1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
|
//===- DFAEmitter.cpp - Finite state automaton emitter --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This class can produce a generic deterministic finite state automaton (DFA),
// given a set of possible states and transitions.
//
// The input transitions can be nondeterministic - this class will produce the
// deterministic equivalent state machine.
//
// The generated code can run the DFA and produce an accepted / not accepted
// state and also produce, given a sequence of transitions that results in an
// accepted state, the sequence of intermediate states. This is useful if the
// initial automaton was nondeterministic - it allows mapping back from the DFA
// to the NFA.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "dfa-emitter"
#include "DFAEmitter.h"
#include "CodeGenTarget.h"
#include "SequenceToOffsetTable.h"
#include "TableGenBackends.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/UniqueVector.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <cassert>
#include <cstdint>
#include <map>
#include <set>
#include <string>
#include <vector>
using namespace llvm;
//===----------------------------------------------------------------------===//
// DfaEmitter implementation. This is independent of the GenAutomaton backend.
//===----------------------------------------------------------------------===//
void DfaEmitter::addTransition(state_type From, state_type To, action_type A) {
Actions.insert(A);
NfaStates.insert(From);
NfaStates.insert(To);
NfaTransitions[{From, A}].push_back(To);
++NumNfaTransitions;
}
void DfaEmitter::visitDfaState(const DfaState &DS) {
// For every possible action...
auto FromId = DfaStates.idFor(DS);
for (action_type A : Actions) {
DfaState NewStates;
DfaTransitionInfo TI;
// For every represented state, word pair in the original NFA...
for (state_type FromState : DS) {
// If this action is possible from this state add the transitioned-to
// states to NewStates.
auto I = NfaTransitions.find({FromState, A});
if (I == NfaTransitions.end())
continue;
for (state_type &ToState : I->second) {
NewStates.push_back(ToState);
TI.emplace_back(FromState, ToState);
}
}
if (NewStates.empty())
continue;
// Sort and unique.
sort(NewStates);
NewStates.erase(std::unique(NewStates.begin(), NewStates.end()),
NewStates.end());
sort(TI);
TI.erase(std::unique(TI.begin(), TI.end()), TI.end());
unsigned ToId = DfaStates.insert(NewStates);
DfaTransitions.emplace(std::make_pair(FromId, A), std::make_pair(ToId, TI));
}
}
void DfaEmitter::constructDfa() {
DfaState Initial(1, /*NFA initial state=*/0);
DfaStates.insert(Initial);
// Note that UniqueVector starts indices at 1, not zero.
unsigned DfaStateId = 1;
while (DfaStateId <= DfaStates.size()) {
DfaState S = DfaStates[DfaStateId];
visitDfaState(S);
DfaStateId++;
}
}
void DfaEmitter::emit(StringRef Name, raw_ostream &OS) {
constructDfa();
OS << "// Input NFA has " << NfaStates.size() << " states with "
<< NumNfaTransitions << " transitions.\n";
OS << "// Generated DFA has " << DfaStates.size() << " states with "
<< DfaTransitions.size() << " transitions.\n\n";
// Implementation note: We don't bake a simple std::pair<> here as it requires
// significantly more effort to parse. A simple test with a large array of
// struct-pairs (N=100000) took clang-10 6s to parse. The same array of
// std::pair<uint64_t, uint64_t> took 242s. Instead we allow the user to
// define the pair type.
//
// FIXME: It may make sense to emit these as ULEB sequences instead of
// pairs of uint64_t.
OS << "// A zero-terminated sequence of NFA state transitions. Every DFA\n";
OS << "// transition implies a set of NFA transitions. These are referred\n";
OS << "// to by index in " << Name << "Transitions[].\n";
SequenceToOffsetTable<DfaTransitionInfo> Table;
std::map<DfaTransitionInfo, unsigned> EmittedIndices;
for (auto &T : DfaTransitions)
Table.add(T.second.second);
Table.layout();
OS << "const std::array<NfaStatePair, " << Table.size() << "> " << Name
<< "TransitionInfo = {{\n";
Table.emit(
OS,
[](raw_ostream &OS, std::pair<uint64_t, uint64_t> P) {
OS << "{" << P.first << ", " << P.second << "}";
},
"{0ULL, 0ULL}");
OS << "}};\n\n";
OS << "// A transition in the generated " << Name << " DFA.\n";
OS << "struct " << Name << "Transition {\n";
OS << " unsigned FromDfaState; // The transitioned-from DFA state.\n";
OS << " ";
printActionType(OS);
OS << " Action; // The input symbol that causes this transition.\n";
OS << " unsigned ToDfaState; // The transitioned-to DFA state.\n";
OS << " unsigned InfoIdx; // Start index into " << Name
<< "TransitionInfo.\n";
OS << "};\n\n";
OS << "// A table of DFA transitions, ordered by {FromDfaState, Action}.\n";
OS << "// The initial state is 1, not zero.\n";
OS << "const std::array<" << Name << "Transition, "
<< DfaTransitions.size() << "> " << Name << "Transitions = {{\n";
for (auto &KV : DfaTransitions) {
dfa_state_type From = KV.first.first;
dfa_state_type To = KV.second.first;
action_type A = KV.first.second;
unsigned InfoIdx = Table.get(KV.second.second);
OS << " {" << From << ", ";
printActionValue(A, OS);
OS << ", " << To << ", " << InfoIdx << "},\n";
}
OS << "\n}};\n\n";
}
void DfaEmitter::printActionType(raw_ostream &OS) { OS << "uint64_t"; }
void DfaEmitter::printActionValue(action_type A, raw_ostream &OS) { OS << A; }
//===----------------------------------------------------------------------===//
// AutomatonEmitter implementation
//===----------------------------------------------------------------------===//
namespace {
// FIXME: This entire discriminated union could be removed with c++17:
// using Action = std::variant<Record *, unsigned, std::string>;
struct Action {
Record *R = nullptr;
unsigned I = 0;
std::string S;
Action() = default;
Action(Record *R, unsigned I, std::string S) : R(R), I(I), S(S) {}
void print(raw_ostream &OS) const {
if (R)
OS << R->getName();
else if (!S.empty())
OS << '"' << S << '"';
else
OS << I;
}
bool operator<(const Action &Other) const {
return std::make_tuple(R, I, S) <
std::make_tuple(Other.R, Other.I, Other.S);
}
};
using ActionTuple = std::vector<Action>;
class Automaton;
class Transition {
uint64_t NewState;
// The tuple of actions that causes this transition.
ActionTuple Actions;
// The types of the actions; this is the same across all transitions.
SmallVector<std::string, 4> Types;
public:
Transition(Record *R, Automaton *Parent);
const ActionTuple &getActions() { return Actions; }
SmallVector<std::string, 4> getTypes() { return Types; }
bool canTransitionFrom(uint64_t State);
uint64_t transitionFrom(uint64_t State);
};
class Automaton {
RecordKeeper &Records;
Record *R;
std::vector<Transition> Transitions;
/// All possible action tuples, uniqued.
UniqueVector<ActionTuple> Actions;
/// The fields within each Transition object to find the action symbols.
std::vector<StringRef> ActionSymbolFields;
public:
Automaton(RecordKeeper &Records, Record *R);
void emit(raw_ostream &OS);
ArrayRef<StringRef> getActionSymbolFields() { return ActionSymbolFields; }
/// If the type of action A has been overridden (there exists a field
/// "TypeOf_A") return that, otherwise return the empty string.
StringRef getActionSymbolType(StringRef A);
};
class AutomatonEmitter {
RecordKeeper &Records;
public:
AutomatonEmitter(RecordKeeper &R) : Records(R) {}
void run(raw_ostream &OS);
};
/// A DfaEmitter implementation that can print our variant action type.
class CustomDfaEmitter : public DfaEmitter {
const UniqueVector<ActionTuple> &Actions;
std::string TypeName;
public:
CustomDfaEmitter(const UniqueVector<ActionTuple> &Actions, StringRef TypeName)
: Actions(Actions), TypeName(TypeName) {}
void printActionType(raw_ostream &OS) override;
void printActionValue(action_type A, raw_ostream &OS) override;
};
} // namespace
void AutomatonEmitter::run(raw_ostream &OS) {
for (Record *R : Records.getAllDerivedDefinitions("GenericAutomaton")) {
Automaton A(Records, R);
OS << "#ifdef GET_" << R->getName() << "_DECL\n";
A.emit(OS);
OS << "#endif // GET_" << R->getName() << "_DECL\n";
}
}
Automaton::Automaton(RecordKeeper &Records, Record *R)
: Records(Records), R(R) {
LLVM_DEBUG(dbgs() << "Emitting automaton for " << R->getName() << "\n");
ActionSymbolFields = R->getValueAsListOfStrings("SymbolFields");
}
void Automaton::emit(raw_ostream &OS) {
StringRef TransitionClass = R->getValueAsString("TransitionClass");
for (Record *T : Records.getAllDerivedDefinitions(TransitionClass)) {
assert(T->isSubClassOf("Transition"));
Transitions.emplace_back(T, this);
Actions.insert(Transitions.back().getActions());
}
LLVM_DEBUG(dbgs() << " Action alphabet cardinality: " << Actions.size()
<< "\n");
LLVM_DEBUG(dbgs() << " Each state has " << Transitions.size()
<< " potential transitions.\n");
StringRef Name = R->getName();
CustomDfaEmitter Emitter(Actions, std::string(Name) + "Action");
// Starting from the initial state, build up a list of possible states and
// transitions.
std::deque<uint64_t> Worklist(1, 0);
std::set<uint64_t> SeenStates;
unsigned NumTransitions = 0;
SeenStates.insert(Worklist.front());
while (!Worklist.empty()) {
uint64_t State = Worklist.front();
Worklist.pop_front();
for (Transition &T : Transitions) {
if (!T.canTransitionFrom(State))
continue;
uint64_t NewState = T.transitionFrom(State);
if (SeenStates.emplace(NewState).second)
Worklist.emplace_back(NewState);
++NumTransitions;
Emitter.addTransition(State, NewState, Actions.idFor(T.getActions()));
}
}
LLVM_DEBUG(dbgs() << " NFA automaton has " << SeenStates.size()
<< " states with " << NumTransitions << " transitions.\n");
const auto &ActionTypes = Transitions.back().getTypes();
OS << "// The type of an action in the " << Name << " automaton.\n";
if (ActionTypes.size() == 1) {
OS << "using " << Name << "Action = " << ActionTypes[0] << ";\n";
} else {
OS << "using " << Name << "Action = std::tuple<" << join(ActionTypes, ", ")
<< ">;\n";
}
OS << "\n";
Emitter.emit(Name, OS);
}
StringRef Automaton::getActionSymbolType(StringRef A) {
Twine Ty = "TypeOf_" + A;
if (!R->getValue(Ty.str()))
return "";
return R->getValueAsString(Ty.str());
}
Transition::Transition(Record *R, Automaton *Parent) {
BitsInit *NewStateInit = R->getValueAsBitsInit("NewState");
NewState = 0;
assert(NewStateInit->getNumBits() <= sizeof(uint64_t) * 8 &&
"State cannot be represented in 64 bits!");
for (unsigned I = 0; I < NewStateInit->getNumBits(); ++I) {
if (auto *Bit = dyn_cast<BitInit>(NewStateInit->getBit(I))) {
if (Bit->getValue())
NewState |= 1ULL << I;
}
}
for (StringRef A : Parent->getActionSymbolFields()) {
RecordVal *SymbolV = R->getValue(A);
if (auto *Ty = dyn_cast<RecordRecTy>(SymbolV->getType())) {
Actions.emplace_back(R->getValueAsDef(A), 0, "");
Types.emplace_back(Ty->getAsString());
} else if (isa<IntRecTy>(SymbolV->getType())) {
Actions.emplace_back(nullptr, R->getValueAsInt(A), "");
Types.emplace_back("unsigned");
} else if (isa<StringRecTy>(SymbolV->getType())) {
Actions.emplace_back(nullptr, 0, std::string(R->getValueAsString(A)));
Types.emplace_back("std::string");
} else {
report_fatal_error("Unhandled symbol type!");
}
StringRef TypeOverride = Parent->getActionSymbolType(A);
if (!TypeOverride.empty())
Types.back() = std::string(TypeOverride);
}
}
bool Transition::canTransitionFrom(uint64_t State) {
if ((State & NewState) == 0)
// The bits we want to set are not set;
return true;
return false;
}
uint64_t Transition::transitionFrom(uint64_t State) {
return State | NewState;
}
void CustomDfaEmitter::printActionType(raw_ostream &OS) { OS << TypeName; }
void CustomDfaEmitter::printActionValue(action_type A, raw_ostream &OS) {
const ActionTuple &AT = Actions[A];
if (AT.size() > 1)
OS << "std::make_tuple(";
bool First = true;
for (const auto &SingleAction : AT) {
if (!First)
OS << ", ";
First = false;
SingleAction.print(OS);
}
if (AT.size() > 1)
OS << ")";
}
namespace llvm {
void EmitAutomata(RecordKeeper &RK, raw_ostream &OS) {
AutomatonEmitter(RK).run(OS);
}
} // namespace llvm
|