }
void operator delete(void *Ptr) { User::operator delete(Ptr); }
static bool classof(const Value *MA) {
return MA->getValueID() == MemoryUseVal;
}
void print(raw_ostream &OS) const;
void setOptimized(MemoryAccess *DMA) {
OptimizedID = DMA->getID();
setOperand(0, DMA);
}
bool isOptimized() const {
return getDefiningAccess() && OptimizedID == getDefiningAccess()->getID();
}
MemoryAccess *getOptimized() const {
return getDefiningAccess();
}
void resetOptimized() {
OptimizedID = INVALID_MEMORYACCESS_ID;
}
protected:
friend class MemorySSA;
private:
static void deleteMe(DerivedUser *Self);
unsigned OptimizedID = INVALID_MEMORYACCESS_ID;
};
template <>
struct OperandTraits<MemoryUse> : public FixedNumOperandTraits<MemoryUse, 1> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUse, MemoryAccess)
/// Represents a read-write access to memory, whether it is a must-alias,
/// or a may-alias.
///
/// In particular, the set of Instructions that will be represented by
/// MemoryDef's is exactly the set of Instructions for which
/// AliasAnalysis::getModRefInfo returns "Mod" or "ModRef".
/// Note that, in order to provide def-def chains, all defs also have a use
/// associated with them. This use points to the nearest reaching
/// MemoryDef/MemoryPhi.
class MemoryDef final : public MemoryUseOrDef {
public:
friend class MemorySSA;
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
MemoryDef(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB,
unsigned Ver)
: MemoryUseOrDef(C, DMA, MemoryDefVal, deleteMe, MI, BB,
/*NumOperands=*/2),
ID(Ver) {}
// allocate space for exactly two operands
void *operator new(size_t S) { return User::operator new(S, 2); }
void operator delete(void *Ptr) { User::operator delete(Ptr); }
static bool classof(const Value *MA) {
return MA->getValueID() == MemoryDefVal;
}
void setOptimized(MemoryAccess *MA) {
setOperand(1, MA);
OptimizedID = MA->getID();
}
MemoryAccess *getOptimized() const {
return cast_or_null<MemoryAccess>(getOperand(1));
}
bool isOptimized() const {
return getOptimized() && OptimizedID == getOptimized()->getID();
}
void resetOptimized() {
OptimizedID = INVALID_MEMORYACCESS_ID;
setOperand(1, nullptr);
}
void print(raw_ostream &OS) const;
unsigned getID() const { return ID; }
private:
static void deleteMe(DerivedUser *Self);
const unsigned ID;
unsigned OptimizedID = INVALID_MEMORYACCESS_ID;
};
template <>
struct OperandTraits<MemoryDef> : public FixedNumOperandTraits<MemoryDef, 2> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryDef, MemoryAccess)
template <>
struct OperandTraits<MemoryUseOrDef> {
static Use *op_begin(MemoryUseOrDef *MUD) {
if (auto *MU = dyn_cast<MemoryUse>(MUD))
return OperandTraits<MemoryUse>::op_begin(MU);
return OperandTraits<MemoryDef>::op_begin(cast<MemoryDef>(MUD));
}
static Use *op_end(MemoryUseOrDef *MUD) {
if (auto *MU = dyn_cast<MemoryUse>(MUD))
return OperandTraits<MemoryUse>::op_end(MU);
return OperandTraits<MemoryDef>::op_end(cast<MemoryDef>(MUD));
}
static unsigned operands(const MemoryUseOrDef *MUD) {
if (const auto *MU = dyn_cast<MemoryUse>(MUD))
return OperandTraits<MemoryUse>::operands(MU);
return OperandTraits<MemoryDef>::operands(cast<MemoryDef>(MUD));
}
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUseOrDef, MemoryAccess)
/// Represents phi nodes for memory accesses.
///
/// These have the same semantic as regular phi nodes, with the exception that
/// only one phi will ever exist in a given basic block.
/// Guaranteeing one phi per block means guaranteeing there is only ever one
/// valid reaching MemoryDef/MemoryPHI along each path to the phi node.
/// This is ensured by not allowing disambiguation of the RHS of a MemoryDef or
/// a MemoryPhi's operands.
/// That is, given
/// if (a) {
/// store %a
/// store %b
/// }
/// it *must* be transformed into
/// if (a) {
/// 1 = MemoryDef(liveOnEntry)
/// store %a
/// 2 = MemoryDef(1)
/// store %b
/// }
/// and *not*
/// if (a) {
/// 1 = MemoryDef(liveOnEntry)
/// store %a
/// 2 = MemoryDef(liveOnEntry)
/// store %b
/// }
/// even if the two stores do not conflict. Otherwise, both 1 and 2 reach the
/// end of the branch, and if there are not two phi nodes, one will be
/// disconnected completely from the SSA graph below that point.
/// Because MemoryUse's do not generate new definitions, they do not have this
/// issue.
class MemoryPhi final : public MemoryAccess {
// allocate space for exactly zero operands
void *operator new(size_t S) { return User::operator new(S); }
public:
void operator delete(void *Ptr) { User::operator delete(Ptr); }
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
MemoryPhi(LLVMContext &C, BasicBlock *BB, unsigned Ver, unsigned NumPreds = 0)
: MemoryAccess(C, MemoryPhiVal, deleteMe, BB, 0), ID(Ver),
ReservedSpace(NumPreds) {
allocHungoffUses(ReservedSpace);
}
// Block iterator interface. This provides access to the list of incoming
// basic blocks, which parallels the list of incoming values.
using block_iterator = BasicBlock **;
using const_block_iterator = BasicBlock *const *;
block_iterator block_begin() {
return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
}
const_block_iterator block_begin() const {
return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
}
block_iterator block_end() { return block_begin() + getNumOperands(); }
const_block_iterator block_end() const {
return block_begin() + getNumOperands();
}
iterator_range<block_iterator> blocks() {
return make_range(block_begin(), block_end());
}
iterator_range<const_block_iterator> blocks() const {
return make_range(block_begin(), block_end());
}
op_range incoming_values() { return operands(); }
const_op_range incoming_values() const { return operands(); }
/// Return the number of incoming edges
unsigned getNumIncomingValues() const { return getNumOperands(); }
/// Return incoming value number x
MemoryAccess *getIncomingValue(unsigned I) const { return getOperand(I); }
void setIncomingValue(unsigned I, MemoryAccess *V) {
assert(V && "PHI node got a null value!");
setOperand(I, V);
}
static unsigned getOperandNumForIncomingValue(unsigned I) { return I; }
static unsigned getIncomingValueNumForOperand(unsigned I) { return I; }
/// Return incoming basic block number @p i.
BasicBlock *getIncomingBlock(unsigned I) const { return block_begin()[I]; }
/// Return incoming basic block corresponding
/// to an operand of the PHI.
BasicBlock *getIncomingBlock(const Use &U) const {
assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
return getIncomingBlock(unsigned(&U - op_begin()));
}
/// Return incoming basic block corresponding
/// to value use iterator.
BasicBlock *getIncomingBlock(MemoryAccess::const_user_iterator I) const {
return getIncomingBlock(I.getUse());
}
void setIncomingBlock(unsigned I, BasicBlock *BB) {
assert(BB && "PHI node got a null basic block!");
block_begin()[I] = BB;
}
/// Add an incoming value to the end of the PHI list
void addIncoming(MemoryAccess *V, BasicBlock *BB) {
if (getNumOperands() == ReservedSpace)
growOperands(); // Get more space!
// Initialize some new operands.
setNumHungOffUseOperands(getNumOperands() + 1);
setIncomingValue(getNumOperands() - 1, V);
setIncomingBlock(getNumOperands() - 1, BB);
}
/// Return the first index of the specified basic
/// block in the value list for this PHI. Returns -1 if no instance.
int getBasicBlockIndex(const BasicBlock *BB) const {
for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
if (block_begin()[I] == BB)
return I;
return -1;
}
MemoryAccess *getIncomingValueForBlock(const BasicBlock *BB) const {
int Idx = getBasicBlockIndex(BB);
assert(Idx >= 0 && "Invalid basic block argument!");
return getIncomingValue(Idx);
}
// After deleting incoming position I, the order of incoming may be changed.
void unorderedDeleteIncoming(unsigned I) {
unsigned E = getNumOperands();
assert(I < E && "Cannot remove out of bounds Phi entry.");
// MemoryPhi must have at least two incoming values, otherwise the MemoryPhi
// itself should be deleted.
assert(E >= 2 && "Cannot only remove incoming values in MemoryPhis with "
"at least 2 values.");
setIncomingValue(I, getIncomingValue(E - 1));
setIncomingBlock(I, block_begin()[E - 1]);
setOperand(E - 1, nullptr);
block_begin()[E - 1] = nullptr;
setNumHungOffUseOperands(getNumOperands() - 1);
}
// After deleting entries that satisfy Pred, remaining entries may have
// changed order.
template <typename Fn> void unorderedDeleteIncomingIf(Fn &&Pred) {
for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
if (Pred(getIncomingValue(I), getIncomingBlock(I))) {
unorderedDeleteIncoming(I);
E = getNumOperands();
--I;
}
assert(getNumOperands() >= 1 &&
"Cannot remove all incoming blocks in a MemoryPhi.");
}
// After deleting incoming block BB, the incoming blocks order may be changed.
void unorderedDeleteIncomingBlock(const BasicBlock *BB) {
unorderedDeleteIncomingIf(
[&](const MemoryAccess *, const BasicBlock *B) { return BB == B; });
}
// After deleting incoming memory access MA, the incoming accesses order may
// be changed.
void unorderedDeleteIncomingValue(const MemoryAccess *MA) {
unorderedDeleteIncomingIf(
[&](const MemoryAccess *M, const BasicBlock *) { return MA == M; });
}
static bool classof(const Value *V) {
return V->getValueID() == MemoryPhiVal;
}
void print(raw_ostream &OS) const;
unsigned getID() const { return ID; }
protected:
friend class MemorySSA;
/// this is more complicated than the generic
/// User::allocHungoffUses, because we have to allocate Uses for the incoming
/// values and pointers to the incoming blocks, all in one allocation.
void allocHungoffUses(unsigned N) {
User::allocHungoffUses(N, /* IsPhi */ true);
}
private:
// For debugging only
const unsigned ID;
unsigned ReservedSpace;
/// This grows the operand list in response to a push_back style of
/// operation. This grows the number of ops by 1.5 times.
void growOperands() {
unsigned E = getNumOperands();
// 2 op PHI nodes are VERY common, so reserve at least enough for that.
ReservedSpace = std::max(E + E / 2, 2u);
growHungoffUses(ReservedSpace, /* IsPhi */ true);
}
static void deleteMe(DerivedUser *Self);
};
inline unsigned MemoryAccess::getID() const {
assert((isa<MemoryDef>(this) || isa<MemoryPhi>(this)) &&
"only memory defs and phis have ids");
if (const auto *MD = dyn_cast<MemoryDef>(this))
return MD->getID();
return cast<MemoryPhi>(this)->getID();
}
inline bool MemoryUseOrDef::isOptimized() const {
if (const auto *MD = dyn_cast<MemoryDef>(this))
return MD->isOptimized();
return cast<MemoryUse>(this)->isOptimized();
}
inline MemoryAccess *MemoryUseOrDef::getOptimized() const {
if (const auto *MD = dyn_cast<MemoryDef>(this))
return MD->getOptimized();
return cast<MemoryUse>(this)->getOptimized();
}
inline void MemoryUseOrDef::setOptimized(MemoryAccess *MA) {
if (auto *MD = dyn_cast<MemoryDef>(this))
MD->setOptimized(MA);
else
cast<MemoryUse>(this)->setOptimized(MA);
}
inline void MemoryUseOrDef::resetOptimized() {
if (auto *MD = dyn_cast<MemoryDef>(this))
MD->resetOptimized();
else
cast<MemoryUse>(this)->resetOptimized();
}
template <> struct OperandTraits<MemoryPhi> : public HungoffOperandTraits<2> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryPhi, MemoryAccess)
/// Encapsulates MemorySSA, including all data associated with memory
/// accesses.
class MemorySSA {
public:
MemorySSA(Function &, AliasAnalysis *, DominatorTree *);
// MemorySSA must remain where it's constructed; Walkers it creates store
// pointers to it.
MemorySSA(MemorySSA &&) = delete;
~MemorySSA();
MemorySSAWalker *getWalker();
MemorySSAWalker *getSkipSelfWalker();
/// Given a memory Mod/Ref'ing instruction, get the MemorySSA
/// access associated with it. If passed a basic block gets the memory phi
/// node that exists for that block, if there is one. Otherwise, this will get
/// a MemoryUseOrDef.
MemoryUseOrDef *getMemoryAccess(const Instruction *I) const {
return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I));
}
MemoryPhi *getMemoryAccess(const BasicBlock *BB) const {
return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB)));
}
DominatorTree &getDomTree() const { return *DT; }
void dump() const;
void print(raw_ostream &) const;
/// Return true if \p MA represents the live on entry value
///
/// Loads and stores from pointer arguments and other global values may be
/// defined by memory operations that do not occur in the current function, so
/// they may be live on entry to the function. MemorySSA represents such
/// memory state by the live on entry definition, which is guaranteed to occur
/// before any other memory access in the function.
inline bool isLiveOnEntryDef(const MemoryAccess *MA) const {
return MA == LiveOnEntryDef.get();
}
inline MemoryAccess *getLiveOnEntryDef() const {
return LiveOnEntryDef.get();
}
// Sadly, iplists, by default, owns and deletes pointers added to the
// list. It's not currently possible to have two iplists for the same type,
// where one owns the pointers, and one does not. This is because the traits
// are per-type, not per-tag. If this ever changes, we should make the
// DefList an iplist.
using AccessList = iplist<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>;
using DefsList =
simple_ilist<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>;
/// Return the list of MemoryAccess's for a given basic block.
///
/// This list is not modifiable by the user.
const AccessList *getBlockAccesses(const BasicBlock *BB) const {
return getWritableBlockAccesses(BB);
}
/// Return the list of MemoryDef's and MemoryPhi's for a given basic
/// block.
///
/// This list is not modifiable by the user.
const DefsList *getBlockDefs(const BasicBlock *BB) const {
return getWritableBlockDefs(BB);
}
/// Given two memory accesses in the same basic block, determine
/// whether MemoryAccess \p A dominates MemoryAccess \p B.
bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const;
/// Given two memory accesses in potentially different blocks,
/// determine whether MemoryAccess \p A dominates MemoryAccess \p B.
bool dominates(const MemoryAccess *A, const MemoryAccess *B) const;
/// Given a MemoryAccess and a Use, determine whether MemoryAccess \p A
/// dominates Use \p B.
bool dominates(const MemoryAccess *A, const Use &B) const;
enum class VerificationLevel { Fast, Full };
/// Verify that MemorySSA is self consistent (IE definitions dominate
/// all uses, uses appear in the right places). This is used by unit tests.
void verifyMemorySSA(VerificationLevel = VerificationLevel::Fast) const;
/// Used in various insertion functions to specify whether we are talking
/// about the beginning or end of a block.
enum InsertionPlace { Beginning, End, BeforeTerminator };
protected:
// Used by Memory SSA dumpers and wrapper pass
friend class MemorySSAPrinterLegacyPass;
friend class MemorySSAUpdater;
void verifyOrderingDominationAndDefUses(
Function &F, VerificationLevel = VerificationLevel::Fast) const;
void verifyDominationNumbers(const Function &F) const;
void verifyPrevDefInPhis(Function &F) const;
// This is used by the use optimizer and updater.
AccessList *getWritableBlockAccesses(const BasicBlock *BB) const {
auto It = PerBlockAccesses.find(BB);
return It == PerBlockAccesses.end() ? nullptr : It->second.get();
}
// This is used by the use optimizer and updater.
DefsList *getWritableBlockDefs(const BasicBlock *BB) const {
auto It = PerBlockDefs.find(BB);
return It == PerBlockDefs.end() ? nullptr : It->second.get();
}
// These is used by the updater to perform various internal MemorySSA
// machinsations. They do not always leave the IR in a correct state, and
// relies on the updater to fixup what it breaks, so it is not public.
void moveTo(MemoryUseOrDef *What, BasicBlock *BB, AccessList::iterator Where);
void moveTo(MemoryAccess *What, BasicBlock *BB, InsertionPlace Point);
// Rename the dominator tree branch rooted at BB.
void renamePass(BasicBlock *BB, MemoryAccess *IncomingVal,
SmallPtrSetImpl<BasicBlock *> &Visited) {
renamePass(DT->getNode(BB), IncomingVal, Visited, true, true);
}
void removeFromLookups(MemoryAccess *);
void removeFromLists(MemoryAccess *, bool ShouldDelete = true);
void insertIntoListsForBlock(MemoryAccess *, const BasicBlock *,
InsertionPlace);
void insertIntoListsBefore(MemoryAccess *, const BasicBlock *,
AccessList::iterator);
MemoryUseOrDef *createDefinedAccess(Instruction *, MemoryAccess *,
const MemoryUseOrDef *Template = nullptr,
bool CreationMustSucceed = true);
private:
template <class AliasAnalysisType> class ClobberWalkerBase;
template <class AliasAnalysisType> class CachingWalker;
template <class AliasAnalysisType> class SkipSelfWalker;
class OptimizeUses;
CachingWalker<AliasAnalysis> *getWalkerImpl();
void buildMemorySSA(BatchAAResults &BAA);
void prepareForMoveTo(MemoryAccess *, BasicBlock *);
void verifyUseInDefs(MemoryAccess *, MemoryAccess *) const;
using AccessMap = DenseMap<const BasicBlock *, std::unique_ptr<AccessList>>;
using DefsMap = DenseMap<const BasicBlock *, std::unique_ptr<DefsList>>;
void markUnreachableAsLiveOnEntry(BasicBlock *BB);
MemoryPhi *createMemoryPhi(BasicBlock *BB);
template <typename AliasAnalysisType>
MemoryUseOrDef *createNewAccess(Instruction *, AliasAnalysisType *,
const MemoryUseOrDef *Template = nullptr);
void placePHINodes(const SmallPtrSetImpl<BasicBlock *> &);
MemoryAccess *renameBlock(BasicBlock *, MemoryAccess *, bool);
void renameSuccessorPhis(BasicBlock *, MemoryAccess *, bool);
void renamePass(DomTreeNode *, MemoryAccess *IncomingVal,
SmallPtrSetImpl<BasicBlock *> &Visited,
bool SkipVisited = false, bool RenameAllUses = false);
AccessList *getOrCreateAccessList(const BasicBlock *);
DefsList *getOrCreateDefsList(const BasicBlock *);
void renumberBlock(const BasicBlock *) const;
AliasAnalysis *AA = nullptr;
DominatorTree *DT;
Function &F;
// Memory SSA mappings
DenseMap<const Value *, MemoryAccess *> ValueToMemoryAccess;
// These two mappings contain the main block to access/def mappings for
// MemorySSA. The list contained in PerBlockAccesses really owns all the
// MemoryAccesses.
// Both maps maintain the invariant that if a block is found in them, the
// corresponding list is not empty, and if a block is not found in them, the
// corresponding list is empty.
AccessMap PerBlockAccesses;
DefsMap PerBlockDefs;
std::unique_ptr<MemoryAccess, ValueDeleter> LiveOnEntryDef;
// Domination mappings
// Note that the numbering is local to a block, even though the map is
// global.
mutable SmallPtrSet<const BasicBlock *, 16> BlockNumberingValid;
mutable DenseMap<const MemoryAccess *, unsigned long> BlockNumbering;
// Memory SSA building info
std::unique_ptr<ClobberWalkerBase<AliasAnalysis>> WalkerBase;
std::unique_ptr<CachingWalker<AliasAnalysis>> Walker;
std::unique_ptr<SkipSelfWalker<AliasAnalysis>> SkipWalker;
unsigned NextID = 0;
};
/// Enables verification of MemorySSA.
///
/// The checks which this flag enables is exensive and disabled by default
/// unless `EXPENSIVE_CHECKS` is defined. The flag `-verify-memoryssa` can be
/// used to selectively enable the verification without re-compilation.
extern bool VerifyMemorySSA;
// Internal MemorySSA utils, for use by MemorySSA classes and walkers
class MemorySSAUtil {
protected:
friend class GVNHoist;
friend class MemorySSAWalker;
// This function should not be used by new passes.
static bool defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
AliasAnalysis &AA);
};
// This pass does eager building and then printing of MemorySSA. It is used by
// the tests to be able to build, dump, and verify Memory SSA.
class MemorySSAPrinterLegacyPass : public FunctionPass {
public:
MemorySSAPrinterLegacyPass();
bool runOnFunction(Function &) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
static char ID;
};
/// An analysis that produces \c MemorySSA for a function.
///
class MemorySSAAnalysis : public AnalysisInfoMixin<MemorySSAAnalysis> {
friend AnalysisInfoMixin<MemorySSAAnalysis>;
static AnalysisKey Key;
public:
// Wrap MemorySSA result to ensure address stability of internal MemorySSA
// pointers after construction. Use a wrapper class instead of plain
// unique_ptr<MemorySSA> to avoid build breakage on MSVC.
struct Result {
Result(std::unique_ptr<MemorySSA> &&MSSA) : MSSA(std::move(MSSA)) {}
MemorySSA &getMSSA() { return *MSSA.get(); }
std::unique_ptr<MemorySSA> MSSA;
bool invalidate(Function &F, const PreservedAnalyses &PA,
FunctionAnalysisManager::Invalidator &Inv);
};
Result run(Function &F, FunctionAnalysisManager &AM);
};
/// Printer pass for \c MemorySSA.
class MemorySSAPrinterPass : public PassInfoMixin<MemorySSAPrinterPass> {
raw_ostream &OS;
public:
explicit MemorySSAPrinterPass(raw_ostream &OS) : OS(OS) {}
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
};
/// Printer pass for \c MemorySSA via the walker.
class MemorySSAWalkerPrinterPass
: public PassInfoMixin<MemorySSAWalkerPrinterPass> {
raw_ostream &OS;
public:
explicit MemorySSAWalkerPrinterPass(raw_ostream &OS) : OS(OS) {}
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
};
/// Verifier pass for \c MemorySSA.
struct MemorySSAVerifierPass : PassInfoMixin<MemorySSAVerifierPass> {
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
};
/// Legacy analysis pass which computes \c MemorySSA.
class MemorySSAWrapperPass : public FunctionPass {
public:
MemorySSAWrapperPass();
static char ID;
bool runOnFunction(Function &) override;
void releaseMemory() override;
MemorySSA &getMSSA() { return *MSSA; }
const MemorySSA &getMSSA() const { return *MSSA; }
void getAnalysisUsage(AnalysisUsage &AU) const override;
void verifyAnalysis() const override;
void print(raw_ostream &OS, const Module *M = nullptr) const override;
private:
std::unique_ptr<MemorySSA> MSSA;
};
/// This is the generic walker interface for walkers of MemorySSA.
/// Walkers are used to be able to further disambiguate the def-use chains
/// MemorySSA gives you, or otherwise produce better info than MemorySSA gives
/// you.
/// In particular, while the def-use chains provide basic information, and are
/// guaranteed to give, for example, the nearest may-aliasing MemoryDef for a
/// MemoryUse as AliasAnalysis considers it, a user mant want better or other
/// information. In particular, they may want to use SCEV info to further
/// disambiguate memory accesses, or they may want the nearest dominating
/// may-aliasing MemoryDef for a call or a store. This API enables a
/// standardized interface to getting and using that info.
class MemorySSAWalker {
public:
MemorySSAWalker(MemorySSA *);
virtual ~MemorySSAWalker() = default;
using MemoryAccessSet = SmallVector<MemoryAccess *, 8>;
/// Given a memory Mod/Ref/ModRef'ing instruction, calling this
/// will give you the nearest dominating MemoryAccess that Mod's the location
/// the instruction accesses (by skipping any def which AA can prove does not
/// alias the location(s) accessed by the instruction given).
///
/// Note that this will return a single access, and it must dominate the
/// Instruction, so if an operand of a MemoryPhi node Mod's the instruction,
/// this will return the MemoryPhi, not the operand. This means that
/// given:
/// if (a) {
/// 1 = MemoryDef(liveOnEntry)
/// store %a
/// } else {
/// 2 = MemoryDef(liveOnEntry)
/// store %b
/// }
/// 3 = MemoryPhi(2, 1)
/// MemoryUse(3)
/// load %a
///
/// calling this API on load(%a) will return the MemoryPhi, not the MemoryDef
/// in the if (a) branch.
MemoryAccess *getClobberingMemoryAccess(const Instruction *I) {
MemoryAccess *MA = MSSA->getMemoryAccess(I);
assert(MA && "Handed an instruction that MemorySSA doesn't recognize?");
return getClobberingMemoryAccess(MA);
}
/// Does the same thing as getClobberingMemoryAccess(const Instruction *I),
/// but takes a MemoryAccess instead of an Instruction.
virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) = 0;
/// Given a potentially clobbering memory access and a new location,
/// calling this will give you the nearest dominating clobbering MemoryAccess
/// (by skipping non-aliasing def links).
///
/// This version of the function is mainly used to disambiguate phi translated
/// pointers, where the value of a pointer may have changed from the initial
/// memory access. Note that this expects to be handed either a MemoryUse,
/// or an already potentially clobbering access. Unlike the above API, if
/// given a MemoryDef that clobbers the pointer as the starting access, it
/// will return that MemoryDef, whereas the above would return the clobber
/// starting from the use side of the memory def.
virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
const MemoryLocation &) = 0;
/// Given a memory access, invalidate anything this walker knows about
/// that access.
/// This API is used by walkers that store information to perform basic cache
/// invalidation. This will be called by MemorySSA at appropriate times for
/// the walker it uses or returns.
virtual void invalidateInfo(MemoryAccess *) {}
protected:
friend class MemorySSA; // For updating MSSA pointer in MemorySSA move
// constructor.
MemorySSA *MSSA;
};
/// A MemorySSAWalker that does no alias queries, or anything else. It
/// simply returns the links as they were constructed by the builder.
class DoNothingMemorySSAWalker final : public MemorySSAWalker {
public:
// Keep the overrides below from hiding the Instruction overload of
// getClobberingMemoryAccess.
using MemorySSAWalker::getClobberingMemoryAccess;
MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
const MemoryLocation &) override;
};
using MemoryAccessPair = std::pair<MemoryAccess *, MemoryLocation>;
using ConstMemoryAccessPair = std::pair<const MemoryAccess *, MemoryLocation>;
/// Iterator base class used to implement const and non-const iterators
/// over the defining accesses of a MemoryAccess.
template <class T>
class memoryaccess_def_iterator_base
: public iterator_facade_base<memoryaccess_def_iterator_base<T>,
std::forward_iterator_tag, T, ptrdiff_t, T *,
T *> {
using BaseT = typename memoryaccess_def_iterator_base::iterator_facade_base;
public:
memoryaccess_def_iterator_base(T *Start) : Access(Start) {}
memoryaccess_def_iterator_base() = default;
bool operator==(const memoryaccess_def_iterator_base &Other) const {
return Access == Other.Access && (!Access || ArgNo == Other.ArgNo);
}
// This is a bit ugly, but for MemoryPHI's, unlike PHINodes, you can't get the
// block from the operand in constant time (In a PHINode, the uselist has
// both, so it's just subtraction). We provide it as part of the
// iterator to avoid callers having to linear walk to get the block.
// If the operation becomes constant time on MemoryPHI's, this bit of
// abstraction breaking should be removed.
BasicBlock *getPhiArgBlock() const {
MemoryPhi *MP = dyn_cast<MemoryPhi>(Access);
assert(MP && "Tried to get phi arg block when not iterating over a PHI");
return MP->getIncomingBlock(ArgNo);
}
typename std::iterator_traits<BaseT>::pointer operator*() const {
assert(Access && "Tried to access past the end of our iterator");
// Go to the first argument for phis, and the defining access for everything
// else.
if (const MemoryPhi *MP = dyn_cast<MemoryPhi>(Access))
return MP->getIncomingValue(ArgNo);
return cast<MemoryUseOrDef>(Access)->getDefiningAccess();
}
using BaseT::operator++;
memoryaccess_def_iterator_base &operator++() {
assert(Access && "Hit end of iterator");
if (const MemoryPhi *MP = dyn_cast<MemoryPhi>(Access)) {
if (++ArgNo >= MP->getNumIncomingValues()) {
ArgNo = 0;
Access = nullptr;
}
} else {
Access = nullptr;
}
return *this;
}
private:
T *Access = nullptr;
unsigned ArgNo = 0;
};
inline memoryaccess_def_iterator MemoryAccess::defs_begin() {
return memoryaccess_def_iterator(this);
}
inline const_memoryaccess_def_iterator MemoryAccess::defs_begin() const {
return const_memoryaccess_def_iterator(this);
}
inline memoryaccess_def_iterator MemoryAccess::defs_end() {
return memoryaccess_def_iterator();
}
inline const_memoryaccess_def_iterator MemoryAccess::defs_end() const {
return const_memoryaccess_def_iterator();
}
/// GraphTraits for a MemoryAccess, which walks defs in the normal case,
/// and uses in the inverse case.
template <> struct GraphTraits<MemoryAccess *> {
using NodeRef = MemoryAccess *;
using ChildIteratorType = memoryaccess_def_iterator;
static NodeRef getEntryNode(NodeRef N) { return N; }
static ChildIteratorType child_begin(NodeRef N) { return N->defs_begin(); }
static ChildIteratorType child_end(NodeRef N) { return N->defs_end(); }
};
template <> struct GraphTraits<Inverse<MemoryAccess *>> {
using NodeRef = MemoryAccess *;
using ChildIteratorType = MemoryAccess::iterator;
static NodeRef getEntryNode(NodeRef N) { return N; }
static ChildIteratorType child_begin(NodeRef N) { return N->user_begin(); }
static ChildIteratorType child_end(NodeRef N) { return N->user_end(); }
};
/// Provide an iterator that walks defs, giving both the memory access,
/// and the current pointer location, updating the pointer location as it
/// changes due to phi node translation.
///
/// This iterator, while somewhat specialized, is what most clients actually
/// want when walking upwards through MemorySSA def chains. It takes a pair of
/// <MemoryAccess,MemoryLocation>, and walks defs, properly translating the
/// memory location through phi nodes for the user.
class upward_defs_iterator
: public iterator_facade_base<upward_defs_iterator,
std::forward_iterator_tag,
const MemoryAccessPair> {
using BaseT = upward_defs_iterator::iterator_facade_base;
public:
upward_defs_iterator(const MemoryAccessPair &Info, DominatorTree *DT,
bool *PerformedPhiTranslation = nullptr)
: DefIterator(Info.first), Location(Info.second),
OriginalAccess(Info.first), DT(DT),
PerformedPhiTranslation(PerformedPhiTranslation) {
CurrentPair.first = nullptr;
WalkingPhi = Info.first && isa<MemoryPhi>(Info.first);
fillInCurrentPair();
}
upward_defs_iterator() { CurrentPair.first = nullptr; }
bool operator==(const upward_defs_iterator &Other) const {
return DefIterator == Other.DefIterator;
}
typename std::iterator_traits<BaseT>::reference operator*() const {
assert(DefIterator != OriginalAccess->defs_end() &&
"Tried to access past the end of our iterator");
return CurrentPair;
}
using BaseT::operator++;
upward_defs_iterator &operator++() {
assert(DefIterator != OriginalAccess->defs_end() &&
"Tried to access past the end of the iterator");
++DefIterator;
if (DefIterator != OriginalAccess->defs_end())
fillInCurrentPair();
return *this;
}
BasicBlock *getPhiArgBlock() const { return DefIterator.getPhiArgBlock(); }
private:
/// Returns true if \p Ptr is guaranteed to be loop invariant for any possible
/// loop. In particular, this guarantees that it only references a single
/// MemoryLocation during execution of the containing function.
bool IsGuaranteedLoopInvariant(Value *Ptr) const;
void fillInCurrentPair() {
CurrentPair.first = *DefIterator;
CurrentPair.second = Location;
if (WalkingPhi && Location.Ptr) {
// Mark size as unknown, if the location is not guaranteed to be
// loop-invariant for any possible loop in the function. Setting the size
// to unknown guarantees that any memory accesses that access locations
// after the pointer are considered as clobbers, which is important to
// catch loop carried dependences.
if (Location.Ptr &&
!IsGuaranteedLoopInvariant(const_cast<Value *>(Location.Ptr)))
CurrentPair.second =
Location.getWithNewSize(LocationSize::beforeOrAfterPointer());
PHITransAddr Translator(
const_cast<Value *>(Location.Ptr),
OriginalAccess->getBlock()->getModule()->getDataLayout(), nullptr);
if (!Translator.PHITranslateValue(OriginalAccess->getBlock(),
DefIterator.getPhiArgBlock(), DT,
true)) {
Value *TransAddr = Translator.getAddr();
if (TransAddr != Location.Ptr) {
CurrentPair.second = CurrentPair.second.getWithNewPtr(TransAddr);
if (TransAddr &&
!IsGuaranteedLoopInvariant(const_cast<Value *>(TransAddr)))
CurrentPair.second = CurrentPair.second.getWithNewSize(
LocationSize::beforeOrAfterPointer());
if (PerformedPhiTranslation)
*PerformedPhiTranslation = true;
}
}
}
}
MemoryAccessPair CurrentPair;
memoryaccess_def_iterator DefIterator;
MemoryLocation Location;
MemoryAccess *OriginalAccess = nullptr;
DominatorTree *DT = nullptr;
bool WalkingPhi = false;
bool *PerformedPhiTranslation = nullptr;
};
inline upward_defs_iterator
upward_defs_begin(const MemoryAccessPair &Pair, DominatorTree &DT,
bool *PerformedPhiTranslation = nullptr) {
return upward_defs_iterator(Pair, &DT, PerformedPhiTranslation);
}
inline upward_defs_iterator upward_defs_end() { return upward_defs_iterator(); }
inline iterator_range<upward_defs_iterator>
upward_defs(const MemoryAccessPair &Pair, DominatorTree &DT) {
return make_range(upward_defs_begin(Pair, DT), upward_defs_end());
}
/// Walks the defining accesses of MemoryDefs. Stops after we hit something that
/// has no defining use (e.g. a MemoryPhi or liveOnEntry). Note that, when
/// comparing against a null def_chain_iterator, this will compare equal only
/// after walking said Phi/liveOnEntry.
///
/// The UseOptimizedChain flag specifies whether to walk the clobbering
/// access chain, or all the accesses.
///
/// Normally, MemoryDef are all just def/use linked together, so a def_chain on
/// a MemoryDef will walk all MemoryDefs above it in the program until it hits
/// a phi node. The optimized chain walks the clobbering access of a store.
/// So if you are just trying to find, given a store, what the next
/// thing that would clobber the same memory is, you want the optimized chain.
template <class T, bool UseOptimizedChain = false>
struct def_chain_iterator
: public iterator_facade_base<def_chain_iterator<T, UseOptimizedChain>,
std::forward_iterator_tag, MemoryAccess *> {
def_chain_iterator() : MA(nullptr) {}
def_chain_iterator(T MA) : MA(MA) {}
T operator*() const { return MA; }
def_chain_iterator &operator++() {
// N.B. liveOnEntry has a null defining access.
if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
if (UseOptimizedChain && MUD->isOptimized())
MA = MUD->getOptimized();
else
MA = MUD->getDefiningAccess();
} else {
MA = nullptr;
}
return *this;
}
bool operator==(const def_chain_iterator &O) const { return MA == O.MA; }
private:
T MA;
};
template <class T>
inline iterator_range<def_chain_iterator<T>>
def_chain(T MA, MemoryAccess *UpTo = nullptr) {
#ifdef EXPENSIVE_CHECKS
assert((!UpTo || find(def_chain(MA), UpTo) != def_chain_iterator<T>()) &&
"UpTo isn't in the def chain!");
#endif
return make_range(def_chain_iterator<T>(MA), def_chain_iterator<T>(UpTo));
}
template <class T>
inline iterator_range<def_chain_iterator<T, true>> optimized_def_chain(T MA) {
return make_range(def_chain_iterator<T, true>(MA),
def_chain_iterator<T, true>(nullptr));
}
} // end namespace llvm
#endif // LLVM_ANALYSIS_MEMORYSSA_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|