1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===- llvm/ADT/SmallBitVector.h - 'Normally small' bit vectors -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the SmallBitVector class.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SMALLBITVECTOR_H
#define LLVM_ADT_SMALLBITVECTOR_H
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <utility>
namespace llvm {
/// This is a 'bitvector' (really, a variable-sized bit array), optimized for
/// the case when the array is small. It contains one pointer-sized field, which
/// is directly used as a plain collection of bits when possible, or as a
/// pointer to a larger heap-allocated array when necessary. This allows normal
/// "small" cases to be fast without losing generality for large inputs.
class SmallBitVector {
// TODO: In "large" mode, a pointer to a BitVector is used, leading to an
// unnecessary level of indirection. It would be more efficient to use a
// pointer to memory containing size, allocation size, and the array of bits.
uintptr_t X = 1;
enum {
// The number of bits in this class.
NumBaseBits = sizeof(uintptr_t) * CHAR_BIT,
// One bit is used to discriminate between small and large mode. The
// remaining bits are used for the small-mode representation.
SmallNumRawBits = NumBaseBits - 1,
// A few more bits are used to store the size of the bit set in small mode.
// Theoretically this is a ceil-log2. These bits are encoded in the most
// significant bits of the raw bits.
SmallNumSizeBits = (NumBaseBits == 32 ? 5 :
NumBaseBits == 64 ? 6 :
SmallNumRawBits),
// The remaining bits are used to store the actual set in small mode.
SmallNumDataBits = SmallNumRawBits - SmallNumSizeBits
};
static_assert(NumBaseBits == 64 || NumBaseBits == 32,
"Unsupported word size");
public:
using size_type = uintptr_t;
// Encapsulation of a single bit.
class reference {
SmallBitVector &TheVector;
unsigned BitPos;
public:
reference(SmallBitVector &b, unsigned Idx) : TheVector(b), BitPos(Idx) {}
reference(const reference&) = default;
reference& operator=(reference t) {
*this = bool(t);
return *this;
}
reference& operator=(bool t) {
if (t)
TheVector.set(BitPos);
else
TheVector.reset(BitPos);
return *this;
}
operator bool() const {
return const_cast<const SmallBitVector &>(TheVector).operator[](BitPos);
}
};
private:
BitVector *getPointer() const {
assert(!isSmall());
return reinterpret_cast<BitVector *>(X);
}
void switchToSmall(uintptr_t NewSmallBits, size_type NewSize) {
X = 1;
setSmallSize(NewSize);
setSmallBits(NewSmallBits);
}
void switchToLarge(BitVector *BV) {
X = reinterpret_cast<uintptr_t>(BV);
assert(!isSmall() && "Tried to use an unaligned pointer");
}
// Return all the bits used for the "small" representation; this includes
// bits for the size as well as the element bits.
uintptr_t getSmallRawBits() const {
assert(isSmall());
return X >> 1;
}
void setSmallRawBits(uintptr_t NewRawBits) {
assert(isSmall());
X = (NewRawBits << 1) | uintptr_t(1);
}
// Return the size.
size_type getSmallSize() const {
return getSmallRawBits() >> SmallNumDataBits;
}
void setSmallSize(size_type Size) {
setSmallRawBits(getSmallBits() | (Size << SmallNumDataBits));
}
// Return the element bits.
uintptr_t getSmallBits() const {
return getSmallRawBits() & ~(~uintptr_t(0) << getSmallSize());
}
void setSmallBits(uintptr_t NewBits) {
setSmallRawBits((NewBits & ~(~uintptr_t(0) << getSmallSize())) |
(getSmallSize() << SmallNumDataBits));
}
public:
/// Creates an empty bitvector.
SmallBitVector() = default;
/// Creates a bitvector of specified number of bits. All bits are initialized
/// to the specified value.
explicit SmallBitVector(unsigned s, bool t = false) {
if (s <= SmallNumDataBits)
switchToSmall(t ? ~uintptr_t(0) : 0, s);
else
switchToLarge(new BitVector(s, t));
}
/// SmallBitVector copy ctor.
SmallBitVector(const SmallBitVector &RHS) {
if (RHS.isSmall())
X = RHS.X;
else
switchToLarge(new BitVector(*RHS.getPointer()));
}
SmallBitVector(SmallBitVector &&RHS) : X(RHS.X) {
RHS.X = 1;
}
~SmallBitVector() {
if (!isSmall())
delete getPointer();
}
using const_set_bits_iterator = const_set_bits_iterator_impl<SmallBitVector>;
using set_iterator = const_set_bits_iterator;
const_set_bits_iterator set_bits_begin() const {
return const_set_bits_iterator(*this);
}
const_set_bits_iterator set_bits_end() const {
return const_set_bits_iterator(*this, -1);
}
iterator_range<const_set_bits_iterator> set_bits() const {
return make_range(set_bits_begin(), set_bits_end());
}
bool isSmall() const { return X & uintptr_t(1); }
/// Tests whether there are no bits in this bitvector.
bool empty() const {
return isSmall() ? getSmallSize() == 0 : getPointer()->empty();
}
/// Returns the number of bits in this bitvector.
size_type size() const {
return isSmall() ? getSmallSize() : getPointer()->size();
}
/// Returns the number of bits which are set.
size_type count() const {
if (isSmall()) {
uintptr_t Bits = getSmallBits();
return countPopulation(Bits);
}
return getPointer()->count();
}
/// Returns true if any bit is set.
bool any() const {
if (isSmall())
return getSmallBits() != 0;
return getPointer()->any();
}
/// Returns true if all bits are set.
bool all() const {
if (isSmall())
return getSmallBits() == (uintptr_t(1) << getSmallSize()) - 1;
return getPointer()->all();
}
/// Returns true if none of the bits are set.
bool none() const {
if (isSmall())
return getSmallBits() == 0;
return getPointer()->none();
}
/// Returns the index of the first set bit, -1 if none of the bits are set.
int find_first() const {
if (isSmall()) {
uintptr_t Bits = getSmallBits();
if (Bits == 0)
return -1;
return countTrailingZeros(Bits);
}
return getPointer()->find_first();
}
int find_last() const {
if (isSmall()) {
uintptr_t Bits = getSmallBits();
if (Bits == 0)
return -1;
return NumBaseBits - countLeadingZeros(Bits) - 1;
}
return getPointer()->find_last();
}
/// Returns the index of the first unset bit, -1 if all of the bits are set.
int find_first_unset() const {
if (isSmall()) {
if (count() == getSmallSize())
return -1;
uintptr_t Bits = getSmallBits();
return countTrailingOnes(Bits);
}
return getPointer()->find_first_unset();
}
int find_last_unset() const {
if (isSmall()) {
if (count() == getSmallSize())
return -1;
uintptr_t Bits = getSmallBits();
// Set unused bits.
Bits |= ~uintptr_t(0) << getSmallSize();
return NumBaseBits - countLeadingOnes(Bits) - 1;
}
return getPointer()->find_last_unset();
}
/// Returns the index of the next set bit following the "Prev" bit.
/// Returns -1 if the next set bit is not found.
int find_next(unsigned Prev) const {
if (isSmall()) {
uintptr_t Bits = getSmallBits();
// Mask off previous bits.
Bits &= ~uintptr_t(0) << (Prev + 1);
if (Bits == 0 || Prev + 1 >= getSmallSize())
return -1;
return countTrailingZeros(Bits);
}
return getPointer()->find_next(Prev);
}
/// Returns the index of the next unset bit following the "Prev" bit.
/// Returns -1 if the next unset bit is not found.
int find_next_unset(unsigned Prev) const {
if (isSmall()) {
uintptr_t Bits = getSmallBits();
// Mask in previous bits.
Bits |= (uintptr_t(1) << (Prev + 1)) - 1;
// Mask in unused bits.
Bits |= ~uintptr_t(0) << getSmallSize();
if (Bits == ~uintptr_t(0) || Prev + 1 >= getSmallSize())
return -1;
return countTrailingOnes(Bits);
}
return getPointer()->find_next_unset(Prev);
}
/// find_prev - Returns the index of the first set bit that precedes the
/// the bit at \p PriorTo. Returns -1 if all previous bits are unset.
int find_prev(unsigned PriorTo) const {
if (isSmall()) {
if (PriorTo == 0)
return -1;
--PriorTo;
uintptr_t Bits = getSmallBits();
Bits &= maskTrailingOnes<uintptr_t>(PriorTo + 1);
if (Bits == 0)
return -1;
return NumBaseBits - countLeadingZeros(Bits) - 1;
}
return getPointer()->find_prev(PriorTo);
}
/// Clear all bits.
void clear() {
if (!isSmall())
delete getPointer();
switchToSmall(0, 0);
}
/// Grow or shrink the bitvector.
void resize(unsigned N, bool t = false) {
if (!isSmall()) {
getPointer()->resize(N, t);
} else if (SmallNumDataBits >= N) {
uintptr_t NewBits = t ? ~uintptr_t(0) << getSmallSize() : 0;
setSmallSize(N);
setSmallBits(NewBits | getSmallBits());
} else {
BitVector *BV = new BitVector(N, t);
uintptr_t OldBits = getSmallBits();
for (size_type I = 0, E = getSmallSize(); I != E; ++I)
(*BV)[I] = (OldBits >> I) & 1;
switchToLarge(BV);
}
}
void reserve(unsigned N) {
if (isSmall()) {
if (N > SmallNumDataBits) {
uintptr_t OldBits = getSmallRawBits();
size_type SmallSize = getSmallSize();
BitVector *BV = new BitVector(SmallSize);
for (size_type I = 0; I < SmallSize; ++I)
if ((OldBits >> I) & 1)
BV->set(I);
BV->reserve(N);
switchToLarge(BV);
}
} else {
getPointer()->reserve(N);
}
}
// Set, reset, flip
SmallBitVector &set() {
if (isSmall())
setSmallBits(~uintptr_t(0));
else
getPointer()->set();
return *this;
}
SmallBitVector &set(unsigned Idx) {
if (isSmall()) {
assert(Idx <= static_cast<unsigned>(
std::numeric_limits<uintptr_t>::digits) &&
"undefined behavior");
setSmallBits(getSmallBits() | (uintptr_t(1) << Idx));
}
else
getPointer()->set(Idx);
return *this;
}
/// Efficiently set a range of bits in [I, E)
SmallBitVector &set(unsigned I, unsigned E) {
assert(I <= E && "Attempted to set backwards range!");
assert(E <= size() && "Attempted to set out-of-bounds range!");
if (I == E) return *this;
if (isSmall()) {
uintptr_t EMask = ((uintptr_t)1) << E;
uintptr_t IMask = ((uintptr_t)1) << I;
uintptr_t Mask = EMask - IMask;
setSmallBits(getSmallBits() | Mask);
} else
getPointer()->set(I, E);
return *this;
}
SmallBitVector &reset() {
if (isSmall())
setSmallBits(0);
else
getPointer()->reset();
return *this;
}
SmallBitVector &reset(unsigned Idx) {
if (isSmall())
setSmallBits(getSmallBits() & ~(uintptr_t(1) << Idx));
else
getPointer()->reset(Idx);
return *this;
}
/// Efficiently reset a range of bits in [I, E)
SmallBitVector &reset(unsigned I, unsigned E) {
assert(I <= E && "Attempted to reset backwards range!");
assert(E <= size() && "Attempted to reset out-of-bounds range!");
if (I == E) return *this;
if (isSmall()) {
uintptr_t EMask = ((uintptr_t)1) << E;
uintptr_t IMask = ((uintptr_t)1) << I;
uintptr_t Mask = EMask - IMask;
setSmallBits(getSmallBits() & ~Mask);
} else
getPointer()->reset(I, E);
return *this;
}
SmallBitVector &flip() {
if (isSmall())
setSmallBits(~getSmallBits());
else
getPointer()->flip();
return *this;
}
SmallBitVector &flip(unsigned Idx) {
if (isSmall())
setSmallBits(getSmallBits() ^ (uintptr_t(1) << Idx));
else
getPointer()->flip(Idx);
return *this;
}
// No argument flip.
SmallBitVector operator~() const {
return SmallBitVector(*this).flip();
}
// Indexing.
reference operator[](unsigned Idx) {
assert(Idx < size() && "Out-of-bounds Bit access.");
return reference(*this, Idx);
}
bool operator[](unsigned Idx) const {
assert(Idx < size() && "Out-of-bounds Bit access.");
if (isSmall())
return ((getSmallBits() >> Idx) & 1) != 0;
return getPointer()->operator[](Idx);
}
/// Return the last element in the vector.
bool back() const {
assert(!empty() && "Getting last element of empty vector.");
return (*this)[size() - 1];
}
bool test(unsigned Idx) const {
return (*this)[Idx];
}
// Push single bit to end of vector.
void push_back(bool Val) {
resize(size() + 1, Val);
}
/// Pop one bit from the end of the vector.
void pop_back() {
assert(!empty() && "Empty vector has no element to pop.");
resize(size() - 1);
}
/// Test if any common bits are set.
bool anyCommon(const SmallBitVector &RHS) const {
if (isSmall() && RHS.isSmall())
return (getSmallBits() & RHS.getSmallBits()) != 0;
if (!isSmall() && !RHS.isSmall())
return getPointer()->anyCommon(*RHS.getPointer());
for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
if (test(i) && RHS.test(i))
return true;
return false;
}
// Comparison operators.
bool operator==(const SmallBitVector &RHS) const {
if (size() != RHS.size())
return false;
if (isSmall() && RHS.isSmall())
return getSmallBits() == RHS.getSmallBits();
else if (!isSmall() && !RHS.isSmall())
return *getPointer() == *RHS.getPointer();
else {
for (size_type I = 0, E = size(); I != E; ++I) {
if ((*this)[I] != RHS[I])
return false;
}
return true;
}
}
bool operator!=(const SmallBitVector &RHS) const {
return !(*this == RHS);
}
// Intersection, union, disjoint union.
// FIXME BitVector::operator&= does not resize the LHS but this does
SmallBitVector &operator&=(const SmallBitVector &RHS) {
resize(std::max(size(), RHS.size()));
if (isSmall() && RHS.isSmall())
setSmallBits(getSmallBits() & RHS.getSmallBits());
else if (!isSmall() && !RHS.isSmall())
getPointer()->operator&=(*RHS.getPointer());
else {
size_type I, E;
for (I = 0, E = std::min(size(), RHS.size()); I != E; ++I)
(*this)[I] = test(I) && RHS.test(I);
for (E = size(); I != E; ++I)
reset(I);
}
return *this;
}
/// Reset bits that are set in RHS. Same as *this &= ~RHS.
SmallBitVector &reset(const SmallBitVector &RHS) {
if (isSmall() && RHS.isSmall())
setSmallBits(getSmallBits() & ~RHS.getSmallBits());
else if (!isSmall() && !RHS.isSmall())
getPointer()->reset(*RHS.getPointer());
else
for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
if (RHS.test(i))
reset(i);
return *this;
}
/// Check if (This - RHS) is zero. This is the same as reset(RHS) and any().
bool test(const SmallBitVector &RHS) const {
if (isSmall() && RHS.isSmall())
return (getSmallBits() & ~RHS.getSmallBits()) != 0;
if (!isSmall() && !RHS.isSmall())
return getPointer()->test(*RHS.getPointer());
unsigned i, e;
for (i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
if (test(i) && !RHS.test(i))
return true;
for (e = size(); i != e; ++i)
if (test(i))
return true;
return false;
}
SmallBitVector &operator|=(const SmallBitVector &RHS) {
resize(std::max(size(), RHS.size()));
if (isSmall() && RHS.isSmall())
setSmallBits(getSmallBits() | RHS.getSmallBits());
else if (!isSmall() && !RHS.isSmall())
getPointer()->operator|=(*RHS.getPointer());
else {
for (size_type I = 0, E = RHS.size(); I != E; ++I)
(*this)[I] = test(I) || RHS.test(I);
}
return *this;
}
SmallBitVector &operator^=(const SmallBitVector &RHS) {
resize(std::max(size(), RHS.size()));
if (isSmall() && RHS.isSmall())
setSmallBits(getSmallBits() ^ RHS.getSmallBits());
else if (!isSmall() && !RHS.isSmall())
getPointer()->operator^=(*RHS.getPointer());
else {
for (size_type I = 0, E = RHS.size(); I != E; ++I)
(*this)[I] = test(I) != RHS.test(I);
}
return *this;
}
SmallBitVector &operator<<=(unsigned N) {
if (isSmall())
setSmallBits(getSmallBits() << N);
else
getPointer()->operator<<=(N);
return *this;
}
SmallBitVector &operator>>=(unsigned N) {
if (isSmall())
setSmallBits(getSmallBits() >> N);
else
getPointer()->operator>>=(N);
return *this;
}
// Assignment operator.
const SmallBitVector &operator=(const SmallBitVector &RHS) {
if (isSmall()) {
if (RHS.isSmall())
X = RHS.X;
else
switchToLarge(new BitVector(*RHS.getPointer()));
} else {
if (!RHS.isSmall())
*getPointer() = *RHS.getPointer();
else {
delete getPointer();
X = RHS.X;
}
}
return *this;
}
const SmallBitVector &operator=(SmallBitVector &&RHS) {
if (this != &RHS) {
clear();
swap(RHS);
}
return *this;
}
void swap(SmallBitVector &RHS) {
std::swap(X, RHS.X);
}
/// Add '1' bits from Mask to this vector. Don't resize.
/// This computes "*this |= Mask".
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
if (isSmall())
applyMask<true, false>(Mask, MaskWords);
else
getPointer()->setBitsInMask(Mask, MaskWords);
}
/// Clear any bits in this vector that are set in Mask. Don't resize.
/// This computes "*this &= ~Mask".
void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
if (isSmall())
applyMask<false, false>(Mask, MaskWords);
else
getPointer()->clearBitsInMask(Mask, MaskWords);
}
/// Add a bit to this vector for every '0' bit in Mask. Don't resize.
/// This computes "*this |= ~Mask".
void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
if (isSmall())
applyMask<true, true>(Mask, MaskWords);
else
getPointer()->setBitsNotInMask(Mask, MaskWords);
}
/// Clear a bit in this vector for every '0' bit in Mask. Don't resize.
/// This computes "*this &= Mask".
void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
if (isSmall())
applyMask<false, true>(Mask, MaskWords);
else
getPointer()->clearBitsNotInMask(Mask, MaskWords);
}
void invalid() {
assert(empty());
X = (uintptr_t)-1;
}
bool isInvalid() const { return X == (uintptr_t)-1; }
ArrayRef<uintptr_t> getData(uintptr_t &Store) const {
if (!isSmall())
return getPointer()->getData();
Store = getSmallBits();
return makeArrayRef(Store);
}
private:
template <bool AddBits, bool InvertMask>
void applyMask(const uint32_t *Mask, unsigned MaskWords) {
assert(MaskWords <= sizeof(uintptr_t) && "Mask is larger than base!");
uintptr_t M = Mask[0];
if (NumBaseBits == 64)
M |= uint64_t(Mask[1]) << 32;
if (InvertMask)
M = ~M;
if (AddBits)
setSmallBits(getSmallBits() | M);
else
setSmallBits(getSmallBits() & ~M);
}
};
inline SmallBitVector
operator&(const SmallBitVector &LHS, const SmallBitVector &RHS) {
SmallBitVector Result(LHS);
Result &= RHS;
return Result;
}
inline SmallBitVector
operator|(const SmallBitVector &LHS, const SmallBitVector &RHS) {
SmallBitVector Result(LHS);
Result |= RHS;
return Result;
}
inline SmallBitVector
operator^(const SmallBitVector &LHS, const SmallBitVector &RHS) {
SmallBitVector Result(LHS);
Result ^= RHS;
return Result;
}
template <> struct DenseMapInfo<SmallBitVector> {
static inline SmallBitVector getEmptyKey() { return SmallBitVector(); }
static inline SmallBitVector getTombstoneKey() {
SmallBitVector V;
V.invalid();
return V;
}
static unsigned getHashValue(const SmallBitVector &V) {
uintptr_t Store;
return DenseMapInfo<
std::pair<SmallBitVector::size_type, ArrayRef<uintptr_t>>>::
getHashValue(std::make_pair(V.size(), V.getData(Store)));
}
static bool isEqual(const SmallBitVector &LHS, const SmallBitVector &RHS) {
if (LHS.isInvalid() || RHS.isInvalid())
return LHS.isInvalid() == RHS.isInvalid();
return LHS == RHS;
}
};
} // end namespace llvm
namespace std {
/// Implement std::swap in terms of BitVector swap.
inline void
swap(llvm::SmallBitVector &LHS, llvm::SmallBitVector &RHS) {
LHS.swap(RHS);
}
} // end namespace std
#endif // LLVM_ADT_SMALLBITVECTOR_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|