1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===- llvm/ADT/AllocatorList.h - Custom allocator list ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_ALLOCATORLIST_H
#define LLVM_ADT_ALLOCATORLIST_H
#include "llvm/ADT/ilist_node.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/simple_ilist.h"
#include "llvm/Support/Allocator.h"
#include <cassert>
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
namespace llvm {
/// A linked-list with a custom, local allocator.
///
/// Expose a std::list-like interface that owns and uses a custom LLVM-style
/// allocator (e.g., BumpPtrAllocator), leveraging \a simple_ilist for the
/// implementation details.
///
/// Because this list owns the allocator, calling \a splice() with a different
/// list isn't generally safe. As such, \a splice has been left out of the
/// interface entirely.
template <class T, class AllocatorT> class AllocatorList : AllocatorT {
struct Node : ilist_node<Node> {
Node(Node &&) = delete;
Node(const Node &) = delete;
Node &operator=(Node &&) = delete;
Node &operator=(const Node &) = delete;
Node(T &&V) : V(std::move(V)) {}
Node(const T &V) : V(V) {}
template <class... Ts> Node(Ts &&... Vs) : V(std::forward<Ts>(Vs)...) {}
T V;
};
using list_type = simple_ilist<Node>;
list_type List;
AllocatorT &getAlloc() { return *this; }
const AllocatorT &getAlloc() const { return *this; }
template <class... ArgTs> Node *create(ArgTs &&... Args) {
return new (getAlloc()) Node(std::forward<ArgTs>(Args)...);
}
struct Cloner {
AllocatorList &AL;
Cloner(AllocatorList &AL) : AL(AL) {}
Node *operator()(const Node &N) const { return AL.create(N.V); }
};
struct Disposer {
AllocatorList &AL;
Disposer(AllocatorList &AL) : AL(AL) {}
void operator()(Node *N) const {
N->~Node();
AL.getAlloc().Deallocate(N);
}
};
public:
using value_type = T;
using pointer = T *;
using reference = T &;
using const_pointer = const T *;
using const_reference = const T &;
using size_type = typename list_type::size_type;
using difference_type = typename list_type::difference_type;
private:
template <class ValueT, class IteratorBase>
class IteratorImpl
: public iterator_adaptor_base<IteratorImpl<ValueT, IteratorBase>,
IteratorBase,
std::bidirectional_iterator_tag, ValueT> {
template <class OtherValueT, class OtherIteratorBase>
friend class IteratorImpl;
friend AllocatorList;
using base_type =
iterator_adaptor_base<IteratorImpl<ValueT, IteratorBase>, IteratorBase,
std::bidirectional_iterator_tag, ValueT>;
public:
using value_type = ValueT;
using pointer = ValueT *;
using reference = ValueT &;
IteratorImpl() = default;
IteratorImpl(const IteratorImpl &) = default;
IteratorImpl &operator=(const IteratorImpl &) = default;
explicit IteratorImpl(const IteratorBase &I) : base_type(I) {}
template <class OtherValueT, class OtherIteratorBase>
IteratorImpl(const IteratorImpl<OtherValueT, OtherIteratorBase> &X,
std::enable_if_t<std::is_convertible<
OtherIteratorBase, IteratorBase>::value> * = nullptr)
: base_type(X.wrapped()) {}
~IteratorImpl() = default;
reference operator*() const { return base_type::wrapped()->V; }
pointer operator->() const { return &operator*(); }
};
public:
using iterator = IteratorImpl<T, typename list_type::iterator>;
using reverse_iterator =
IteratorImpl<T, typename list_type::reverse_iterator>;
using const_iterator =
IteratorImpl<const T, typename list_type::const_iterator>;
using const_reverse_iterator =
IteratorImpl<const T, typename list_type::const_reverse_iterator>;
AllocatorList() = default;
AllocatorList(AllocatorList &&X)
: AllocatorT(std::move(X.getAlloc())), List(std::move(X.List)) {}
AllocatorList(const AllocatorList &X) {
List.cloneFrom(X.List, Cloner(*this), Disposer(*this));
}
AllocatorList &operator=(AllocatorList &&X) {
clear(); // Dispose of current nodes explicitly.
List = std::move(X.List);
getAlloc() = std::move(X.getAlloc());
return *this;
}
AllocatorList &operator=(const AllocatorList &X) {
List.cloneFrom(X.List, Cloner(*this), Disposer(*this));
return *this;
}
~AllocatorList() { clear(); }
void swap(AllocatorList &RHS) {
List.swap(RHS.List);
std::swap(getAlloc(), RHS.getAlloc());
}
bool empty() { return List.empty(); }
size_t size() { return List.size(); }
iterator begin() { return iterator(List.begin()); }
iterator end() { return iterator(List.end()); }
const_iterator begin() const { return const_iterator(List.begin()); }
const_iterator end() const { return const_iterator(List.end()); }
reverse_iterator rbegin() { return reverse_iterator(List.rbegin()); }
reverse_iterator rend() { return reverse_iterator(List.rend()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(List.rbegin());
}
const_reverse_iterator rend() const {
return const_reverse_iterator(List.rend());
}
T &back() { return List.back().V; }
T &front() { return List.front().V; }
const T &back() const { return List.back().V; }
const T &front() const { return List.front().V; }
template <class... Ts> iterator emplace(iterator I, Ts &&... Vs) {
return iterator(List.insert(I.wrapped(), *create(std::forward<Ts>(Vs)...)));
}
iterator insert(iterator I, T &&V) {
return iterator(List.insert(I.wrapped(), *create(std::move(V))));
}
iterator insert(iterator I, const T &V) {
return iterator(List.insert(I.wrapped(), *create(V)));
}
template <class Iterator>
void insert(iterator I, Iterator First, Iterator Last) {
for (; First != Last; ++First)
List.insert(I.wrapped(), *create(*First));
}
iterator erase(iterator I) {
return iterator(List.eraseAndDispose(I.wrapped(), Disposer(*this)));
}
iterator erase(iterator First, iterator Last) {
return iterator(
List.eraseAndDispose(First.wrapped(), Last.wrapped(), Disposer(*this)));
}
void clear() { List.clearAndDispose(Disposer(*this)); }
void pop_back() { List.eraseAndDispose(--List.end(), Disposer(*this)); }
void pop_front() { List.eraseAndDispose(List.begin(), Disposer(*this)); }
void push_back(T &&V) { insert(end(), std::move(V)); }
void push_front(T &&V) { insert(begin(), std::move(V)); }
void push_back(const T &V) { insert(end(), V); }
void push_front(const T &V) { insert(begin(), V); }
template <class... Ts> void emplace_back(Ts &&... Vs) {
emplace(end(), std::forward<Ts>(Vs)...);
}
template <class... Ts> void emplace_front(Ts &&... Vs) {
emplace(begin(), std::forward<Ts>(Vs)...);
}
/// Reset the underlying allocator.
///
/// \pre \c empty()
void resetAlloc() {
assert(empty() && "Cannot reset allocator if not empty");
getAlloc().Reset();
}
};
template <class T> using BumpPtrList = AllocatorList<T, BumpPtrAllocator>;
} // end namespace llvm
#endif // LLVM_ADT_ALLOCATORLIST_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|