1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
|
//===- Schedule.cpp - Calculate an optimized schedule ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass generates an entirely new schedule tree from the data dependences
// and iteration domains. The new schedule tree is computed in two steps:
//
// 1) The isl scheduling optimizer is run
//
// The isl scheduling optimizer creates a new schedule tree that maximizes
// parallelism and tileability and minimizes data-dependence distances. The
// algorithm used is a modified version of the ``Pluto'' algorithm:
//
// U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
// A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
// In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
// Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008.
//
// 2) A set of post-scheduling transformations is applied on the schedule tree.
//
// These optimizations include:
//
// - Tiling of the innermost tilable bands
// - Prevectorization - The choice of a possible outer loop that is strip-mined
// to the innermost level to enable inner-loop
// vectorization.
// - Some optimizations for spatial locality are also planned.
//
// For a detailed description of the schedule tree itself please see section 6
// of:
//
// Polyhedral AST generation is more than scanning polyhedra
// Tobias Grosser, Sven Verdoolaege, Albert Cohen
// ACM Transactions on Programming Languages and Systems (TOPLAS),
// 37(4), July 2015
// http://www.grosser.es/#pub-polyhedral-AST-generation
//
// This publication also contains a detailed discussion of the different options
// for polyhedral loop unrolling, full/partial tile separation and other uses
// of the schedule tree.
//
//===----------------------------------------------------------------------===//
#include "polly/ScheduleOptimizer.h"
#include "polly/CodeGen/CodeGeneration.h"
#include "polly/DependenceInfo.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScheduleTreeTransform.h"
#include "polly/ScopInfo.h"
#include "polly/ScopPass.h"
#include "polly/Simplify.h"
#include "polly/Support/ISLOStream.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "isl/ctx.h"
#include "isl/options.h"
#include "isl/printer.h"
#include "isl/schedule.h"
#include "isl/schedule_node.h"
#include "isl/union_map.h"
#include "isl/union_set.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdlib>
#include <string>
#include <vector>
using namespace llvm;
using namespace polly;
#define DEBUG_TYPE "polly-opt-isl"
static cl::opt<std::string>
OptimizeDeps("polly-opt-optimize-only",
cl::desc("Only a certain kind of dependences (all/raw)"),
cl::Hidden, cl::init("all"), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<std::string>
SimplifyDeps("polly-opt-simplify-deps",
cl::desc("Dependences should be simplified (yes/no)"),
cl::Hidden, cl::init("yes"), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<int> MaxConstantTerm(
"polly-opt-max-constant-term",
cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden,
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> MaxCoefficient(
"polly-opt-max-coefficient",
cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden,
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<std::string> FusionStrategy(
"polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"),
cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<std::string>
MaximizeBandDepth("polly-opt-maximize-bands",
cl::desc("Maximize the band depth (yes/no)"), cl::Hidden,
cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<std::string> OuterCoincidence(
"polly-opt-outer-coincidence",
cl::desc("Try to construct schedules where the outer member of each band "
"satisfies the coincidence constraints (yes/no)"),
cl::Hidden, cl::init("no"), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> PrevectorWidth(
"polly-prevect-width",
cl::desc(
"The number of loop iterations to strip-mine for pre-vectorization"),
cl::Hidden, cl::init(4), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool> FirstLevelTiling("polly-tiling",
cl::desc("Enable loop tiling"),
cl::init(true), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<int> LatencyVectorFma(
"polly-target-latency-vector-fma",
cl::desc("The minimal number of cycles between issuing two "
"dependent consecutive vector fused multiply-add "
"instructions."),
cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> ThroughputVectorFma(
"polly-target-throughput-vector-fma",
cl::desc("A throughput of the processor floating-point arithmetic units "
"expressed in the number of vector fused multiply-add "
"instructions per clock cycle."),
cl::Hidden, cl::init(1), cl::ZeroOrMore, cl::cat(PollyCategory));
// This option, along with --polly-target-2nd-cache-level-associativity,
// --polly-target-1st-cache-level-size, and --polly-target-2st-cache-level-size
// represent the parameters of the target cache, which do not have typical
// values that can be used by default. However, to apply the pattern matching
// optimizations, we use the values of the parameters of Intel Core i7-3820
// SandyBridge in case the parameters are not specified or not provided by the
// TargetTransformInfo.
static cl::opt<int> FirstCacheLevelAssociativity(
"polly-target-1st-cache-level-associativity",
cl::desc("The associativity of the first cache level."), cl::Hidden,
cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> FirstCacheLevelDefaultAssociativity(
"polly-target-1st-cache-level-default-associativity",
cl::desc("The default associativity of the first cache level"
" (if not enough were provided by the TargetTransformInfo)."),
cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> SecondCacheLevelAssociativity(
"polly-target-2nd-cache-level-associativity",
cl::desc("The associativity of the second cache level."), cl::Hidden,
cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> SecondCacheLevelDefaultAssociativity(
"polly-target-2nd-cache-level-default-associativity",
cl::desc("The default associativity of the second cache level"
" (if not enough were provided by the TargetTransformInfo)."),
cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> FirstCacheLevelSize(
"polly-target-1st-cache-level-size",
cl::desc("The size of the first cache level specified in bytes."),
cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> FirstCacheLevelDefaultSize(
"polly-target-1st-cache-level-default-size",
cl::desc("The default size of the first cache level specified in bytes"
" (if not enough were provided by the TargetTransformInfo)."),
cl::Hidden, cl::init(32768), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> SecondCacheLevelSize(
"polly-target-2nd-cache-level-size",
cl::desc("The size of the second level specified in bytes."), cl::Hidden,
cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> SecondCacheLevelDefaultSize(
"polly-target-2nd-cache-level-default-size",
cl::desc("The default size of the second cache level specified in bytes"
" (if not enough were provided by the TargetTransformInfo)."),
cl::Hidden, cl::init(262144), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> VectorRegisterBitwidth(
"polly-target-vector-register-bitwidth",
cl::desc("The size in bits of a vector register (if not set, this "
"information is taken from LLVM's target information."),
cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> FirstLevelDefaultTileSize(
"polly-default-tile-size",
cl::desc("The default tile size (if not enough were provided by"
" --polly-tile-sizes)"),
cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::list<int>
FirstLevelTileSizes("polly-tile-sizes",
cl::desc("A tile size for each loop dimension, filled "
"with --polly-default-tile-size"),
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
cl::cat(PollyCategory));
static cl::opt<bool>
SecondLevelTiling("polly-2nd-level-tiling",
cl::desc("Enable a 2nd level loop of loop tiling"),
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> SecondLevelDefaultTileSize(
"polly-2nd-level-default-tile-size",
cl::desc("The default 2nd-level tile size (if not enough were provided by"
" --polly-2nd-level-tile-sizes)"),
cl::Hidden, cl::init(16), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::list<int>
SecondLevelTileSizes("polly-2nd-level-tile-sizes",
cl::desc("A tile size for each loop dimension, filled "
"with --polly-default-tile-size"),
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
cl::cat(PollyCategory));
static cl::opt<bool> RegisterTiling("polly-register-tiling",
cl::desc("Enable register tiling"),
cl::init(false), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<int> RegisterDefaultTileSize(
"polly-register-tiling-default-tile-size",
cl::desc("The default register tile size (if not enough were provided by"
" --polly-register-tile-sizes)"),
cl::Hidden, cl::init(2), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> PollyPatternMatchingNcQuotient(
"polly-pattern-matching-nc-quotient",
cl::desc("Quotient that is obtained by dividing Nc, the parameter of the"
"macro-kernel, by Nr, the parameter of the micro-kernel"),
cl::Hidden, cl::init(256), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::list<int>
RegisterTileSizes("polly-register-tile-sizes",
cl::desc("A tile size for each loop dimension, filled "
"with --polly-register-tile-size"),
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
cl::cat(PollyCategory));
static cl::opt<bool>
PMBasedOpts("polly-pattern-matching-based-opts",
cl::desc("Perform optimizations based on pattern matching"),
cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool> OptimizedScops(
"polly-optimized-scops",
cl::desc("Polly - Dump polyhedral description of Scops optimized with "
"the isl scheduling optimizer and the set of post-scheduling "
"transformations is applied on the schedule tree"),
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
STATISTIC(ScopsProcessed, "Number of scops processed");
STATISTIC(ScopsRescheduled, "Number of scops rescheduled");
STATISTIC(ScopsOptimized, "Number of scops optimized");
STATISTIC(NumAffineLoopsOptimized, "Number of affine loops optimized");
STATISTIC(NumBoxedLoopsOptimized, "Number of boxed loops optimized");
#define THREE_STATISTICS(VARNAME, DESC) \
static Statistic VARNAME[3] = { \
{DEBUG_TYPE, #VARNAME "0", DESC " (original)"}, \
{DEBUG_TYPE, #VARNAME "1", DESC " (after scheduler)"}, \
{DEBUG_TYPE, #VARNAME "2", DESC " (after optimizer)"}}
THREE_STATISTICS(NumBands, "Number of bands");
THREE_STATISTICS(NumBandMembers, "Number of band members");
THREE_STATISTICS(NumCoincident, "Number of coincident band members");
THREE_STATISTICS(NumPermutable, "Number of permutable bands");
THREE_STATISTICS(NumFilters, "Number of filter nodes");
THREE_STATISTICS(NumExtension, "Number of extension nodes");
STATISTIC(FirstLevelTileOpts, "Number of first level tiling applied");
STATISTIC(SecondLevelTileOpts, "Number of second level tiling applied");
STATISTIC(RegisterTileOpts, "Number of register tiling applied");
STATISTIC(PrevectOpts, "Number of strip-mining for prevectorization applied");
STATISTIC(MatMulOpts,
"Number of matrix multiplication patterns detected and optimized");
/// Create an isl::union_set, which describes the isolate option based on
/// IsolateDomain.
///
/// @param IsolateDomain An isl::set whose @p OutDimsNum last dimensions should
/// belong to the current band node.
/// @param OutDimsNum A number of dimensions that should belong to
/// the current band node.
static isl::union_set getIsolateOptions(isl::set IsolateDomain,
unsigned OutDimsNum) {
unsigned Dims = IsolateDomain.dim(isl::dim::set);
assert(OutDimsNum <= Dims &&
"The isl::set IsolateDomain is used to describe the range of schedule "
"dimensions values, which should be isolated. Consequently, the "
"number of its dimensions should be greater than or equal to the "
"number of the schedule dimensions.");
isl::map IsolateRelation = isl::map::from_domain(IsolateDomain);
IsolateRelation = IsolateRelation.move_dims(isl::dim::out, 0, isl::dim::in,
Dims - OutDimsNum, OutDimsNum);
isl::set IsolateOption = IsolateRelation.wrap();
isl::id Id = isl::id::alloc(IsolateOption.get_ctx(), "isolate", nullptr);
IsolateOption = IsolateOption.set_tuple_id(Id);
return isl::union_set(IsolateOption);
}
namespace {
/// Create an isl::union_set, which describes the specified option for the
/// dimension of the current node.
///
/// @param Ctx An isl::ctx, which is used to create the isl::union_set.
/// @param Option The name of the option.
isl::union_set getDimOptions(isl::ctx Ctx, const char *Option) {
isl::space Space(Ctx, 0, 1);
auto DimOption = isl::set::universe(Space);
auto Id = isl::id::alloc(Ctx, Option, nullptr);
DimOption = DimOption.set_tuple_id(Id);
return isl::union_set(DimOption);
}
} // namespace
/// Create an isl::union_set, which describes the option of the form
/// [isolate[] -> unroll[x]].
///
/// @param Ctx An isl::ctx, which is used to create the isl::union_set.
static isl::union_set getUnrollIsolatedSetOptions(isl::ctx Ctx) {
isl::space Space = isl::space(Ctx, 0, 0, 1);
isl::map UnrollIsolatedSetOption = isl::map::universe(Space);
isl::id DimInId = isl::id::alloc(Ctx, "isolate", nullptr);
isl::id DimOutId = isl::id::alloc(Ctx, "unroll", nullptr);
UnrollIsolatedSetOption =
UnrollIsolatedSetOption.set_tuple_id(isl::dim::in, DimInId);
UnrollIsolatedSetOption =
UnrollIsolatedSetOption.set_tuple_id(isl::dim::out, DimOutId);
return UnrollIsolatedSetOption.wrap();
}
/// Make the last dimension of Set to take values from 0 to VectorWidth - 1.
///
/// @param Set A set, which should be modified.
/// @param VectorWidth A parameter, which determines the constraint.
static isl::set addExtentConstraints(isl::set Set, int VectorWidth) {
unsigned Dims = Set.dim(isl::dim::set);
isl::space Space = Set.get_space();
isl::local_space LocalSpace = isl::local_space(Space);
isl::constraint ExtConstr = isl::constraint::alloc_inequality(LocalSpace);
ExtConstr = ExtConstr.set_constant_si(0);
ExtConstr = ExtConstr.set_coefficient_si(isl::dim::set, Dims - 1, 1);
Set = Set.add_constraint(ExtConstr);
ExtConstr = isl::constraint::alloc_inequality(LocalSpace);
ExtConstr = ExtConstr.set_constant_si(VectorWidth - 1);
ExtConstr = ExtConstr.set_coefficient_si(isl::dim::set, Dims - 1, -1);
return Set.add_constraint(ExtConstr);
}
isl::set getPartialTilePrefixes(isl::set ScheduleRange, int VectorWidth) {
unsigned Dims = ScheduleRange.dim(isl::dim::set);
isl::set LoopPrefixes =
ScheduleRange.drop_constraints_involving_dims(isl::dim::set, Dims - 1, 1);
auto ExtentPrefixes = addExtentConstraints(LoopPrefixes, VectorWidth);
isl::set BadPrefixes = ExtentPrefixes.subtract(ScheduleRange);
BadPrefixes = BadPrefixes.project_out(isl::dim::set, Dims - 1, 1);
LoopPrefixes = LoopPrefixes.project_out(isl::dim::set, Dims - 1, 1);
return LoopPrefixes.subtract(BadPrefixes);
}
isl::schedule_node
ScheduleTreeOptimizer::isolateFullPartialTiles(isl::schedule_node Node,
int VectorWidth) {
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
Node = Node.child(0).child(0);
isl::union_map SchedRelUMap = Node.get_prefix_schedule_relation();
isl::union_set ScheduleRangeUSet = SchedRelUMap.range();
isl::set ScheduleRange{ScheduleRangeUSet};
isl::set IsolateDomain = getPartialTilePrefixes(ScheduleRange, VectorWidth);
auto AtomicOption = getDimOptions(IsolateDomain.get_ctx(), "atomic");
isl::union_set IsolateOption = getIsolateOptions(IsolateDomain, 1);
Node = Node.parent().parent();
isl::union_set Options = IsolateOption.unite(AtomicOption);
Node = Node.band_set_ast_build_options(Options);
return Node;
}
isl::schedule_node ScheduleTreeOptimizer::prevectSchedBand(
isl::schedule_node Node, unsigned DimToVectorize, int VectorWidth) {
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
auto ScheduleDimensions = Space.dim(isl::dim::set);
assert(DimToVectorize < ScheduleDimensions);
if (DimToVectorize > 0) {
Node = isl::manage(
isl_schedule_node_band_split(Node.release(), DimToVectorize));
Node = Node.child(0);
}
if (DimToVectorize < ScheduleDimensions - 1)
Node = isl::manage(isl_schedule_node_band_split(Node.release(), 1));
Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
auto Sizes = isl::multi_val::zero(Space);
Sizes = Sizes.set_val(0, isl::val(Node.get_ctx(), VectorWidth));
Node =
isl::manage(isl_schedule_node_band_tile(Node.release(), Sizes.release()));
Node = isolateFullPartialTiles(Node, VectorWidth);
Node = Node.child(0);
// Make sure the "trivially vectorizable loop" is not unrolled. Otherwise,
// we will have troubles to match it in the backend.
Node = Node.band_set_ast_build_options(
isl::union_set(Node.get_ctx(), "{ unroll[x]: 1 = 0 }"));
Node = isl::manage(isl_schedule_node_band_sink(Node.release()));
Node = Node.child(0);
if (isl_schedule_node_get_type(Node.get()) == isl_schedule_node_leaf)
Node = Node.parent();
auto LoopMarker = isl::id::alloc(Node.get_ctx(), "SIMD", nullptr);
PrevectOpts++;
return Node.insert_mark(LoopMarker);
}
isl::schedule_node ScheduleTreeOptimizer::tileNode(isl::schedule_node Node,
const char *Identifier,
ArrayRef<int> TileSizes,
int DefaultTileSize) {
auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
auto Dims = Space.dim(isl::dim::set);
auto Sizes = isl::multi_val::zero(Space);
std::string IdentifierString(Identifier);
for (unsigned i = 0; i < Dims; i++) {
auto tileSize = i < TileSizes.size() ? TileSizes[i] : DefaultTileSize;
Sizes = Sizes.set_val(i, isl::val(Node.get_ctx(), tileSize));
}
auto TileLoopMarkerStr = IdentifierString + " - Tiles";
auto TileLoopMarker =
isl::id::alloc(Node.get_ctx(), TileLoopMarkerStr, nullptr);
Node = Node.insert_mark(TileLoopMarker);
Node = Node.child(0);
Node =
isl::manage(isl_schedule_node_band_tile(Node.release(), Sizes.release()));
Node = Node.child(0);
auto PointLoopMarkerStr = IdentifierString + " - Points";
auto PointLoopMarker =
isl::id::alloc(Node.get_ctx(), PointLoopMarkerStr, nullptr);
Node = Node.insert_mark(PointLoopMarker);
return Node.child(0);
}
isl::schedule_node ScheduleTreeOptimizer::applyRegisterTiling(
isl::schedule_node Node, ArrayRef<int> TileSizes, int DefaultTileSize) {
Node = tileNode(Node, "Register tiling", TileSizes, DefaultTileSize);
auto Ctx = Node.get_ctx();
return Node.band_set_ast_build_options(isl::union_set(Ctx, "{unroll[x]}"));
}
static bool isSimpleInnermostBand(const isl::schedule_node &Node) {
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
assert(isl_schedule_node_n_children(Node.get()) == 1);
auto ChildType = isl_schedule_node_get_type(Node.child(0).get());
if (ChildType == isl_schedule_node_leaf)
return true;
if (ChildType != isl_schedule_node_sequence)
return false;
auto Sequence = Node.child(0);
for (int c = 0, nc = isl_schedule_node_n_children(Sequence.get()); c < nc;
++c) {
auto Child = Sequence.child(c);
if (isl_schedule_node_get_type(Child.get()) != isl_schedule_node_filter)
return false;
if (isl_schedule_node_get_type(Child.child(0).get()) !=
isl_schedule_node_leaf)
return false;
}
return true;
}
bool ScheduleTreeOptimizer::isTileableBandNode(isl::schedule_node Node) {
if (isl_schedule_node_get_type(Node.get()) != isl_schedule_node_band)
return false;
if (isl_schedule_node_n_children(Node.get()) != 1)
return false;
if (!isl_schedule_node_band_get_permutable(Node.get()))
return false;
auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
auto Dims = Space.dim(isl::dim::set);
if (Dims <= 1)
return false;
return isSimpleInnermostBand(Node);
}
__isl_give isl::schedule_node
ScheduleTreeOptimizer::standardBandOpts(isl::schedule_node Node, void *User) {
if (FirstLevelTiling) {
Node = tileNode(Node, "1st level tiling", FirstLevelTileSizes,
FirstLevelDefaultTileSize);
FirstLevelTileOpts++;
}
if (SecondLevelTiling) {
Node = tileNode(Node, "2nd level tiling", SecondLevelTileSizes,
SecondLevelDefaultTileSize);
SecondLevelTileOpts++;
}
if (RegisterTiling) {
Node =
applyRegisterTiling(Node, RegisterTileSizes, RegisterDefaultTileSize);
RegisterTileOpts++;
}
if (PollyVectorizerChoice == VECTORIZER_NONE)
return Node;
auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
auto Dims = Space.dim(isl::dim::set);
for (int i = Dims - 1; i >= 0; i--)
if (Node.band_member_get_coincident(i)) {
Node = prevectSchedBand(Node, i, PrevectorWidth);
break;
}
return Node;
}
/// Permute the two dimensions of the isl map.
///
/// Permute @p DstPos and @p SrcPos dimensions of the isl map @p Map that
/// have type @p DimType.
///
/// @param Map The isl map to be modified.
/// @param DimType The type of the dimensions.
/// @param DstPos The first dimension.
/// @param SrcPos The second dimension.
/// @return The modified map.
isl::map permuteDimensions(isl::map Map, isl::dim DimType, unsigned DstPos,
unsigned SrcPos) {
assert(DstPos < Map.dim(DimType) && SrcPos < Map.dim(DimType));
if (DstPos == SrcPos)
return Map;
isl::id DimId;
if (Map.has_tuple_id(DimType))
DimId = Map.get_tuple_id(DimType);
auto FreeDim = DimType == isl::dim::in ? isl::dim::out : isl::dim::in;
isl::id FreeDimId;
if (Map.has_tuple_id(FreeDim))
FreeDimId = Map.get_tuple_id(FreeDim);
auto MaxDim = std::max(DstPos, SrcPos);
auto MinDim = std::min(DstPos, SrcPos);
Map = Map.move_dims(FreeDim, 0, DimType, MaxDim, 1);
Map = Map.move_dims(FreeDim, 0, DimType, MinDim, 1);
Map = Map.move_dims(DimType, MinDim, FreeDim, 1, 1);
Map = Map.move_dims(DimType, MaxDim, FreeDim, 0, 1);
if (DimId)
Map = Map.set_tuple_id(DimType, DimId);
if (FreeDimId)
Map = Map.set_tuple_id(FreeDim, FreeDimId);
return Map;
}
/// Check the form of the access relation.
///
/// Check that the access relation @p AccMap has the form M[i][j], where i
/// is a @p FirstPos and j is a @p SecondPos.
///
/// @param AccMap The access relation to be checked.
/// @param FirstPos The index of the input dimension that is mapped to
/// the first output dimension.
/// @param SecondPos The index of the input dimension that is mapped to the
/// second output dimension.
/// @return True in case @p AccMap has the expected form and false,
/// otherwise.
static bool isMatMulOperandAcc(isl::set Domain, isl::map AccMap, int &FirstPos,
int &SecondPos) {
isl::space Space = AccMap.get_space();
isl::map Universe = isl::map::universe(Space);
if (Space.dim(isl::dim::out) != 2)
return false;
// MatMul has the form:
// for (i = 0; i < N; i++)
// for (j = 0; j < M; j++)
// for (k = 0; k < P; k++)
// C[i, j] += A[i, k] * B[k, j]
//
// Permutation of three outer loops: 3! = 6 possibilities.
int FirstDims[] = {0, 0, 1, 1, 2, 2};
int SecondDims[] = {1, 2, 2, 0, 0, 1};
for (int i = 0; i < 6; i += 1) {
auto PossibleMatMul =
Universe.equate(isl::dim::in, FirstDims[i], isl::dim::out, 0)
.equate(isl::dim::in, SecondDims[i], isl::dim::out, 1);
AccMap = AccMap.intersect_domain(Domain);
PossibleMatMul = PossibleMatMul.intersect_domain(Domain);
// If AccMap spans entire domain (Non-partial write),
// compute FirstPos and SecondPos.
// If AccMap != PossibleMatMul here (the two maps have been gisted at
// this point), it means that the writes are not complete, or in other
// words, it is a Partial write and Partial writes must be rejected.
if (AccMap.is_equal(PossibleMatMul)) {
if (FirstPos != -1 && FirstPos != FirstDims[i])
continue;
FirstPos = FirstDims[i];
if (SecondPos != -1 && SecondPos != SecondDims[i])
continue;
SecondPos = SecondDims[i];
return true;
}
}
return false;
}
/// Does the memory access represent a non-scalar operand of the matrix
/// multiplication.
///
/// Check that the memory access @p MemAccess is the read access to a non-scalar
/// operand of the matrix multiplication or its result.
///
/// @param MemAccess The memory access to be checked.
/// @param MMI Parameters of the matrix multiplication operands.
/// @return True in case the memory access represents the read access
/// to a non-scalar operand of the matrix multiplication and
/// false, otherwise.
static bool isMatMulNonScalarReadAccess(MemoryAccess *MemAccess,
MatMulInfoTy &MMI) {
if (!MemAccess->isLatestArrayKind() || !MemAccess->isRead())
return false;
auto AccMap = MemAccess->getLatestAccessRelation();
isl::set StmtDomain = MemAccess->getStatement()->getDomain();
if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.j) && !MMI.ReadFromC) {
MMI.ReadFromC = MemAccess;
return true;
}
if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.k) && !MMI.A) {
MMI.A = MemAccess;
return true;
}
if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.k, MMI.j) && !MMI.B) {
MMI.B = MemAccess;
return true;
}
return false;
}
/// Check accesses to operands of the matrix multiplication.
///
/// Check that accesses of the SCoP statement, which corresponds to
/// the partial schedule @p PartialSchedule, are scalar in terms of loops
/// containing the matrix multiplication, in case they do not represent
/// accesses to the non-scalar operands of the matrix multiplication or
/// its result.
///
/// @param PartialSchedule The partial schedule of the SCoP statement.
/// @param MMI Parameters of the matrix multiplication operands.
/// @return True in case the corresponding SCoP statement
/// represents matrix multiplication and false,
/// otherwise.
static bool containsOnlyMatrMultAcc(isl::map PartialSchedule,
MatMulInfoTy &MMI) {
auto InputDimId = PartialSchedule.get_tuple_id(isl::dim::in);
auto *Stmt = static_cast<ScopStmt *>(InputDimId.get_user());
unsigned OutDimNum = PartialSchedule.dim(isl::dim::out);
assert(OutDimNum > 2 && "In case of the matrix multiplication the loop nest "
"and, consequently, the corresponding scheduling "
"functions have at least three dimensions.");
auto MapI =
permuteDimensions(PartialSchedule, isl::dim::out, MMI.i, OutDimNum - 1);
auto MapJ =
permuteDimensions(PartialSchedule, isl::dim::out, MMI.j, OutDimNum - 1);
auto MapK =
permuteDimensions(PartialSchedule, isl::dim::out, MMI.k, OutDimNum - 1);
auto Accesses = getAccessesInOrder(*Stmt);
for (auto *MemA = Accesses.begin(); MemA != Accesses.end() - 1; MemA++) {
auto *MemAccessPtr = *MemA;
if (MemAccessPtr->isLatestArrayKind() && MemAccessPtr != MMI.WriteToC &&
!isMatMulNonScalarReadAccess(MemAccessPtr, MMI) &&
!(MemAccessPtr->isStrideZero(MapI)) &&
MemAccessPtr->isStrideZero(MapJ) && MemAccessPtr->isStrideZero(MapK))
return false;
}
return true;
}
/// Check for dependencies corresponding to the matrix multiplication.
///
/// Check that there is only true dependence of the form
/// S(..., k, ...) -> S(..., k + 1, …), where S is the SCoP statement
/// represented by @p Schedule and k is @p Pos. Such a dependence corresponds
/// to the dependency produced by the matrix multiplication.
///
/// @param Schedule The schedule of the SCoP statement.
/// @param D The SCoP dependencies.
/// @param Pos The parameter to describe an acceptable true dependence.
/// In case it has a negative value, try to determine its
/// acceptable value.
/// @return True in case dependencies correspond to the matrix multiplication
/// and false, otherwise.
static bool containsOnlyMatMulDep(isl::map Schedule, const Dependences *D,
int &Pos) {
isl::union_map Dep = D->getDependences(Dependences::TYPE_RAW);
isl::union_map Red = D->getDependences(Dependences::TYPE_RED);
if (Red)
Dep = Dep.unite(Red);
auto DomainSpace = Schedule.get_space().domain();
auto Space = DomainSpace.map_from_domain_and_range(DomainSpace);
auto Deltas = Dep.extract_map(Space).deltas();
int DeltasDimNum = Deltas.dim(isl::dim::set);
for (int i = 0; i < DeltasDimNum; i++) {
auto Val = Deltas.plain_get_val_if_fixed(isl::dim::set, i);
Pos = Pos < 0 && Val.is_one() ? i : Pos;
if (Val.is_nan() || !(Val.is_zero() || (i == Pos && Val.is_one())))
return false;
}
if (DeltasDimNum == 0 || Pos < 0)
return false;
return true;
}
/// Check if the SCoP statement could probably be optimized with analytical
/// modeling.
///
/// containsMatrMult tries to determine whether the following conditions
/// are true:
/// 1. The last memory access modeling an array, MA1, represents writing to
/// memory and has the form S(..., i1, ..., i2, ...) -> M(i1, i2) or
/// S(..., i2, ..., i1, ...) -> M(i1, i2), where S is the SCoP statement
/// under consideration.
/// 2. There is only one loop-carried true dependency, and it has the
/// form S(..., i3, ...) -> S(..., i3 + 1, ...), and there are no
/// loop-carried or anti dependencies.
/// 3. SCoP contains three access relations, MA2, MA3, and MA4 that represent
/// reading from memory and have the form S(..., i3, ...) -> M(i1, i3),
/// S(..., i3, ...) -> M(i3, i2), S(...) -> M(i1, i2), respectively,
/// and all memory accesses of the SCoP that are different from MA1, MA2,
/// MA3, and MA4 have stride 0, if the innermost loop is exchanged with any
/// of loops i1, i2 and i3.
///
/// @param PartialSchedule The PartialSchedule that contains a SCoP statement
/// to check.
/// @D The SCoP dependencies.
/// @MMI Parameters of the matrix multiplication operands.
static bool containsMatrMult(isl::map PartialSchedule, const Dependences *D,
MatMulInfoTy &MMI) {
auto InputDimsId = PartialSchedule.get_tuple_id(isl::dim::in);
auto *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
if (Stmt->size() <= 1)
return false;
auto Accesses = getAccessesInOrder(*Stmt);
for (auto *MemA = Accesses.end() - 1; MemA != Accesses.begin(); MemA--) {
auto *MemAccessPtr = *MemA;
if (!MemAccessPtr->isLatestArrayKind())
continue;
if (!MemAccessPtr->isWrite())
return false;
auto AccMap = MemAccessPtr->getLatestAccessRelation();
if (!isMatMulOperandAcc(Stmt->getDomain(), AccMap, MMI.i, MMI.j))
return false;
MMI.WriteToC = MemAccessPtr;
break;
}
if (!containsOnlyMatMulDep(PartialSchedule, D, MMI.k))
return false;
if (!MMI.WriteToC || !containsOnlyMatrMultAcc(PartialSchedule, MMI))
return false;
if (!MMI.A || !MMI.B || !MMI.ReadFromC)
return false;
return true;
}
/// Permute two dimensions of the band node.
///
/// Permute FirstDim and SecondDim dimensions of the Node.
///
/// @param Node The band node to be modified.
/// @param FirstDim The first dimension to be permuted.
/// @param SecondDim The second dimension to be permuted.
static isl::schedule_node permuteBandNodeDimensions(isl::schedule_node Node,
unsigned FirstDim,
unsigned SecondDim) {
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band &&
(unsigned)isl_schedule_node_band_n_member(Node.get()) >
std::max(FirstDim, SecondDim));
auto PartialSchedule =
isl::manage(isl_schedule_node_band_get_partial_schedule(Node.get()));
auto PartialScheduleFirstDim = PartialSchedule.get_union_pw_aff(FirstDim);
auto PartialScheduleSecondDim = PartialSchedule.get_union_pw_aff(SecondDim);
PartialSchedule =
PartialSchedule.set_union_pw_aff(SecondDim, PartialScheduleFirstDim);
PartialSchedule =
PartialSchedule.set_union_pw_aff(FirstDim, PartialScheduleSecondDim);
Node = isl::manage(isl_schedule_node_delete(Node.release()));
return Node.insert_partial_schedule(PartialSchedule);
}
isl::schedule_node ScheduleTreeOptimizer::createMicroKernel(
isl::schedule_node Node, MicroKernelParamsTy MicroKernelParams) {
Node = applyRegisterTiling(Node, {MicroKernelParams.Mr, MicroKernelParams.Nr},
1);
Node = Node.parent().parent();
return permuteBandNodeDimensions(Node, 0, 1).child(0).child(0);
}
isl::schedule_node ScheduleTreeOptimizer::createMacroKernel(
isl::schedule_node Node, MacroKernelParamsTy MacroKernelParams) {
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
if (MacroKernelParams.Mc == 1 && MacroKernelParams.Nc == 1 &&
MacroKernelParams.Kc == 1)
return Node;
int DimOutNum = isl_schedule_node_band_n_member(Node.get());
std::vector<int> TileSizes(DimOutNum, 1);
TileSizes[DimOutNum - 3] = MacroKernelParams.Mc;
TileSizes[DimOutNum - 2] = MacroKernelParams.Nc;
TileSizes[DimOutNum - 1] = MacroKernelParams.Kc;
Node = tileNode(Node, "1st level tiling", TileSizes, 1);
Node = Node.parent().parent();
Node = permuteBandNodeDimensions(Node, DimOutNum - 2, DimOutNum - 1);
Node = permuteBandNodeDimensions(Node, DimOutNum - 3, DimOutNum - 1);
// Mark the outermost loop as parallelizable.
Node = Node.band_member_set_coincident(0, true);
return Node.child(0).child(0);
}
/// Get the size of the widest type of the matrix multiplication operands
/// in bytes, including alignment padding.
///
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The size of the widest type of the matrix multiplication operands
/// in bytes, including alignment padding.
static uint64_t getMatMulAlignTypeSize(MatMulInfoTy MMI) {
auto *S = MMI.A->getStatement()->getParent();
auto &DL = S->getFunction().getParent()->getDataLayout();
auto ElementSizeA = DL.getTypeAllocSize(MMI.A->getElementType());
auto ElementSizeB = DL.getTypeAllocSize(MMI.B->getElementType());
auto ElementSizeC = DL.getTypeAllocSize(MMI.WriteToC->getElementType());
return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
}
/// Get the size of the widest type of the matrix multiplication operands
/// in bits.
///
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The size of the widest type of the matrix multiplication operands
/// in bits.
static uint64_t getMatMulTypeSize(MatMulInfoTy MMI) {
auto *S = MMI.A->getStatement()->getParent();
auto &DL = S->getFunction().getParent()->getDataLayout();
auto ElementSizeA = DL.getTypeSizeInBits(MMI.A->getElementType());
auto ElementSizeB = DL.getTypeSizeInBits(MMI.B->getElementType());
auto ElementSizeC = DL.getTypeSizeInBits(MMI.WriteToC->getElementType());
return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
}
/// Get parameters of the BLIS micro kernel.
///
/// We choose the Mr and Nr parameters of the micro kernel to be large enough
/// such that no stalls caused by the combination of latencies and dependencies
/// are introduced during the updates of the resulting matrix of the matrix
/// multiplication. However, they should also be as small as possible to
/// release more registers for entries of multiplied matrices.
///
/// @param TTI Target Transform Info.
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The structure of type MicroKernelParamsTy.
/// @see MicroKernelParamsTy
static struct MicroKernelParamsTy
getMicroKernelParams(const TargetTransformInfo *TTI, MatMulInfoTy MMI) {
assert(TTI && "The target transform info should be provided.");
// Nvec - Number of double-precision floating-point numbers that can be hold
// by a vector register. Use 2 by default.
long RegisterBitwidth = VectorRegisterBitwidth;
if (RegisterBitwidth == -1)
RegisterBitwidth = TTI->getRegisterBitWidth(true);
auto ElementSize = getMatMulTypeSize(MMI);
assert(ElementSize > 0 && "The element size of the matrix multiplication "
"operands should be greater than zero.");
auto Nvec = RegisterBitwidth / ElementSize;
if (Nvec == 0)
Nvec = 2;
int Nr = ceil(sqrt((double)(Nvec * LatencyVectorFma * ThroughputVectorFma)) /
Nvec) *
Nvec;
int Mr = ceil((double)(Nvec * LatencyVectorFma * ThroughputVectorFma / Nr));
return {Mr, Nr};
}
namespace {
/// Determine parameters of the target cache.
///
/// @param TTI Target Transform Info.
void getTargetCacheParameters(const llvm::TargetTransformInfo *TTI) {
auto L1DCache = llvm::TargetTransformInfo::CacheLevel::L1D;
auto L2DCache = llvm::TargetTransformInfo::CacheLevel::L2D;
if (FirstCacheLevelSize == -1) {
if (TTI->getCacheSize(L1DCache).hasValue())
FirstCacheLevelSize = TTI->getCacheSize(L1DCache).getValue();
else
FirstCacheLevelSize = static_cast<int>(FirstCacheLevelDefaultSize);
}
if (SecondCacheLevelSize == -1) {
if (TTI->getCacheSize(L2DCache).hasValue())
SecondCacheLevelSize = TTI->getCacheSize(L2DCache).getValue();
else
SecondCacheLevelSize = static_cast<int>(SecondCacheLevelDefaultSize);
}
if (FirstCacheLevelAssociativity == -1) {
if (TTI->getCacheAssociativity(L1DCache).hasValue())
FirstCacheLevelAssociativity =
TTI->getCacheAssociativity(L1DCache).getValue();
else
FirstCacheLevelAssociativity =
static_cast<int>(FirstCacheLevelDefaultAssociativity);
}
if (SecondCacheLevelAssociativity == -1) {
if (TTI->getCacheAssociativity(L2DCache).hasValue())
SecondCacheLevelAssociativity =
TTI->getCacheAssociativity(L2DCache).getValue();
else
SecondCacheLevelAssociativity =
static_cast<int>(SecondCacheLevelDefaultAssociativity);
}
}
} // namespace
/// Get parameters of the BLIS macro kernel.
///
/// During the computation of matrix multiplication, blocks of partitioned
/// matrices are mapped to different layers of the memory hierarchy.
/// To optimize data reuse, blocks should be ideally kept in cache between
/// iterations. Since parameters of the macro kernel determine sizes of these
/// blocks, there are upper and lower bounds on these parameters.
///
/// @param TTI Target Transform Info.
/// @param MicroKernelParams Parameters of the micro-kernel
/// to be taken into account.
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The structure of type MacroKernelParamsTy.
/// @see MacroKernelParamsTy
/// @see MicroKernelParamsTy
static struct MacroKernelParamsTy
getMacroKernelParams(const llvm::TargetTransformInfo *TTI,
const MicroKernelParamsTy &MicroKernelParams,
MatMulInfoTy MMI) {
getTargetCacheParameters(TTI);
// According to www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf,
// it requires information about the first two levels of a cache to determine
// all the parameters of a macro-kernel. It also checks that an associativity
// degree of a cache level is greater than two. Otherwise, another algorithm
// for determination of the parameters should be used.
if (!(MicroKernelParams.Mr > 0 && MicroKernelParams.Nr > 0 &&
FirstCacheLevelSize > 0 && SecondCacheLevelSize > 0 &&
FirstCacheLevelAssociativity > 2 && SecondCacheLevelAssociativity > 2))
return {1, 1, 1};
// The quotient should be greater than zero.
if (PollyPatternMatchingNcQuotient <= 0)
return {1, 1, 1};
int Car = floor(
(FirstCacheLevelAssociativity - 1) /
(1 + static_cast<double>(MicroKernelParams.Nr) / MicroKernelParams.Mr));
// Car can be computed to be zero since it is floor to int.
// On Mac OS, division by 0 does not raise a signal. This causes negative
// tile sizes to be computed. Prevent division by Cac==0 by early returning
// if this happens.
if (Car == 0)
return {1, 1, 1};
auto ElementSize = getMatMulAlignTypeSize(MMI);
assert(ElementSize > 0 && "The element size of the matrix multiplication "
"operands should be greater than zero.");
int Kc = (Car * FirstCacheLevelSize) /
(MicroKernelParams.Mr * FirstCacheLevelAssociativity * ElementSize);
double Cac =
static_cast<double>(Kc * ElementSize * SecondCacheLevelAssociativity) /
SecondCacheLevelSize;
int Mc = floor((SecondCacheLevelAssociativity - 2) / Cac);
int Nc = PollyPatternMatchingNcQuotient * MicroKernelParams.Nr;
assert(Mc > 0 && Nc > 0 && Kc > 0 &&
"Matrix block sizes should be greater than zero");
return {Mc, Nc, Kc};
}
/// Create an access relation that is specific to
/// the matrix multiplication pattern.
///
/// Create an access relation of the following form:
/// [O0, O1, O2, O3, O4, O5, O6, O7, O8] -> [OI, O5, OJ]
/// where I is @p FirstDim, J is @p SecondDim.
///
/// It can be used, for example, to create relations that helps to consequently
/// access elements of operands of a matrix multiplication after creation of
/// the BLIS micro and macro kernels.
///
/// @see ScheduleTreeOptimizer::createMicroKernel
/// @see ScheduleTreeOptimizer::createMacroKernel
///
/// Subsequently, the described access relation is applied to the range of
/// @p MapOldIndVar, that is used to map original induction variables to
/// the ones, which are produced by schedule transformations. It helps to
/// define relations using a new space and, at the same time, keep them
/// in the original one.
///
/// @param MapOldIndVar The relation, which maps original induction variables
/// to the ones, which are produced by schedule
/// transformations.
/// @param FirstDim, SecondDim The input dimensions that are used to define
/// the specified access relation.
/// @return The specified access relation.
isl::map getMatMulAccRel(isl::map MapOldIndVar, unsigned FirstDim,
unsigned SecondDim) {
auto AccessRelSpace = isl::space(MapOldIndVar.get_ctx(), 0, 9, 3);
auto AccessRel = isl::map::universe(AccessRelSpace);
AccessRel = AccessRel.equate(isl::dim::in, FirstDim, isl::dim::out, 0);
AccessRel = AccessRel.equate(isl::dim::in, 5, isl::dim::out, 1);
AccessRel = AccessRel.equate(isl::dim::in, SecondDim, isl::dim::out, 2);
return MapOldIndVar.apply_range(AccessRel);
}
isl::schedule_node createExtensionNode(isl::schedule_node Node,
isl::map ExtensionMap) {
auto Extension = isl::union_map(ExtensionMap);
auto NewNode = isl::schedule_node::from_extension(Extension);
return Node.graft_before(NewNode);
}
/// Apply the packing transformation.
///
/// The packing transformation can be described as a data-layout
/// transformation that requires to introduce a new array, copy data
/// to the array, and change memory access locations to reference the array.
/// It can be used to ensure that elements of the new array are read in-stride
/// access, aligned to cache lines boundaries, and preloaded into certain cache
/// levels.
///
/// As an example let us consider the packing of the array A that would help
/// to read its elements with in-stride access. An access to the array A
/// is represented by an access relation that has the form
/// S[i, j, k] -> A[i, k]. The scheduling function of the SCoP statement S has
/// the form S[i,j, k] -> [floor((j mod Nc) / Nr), floor((i mod Mc) / Mr),
/// k mod Kc, j mod Nr, i mod Mr].
///
/// To ensure that elements of the array A are read in-stride access, we add
/// a new array Packed_A[Mc/Mr][Kc][Mr] to the SCoP, using
/// Scop::createScopArrayInfo, change the access relation
/// S[i, j, k] -> A[i, k] to
/// S[i, j, k] -> Packed_A[floor((i mod Mc) / Mr), k mod Kc, i mod Mr], using
/// MemoryAccess::setNewAccessRelation, and copy the data to the array, using
/// the copy statement created by Scop::addScopStmt.
///
/// @param Node The schedule node to be optimized.
/// @param MapOldIndVar The relation, which maps original induction variables
/// to the ones, which are produced by schedule
/// transformations.
/// @param MicroParams, MacroParams Parameters of the BLIS kernel
/// to be taken into account.
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The optimized schedule node.
static isl::schedule_node
optimizeDataLayoutMatrMulPattern(isl::schedule_node Node, isl::map MapOldIndVar,
MicroKernelParamsTy MicroParams,
MacroKernelParamsTy MacroParams,
MatMulInfoTy &MMI) {
auto InputDimsId = MapOldIndVar.get_tuple_id(isl::dim::in);
auto *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
// Create a copy statement that corresponds to the memory access to the
// matrix B, the second operand of the matrix multiplication.
Node = Node.parent().parent().parent().parent().parent().parent();
Node = isl::manage(isl_schedule_node_band_split(Node.release(), 2)).child(0);
auto AccRel = getMatMulAccRel(MapOldIndVar, 3, 7);
unsigned FirstDimSize = MacroParams.Nc / MicroParams.Nr;
unsigned SecondDimSize = MacroParams.Kc;
unsigned ThirdDimSize = MicroParams.Nr;
auto *SAI = Stmt->getParent()->createScopArrayInfo(
MMI.B->getElementType(), "Packed_B",
{FirstDimSize, SecondDimSize, ThirdDimSize});
AccRel = AccRel.set_tuple_id(isl::dim::out, SAI->getBasePtrId());
auto OldAcc = MMI.B->getLatestAccessRelation();
MMI.B->setNewAccessRelation(AccRel);
auto ExtMap = MapOldIndVar.project_out(isl::dim::out, 2,
MapOldIndVar.dim(isl::dim::out) - 2);
ExtMap = ExtMap.reverse();
ExtMap = ExtMap.fix_si(isl::dim::out, MMI.i, 0);
auto Domain = Stmt->getDomain();
// Restrict the domains of the copy statements to only execute when also its
// originating statement is executed.
auto DomainId = Domain.get_tuple_id();
auto *NewStmt = Stmt->getParent()->addScopStmt(
OldAcc, MMI.B->getLatestAccessRelation(), Domain);
ExtMap = ExtMap.set_tuple_id(isl::dim::out, DomainId);
ExtMap = ExtMap.intersect_range(Domain);
ExtMap = ExtMap.set_tuple_id(isl::dim::out, NewStmt->getDomainId());
Node = createExtensionNode(Node, ExtMap);
// Create a copy statement that corresponds to the memory access
// to the matrix A, the first operand of the matrix multiplication.
Node = Node.child(0);
AccRel = getMatMulAccRel(MapOldIndVar, 4, 6);
FirstDimSize = MacroParams.Mc / MicroParams.Mr;
ThirdDimSize = MicroParams.Mr;
SAI = Stmt->getParent()->createScopArrayInfo(
MMI.A->getElementType(), "Packed_A",
{FirstDimSize, SecondDimSize, ThirdDimSize});
AccRel = AccRel.set_tuple_id(isl::dim::out, SAI->getBasePtrId());
OldAcc = MMI.A->getLatestAccessRelation();
MMI.A->setNewAccessRelation(AccRel);
ExtMap = MapOldIndVar.project_out(isl::dim::out, 3,
MapOldIndVar.dim(isl::dim::out) - 3);
ExtMap = ExtMap.reverse();
ExtMap = ExtMap.fix_si(isl::dim::out, MMI.j, 0);
NewStmt = Stmt->getParent()->addScopStmt(
OldAcc, MMI.A->getLatestAccessRelation(), Domain);
// Restrict the domains of the copy statements to only execute when also its
// originating statement is executed.
ExtMap = ExtMap.set_tuple_id(isl::dim::out, DomainId);
ExtMap = ExtMap.intersect_range(Domain);
ExtMap = ExtMap.set_tuple_id(isl::dim::out, NewStmt->getDomainId());
Node = createExtensionNode(Node, ExtMap);
return Node.child(0).child(0).child(0).child(0).child(0);
}
/// Get a relation mapping induction variables produced by schedule
/// transformations to the original ones.
///
/// @param Node The schedule node produced as the result of creation
/// of the BLIS kernels.
/// @param MicroKernelParams, MacroKernelParams Parameters of the BLIS kernel
/// to be taken into account.
/// @return The relation mapping original induction variables to the ones
/// produced by schedule transformation.
/// @see ScheduleTreeOptimizer::createMicroKernel
/// @see ScheduleTreeOptimizer::createMacroKernel
/// @see getMacroKernelParams
isl::map
getInductionVariablesSubstitution(isl::schedule_node Node,
MicroKernelParamsTy MicroKernelParams,
MacroKernelParamsTy MacroKernelParams) {
auto Child = Node.child(0);
auto UnMapOldIndVar = Child.get_prefix_schedule_union_map();
auto MapOldIndVar = isl::map::from_union_map(UnMapOldIndVar);
if (MapOldIndVar.dim(isl::dim::out) > 9)
return MapOldIndVar.project_out(isl::dim::out, 0,
MapOldIndVar.dim(isl::dim::out) - 9);
return MapOldIndVar;
}
/// Isolate a set of partial tile prefixes and unroll the isolated part.
///
/// The set should ensure that it contains only partial tile prefixes that have
/// exactly Mr x Nr iterations of the two innermost loops produced by
/// the optimization of the matrix multiplication. Mr and Nr are parameters of
/// the micro-kernel.
///
/// In case of parametric bounds, this helps to auto-vectorize the unrolled
/// innermost loops, using the SLP vectorizer.
///
/// @param Node The schedule node to be modified.
/// @param MicroKernelParams Parameters of the micro-kernel
/// to be taken into account.
/// @return The modified isl_schedule_node.
static isl::schedule_node
isolateAndUnrollMatMulInnerLoops(isl::schedule_node Node,
struct MicroKernelParamsTy MicroKernelParams) {
isl::schedule_node Child = Node.get_child(0);
isl::union_map UnMapOldIndVar = Child.get_prefix_schedule_relation();
isl::set Prefix = isl::map::from_union_map(UnMapOldIndVar).range();
unsigned Dims = Prefix.dim(isl::dim::set);
Prefix = Prefix.project_out(isl::dim::set, Dims - 1, 1);
Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Nr);
Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Mr);
isl::union_set IsolateOption =
getIsolateOptions(Prefix.add_dims(isl::dim::set, 3), 3);
isl::ctx Ctx = Node.get_ctx();
auto Options = IsolateOption.unite(getDimOptions(Ctx, "unroll"));
Options = Options.unite(getUnrollIsolatedSetOptions(Ctx));
Node = Node.band_set_ast_build_options(Options);
Node = Node.parent().parent().parent();
IsolateOption = getIsolateOptions(Prefix, 3);
Options = IsolateOption.unite(getDimOptions(Ctx, "separate"));
Node = Node.band_set_ast_build_options(Options);
Node = Node.child(0).child(0).child(0);
return Node;
}
/// Mark @p BasePtr with "Inter iteration alias-free" mark node.
///
/// @param Node The child of the mark node to be inserted.
/// @param BasePtr The pointer to be marked.
/// @return The modified isl_schedule_node.
static isl::schedule_node markInterIterationAliasFree(isl::schedule_node Node,
Value *BasePtr) {
if (!BasePtr)
return Node;
auto Id =
isl::id::alloc(Node.get_ctx(), "Inter iteration alias-free", BasePtr);
return Node.insert_mark(Id).child(0);
}
/// Insert "Loop Vectorizer Disabled" mark node.
///
/// @param Node The child of the mark node to be inserted.
/// @return The modified isl_schedule_node.
static isl::schedule_node markLoopVectorizerDisabled(isl::schedule_node Node) {
auto Id = isl::id::alloc(Node.get_ctx(), "Loop Vectorizer Disabled", nullptr);
return Node.insert_mark(Id).child(0);
}
/// Restore the initial ordering of dimensions of the band node
///
/// In case the band node represents all the dimensions of the iteration
/// domain, recreate the band node to restore the initial ordering of the
/// dimensions.
///
/// @param Node The band node to be modified.
/// @return The modified schedule node.
static isl::schedule_node
getBandNodeWithOriginDimOrder(isl::schedule_node Node) {
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
if (isl_schedule_node_get_type(Node.child(0).get()) != isl_schedule_node_leaf)
return Node;
auto Domain = Node.get_universe_domain();
assert(isl_union_set_n_set(Domain.get()) == 1);
if (Node.get_schedule_depth() != 0 ||
(static_cast<isl_size>(isl::set(Domain).dim(isl::dim::set)) !=
isl_schedule_node_band_n_member(Node.get())))
return Node;
Node = isl::manage(isl_schedule_node_delete(Node.copy()));
auto PartialSchedulePwAff = Domain.identity_union_pw_multi_aff();
auto PartialScheduleMultiPwAff =
isl::multi_union_pw_aff(PartialSchedulePwAff);
PartialScheduleMultiPwAff =
PartialScheduleMultiPwAff.reset_tuple_id(isl::dim::set);
return Node.insert_partial_schedule(PartialScheduleMultiPwAff);
}
isl::schedule_node
ScheduleTreeOptimizer::optimizeMatMulPattern(isl::schedule_node Node,
const TargetTransformInfo *TTI,
MatMulInfoTy &MMI) {
assert(TTI && "The target transform info should be provided.");
Node = markInterIterationAliasFree(
Node, MMI.WriteToC->getLatestScopArrayInfo()->getBasePtr());
int DimOutNum = isl_schedule_node_band_n_member(Node.get());
assert(DimOutNum > 2 && "In case of the matrix multiplication the loop nest "
"and, consequently, the corresponding scheduling "
"functions have at least three dimensions.");
Node = getBandNodeWithOriginDimOrder(Node);
Node = permuteBandNodeDimensions(Node, MMI.i, DimOutNum - 3);
int NewJ = MMI.j == DimOutNum - 3 ? MMI.i : MMI.j;
int NewK = MMI.k == DimOutNum - 3 ? MMI.i : MMI.k;
Node = permuteBandNodeDimensions(Node, NewJ, DimOutNum - 2);
NewK = NewK == DimOutNum - 2 ? NewJ : NewK;
Node = permuteBandNodeDimensions(Node, NewK, DimOutNum - 1);
auto MicroKernelParams = getMicroKernelParams(TTI, MMI);
auto MacroKernelParams = getMacroKernelParams(TTI, MicroKernelParams, MMI);
Node = createMacroKernel(Node, MacroKernelParams);
Node = createMicroKernel(Node, MicroKernelParams);
if (MacroKernelParams.Mc == 1 || MacroKernelParams.Nc == 1 ||
MacroKernelParams.Kc == 1)
return Node;
auto MapOldIndVar = getInductionVariablesSubstitution(Node, MicroKernelParams,
MacroKernelParams);
if (!MapOldIndVar)
return Node;
Node = markLoopVectorizerDisabled(Node.parent()).child(0);
Node = isolateAndUnrollMatMulInnerLoops(Node, MicroKernelParams);
return optimizeDataLayoutMatrMulPattern(Node, MapOldIndVar, MicroKernelParams,
MacroKernelParams, MMI);
}
bool ScheduleTreeOptimizer::isMatrMultPattern(isl::schedule_node Node,
const Dependences *D,
MatMulInfoTy &MMI) {
auto PartialSchedule = isl::manage(
isl_schedule_node_band_get_partial_schedule_union_map(Node.get()));
Node = Node.child(0);
auto LeafType = isl_schedule_node_get_type(Node.get());
Node = Node.parent();
if (LeafType != isl_schedule_node_leaf ||
isl_schedule_node_band_n_member(Node.get()) < 3 ||
Node.get_schedule_depth() != 0 ||
isl_union_map_n_map(PartialSchedule.get()) != 1)
return false;
auto NewPartialSchedule = isl::map::from_union_map(PartialSchedule);
if (containsMatrMult(NewPartialSchedule, D, MMI))
return true;
return false;
}
__isl_give isl_schedule_node *
ScheduleTreeOptimizer::optimizeBand(__isl_take isl_schedule_node *Node,
void *User) {
if (!isTileableBandNode(isl::manage_copy(Node)))
return Node;
const OptimizerAdditionalInfoTy *OAI =
static_cast<const OptimizerAdditionalInfoTy *>(User);
MatMulInfoTy MMI;
if (PMBasedOpts && User &&
isMatrMultPattern(isl::manage_copy(Node), OAI->D, MMI)) {
LLVM_DEBUG(dbgs() << "The matrix multiplication pattern was detected\n");
MatMulOpts++;
return optimizeMatMulPattern(isl::manage(Node), OAI->TTI, MMI).release();
}
return standardBandOpts(isl::manage(Node), User).release();
}
isl::schedule
ScheduleTreeOptimizer::optimizeSchedule(isl::schedule Schedule,
const OptimizerAdditionalInfoTy *OAI) {
auto Root = Schedule.get_root();
Root = optimizeScheduleNode(Root, OAI);
return Root.get_schedule();
}
isl::schedule_node ScheduleTreeOptimizer::optimizeScheduleNode(
isl::schedule_node Node, const OptimizerAdditionalInfoTy *OAI) {
Node = isl::manage(isl_schedule_node_map_descendant_bottom_up(
Node.release(), optimizeBand,
const_cast<void *>(static_cast<const void *>(OAI))));
return Node;
}
bool ScheduleTreeOptimizer::isProfitableSchedule(Scop &S,
isl::schedule NewSchedule) {
// To understand if the schedule has been optimized we check if the schedule
// has changed at all.
// TODO: We can improve this by tracking if any necessarily beneficial
// transformations have been performed. This can e.g. be tiling, loop
// interchange, or ...) We can track this either at the place where the
// transformation has been performed or, in case of automatic ILP based
// optimizations, by comparing (yet to be defined) performance metrics
// before/after the scheduling optimizer
// (e.g., #stride-one accesses)
auto NewScheduleMap = NewSchedule.get_map();
auto OldSchedule = S.getSchedule();
assert(OldSchedule && "Only IslScheduleOptimizer can insert extension nodes "
"that make Scop::getSchedule() return nullptr.");
bool changed = !OldSchedule.is_equal(NewScheduleMap);
return changed;
}
namespace {
class IslScheduleOptimizer : public ScopPass {
public:
static char ID;
explicit IslScheduleOptimizer() : ScopPass(ID) {}
~IslScheduleOptimizer() override { releaseMemory(); }
/// Optimize the schedule of the SCoP @p S.
bool runOnScop(Scop &S) override;
/// Print the new schedule for the SCoP @p S.
void printScop(raw_ostream &OS, Scop &S) const override;
/// Register all analyses and transformation required.
void getAnalysisUsage(AnalysisUsage &AU) const override;
/// Release the internal memory.
void releaseMemory() override {
isl_schedule_free(LastSchedule);
LastSchedule = nullptr;
IslCtx.reset();
}
private:
std::shared_ptr<isl_ctx> IslCtx;
isl_schedule *LastSchedule = nullptr;
};
} // namespace
char IslScheduleOptimizer::ID = 0;
/// Collect statistics for the schedule tree.
///
/// @param Schedule The schedule tree to analyze. If not a schedule tree it is
/// ignored.
/// @param Version The version of the schedule tree that is analyzed.
/// 0 for the original schedule tree before any transformation.
/// 1 for the schedule tree after isl's rescheduling.
/// 2 for the schedule tree after optimizations are applied
/// (tiling, pattern matching)
static void walkScheduleTreeForStatistics(isl::schedule Schedule, int Version) {
auto Root = Schedule.get_root();
if (!Root)
return;
isl_schedule_node_foreach_descendant_top_down(
Root.get(),
[](__isl_keep isl_schedule_node *nodeptr, void *user) -> isl_bool {
isl::schedule_node Node = isl::manage_copy(nodeptr);
int Version = *static_cast<int *>(user);
switch (isl_schedule_node_get_type(Node.get())) {
case isl_schedule_node_band: {
NumBands[Version]++;
if (isl_schedule_node_band_get_permutable(Node.get()) ==
isl_bool_true)
NumPermutable[Version]++;
int CountMembers = isl_schedule_node_band_n_member(Node.get());
NumBandMembers[Version] += CountMembers;
for (int i = 0; i < CountMembers; i += 1) {
if (Node.band_member_get_coincident(i))
NumCoincident[Version]++;
}
break;
}
case isl_schedule_node_filter:
NumFilters[Version]++;
break;
case isl_schedule_node_extension:
NumExtension[Version]++;
break;
default:
break;
}
return isl_bool_true;
},
&Version);
}
bool IslScheduleOptimizer::runOnScop(Scop &S) {
// Skip SCoPs in case they're already optimised by PPCGCodeGeneration
if (S.isToBeSkipped())
return false;
// Skip empty SCoPs but still allow code generation as it will delete the
// loops present but not needed.
if (S.getSize() == 0) {
S.markAsOptimized();
return false;
}
const Dependences &D =
getAnalysis<DependenceInfo>().getDependences(Dependences::AL_Statement);
if (D.getSharedIslCtx() != S.getSharedIslCtx()) {
LLVM_DEBUG(dbgs() << "DependenceInfo for another SCoP/isl_ctx\n");
return false;
}
if (!D.hasValidDependences())
return false;
isl_schedule_free(LastSchedule);
LastSchedule = nullptr;
// Build input data.
int ValidityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
int ProximityKinds;
if (OptimizeDeps == "all")
ProximityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
else if (OptimizeDeps == "raw")
ProximityKinds = Dependences::TYPE_RAW;
else {
errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
<< " Falling back to optimizing all dependences.\n";
ProximityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
}
isl::union_set Domain = S.getDomains();
if (!Domain)
return false;
ScopsProcessed++;
walkScheduleTreeForStatistics(S.getScheduleTree(), 0);
isl::union_map Validity = D.getDependences(ValidityKinds);
isl::union_map Proximity = D.getDependences(ProximityKinds);
// Simplify the dependences by removing the constraints introduced by the
// domains. This can speed up the scheduling time significantly, as large
// constant coefficients will be removed from the dependences. The
// introduction of some additional dependences reduces the possible
// transformations, but in most cases, such transformation do not seem to be
// interesting anyway. In some cases this option may stop the scheduler to
// find any schedule.
if (SimplifyDeps == "yes") {
Validity = Validity.gist_domain(Domain);
Validity = Validity.gist_range(Domain);
Proximity = Proximity.gist_domain(Domain);
Proximity = Proximity.gist_range(Domain);
} else if (SimplifyDeps != "no") {
errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' "
"or 'no'. Falling back to default: 'yes'\n";
}
LLVM_DEBUG(dbgs() << "\n\nCompute schedule from: ");
LLVM_DEBUG(dbgs() << "Domain := " << Domain << ";\n");
LLVM_DEBUG(dbgs() << "Proximity := " << Proximity << ";\n");
LLVM_DEBUG(dbgs() << "Validity := " << Validity << ";\n");
unsigned IslSerializeSCCs;
if (FusionStrategy == "max") {
IslSerializeSCCs = 0;
} else if (FusionStrategy == "min") {
IslSerializeSCCs = 1;
} else {
errs() << "warning: Unknown fusion strategy. Falling back to maximal "
"fusion.\n";
IslSerializeSCCs = 0;
}
int IslMaximizeBands;
if (MaximizeBandDepth == "yes") {
IslMaximizeBands = 1;
} else if (MaximizeBandDepth == "no") {
IslMaximizeBands = 0;
} else {
errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'"
" or 'no'. Falling back to default: 'yes'\n";
IslMaximizeBands = 1;
}
int IslOuterCoincidence;
if (OuterCoincidence == "yes") {
IslOuterCoincidence = 1;
} else if (OuterCoincidence == "no") {
IslOuterCoincidence = 0;
} else {
errs() << "warning: Option -polly-opt-outer-coincidence should either be "
"'yes' or 'no'. Falling back to default: 'no'\n";
IslOuterCoincidence = 0;
}
isl_ctx *Ctx = S.getIslCtx().get();
isl_options_set_schedule_outer_coincidence(Ctx, IslOuterCoincidence);
isl_options_set_schedule_serialize_sccs(Ctx, IslSerializeSCCs);
isl_options_set_schedule_maximize_band_depth(Ctx, IslMaximizeBands);
isl_options_set_schedule_max_constant_term(Ctx, MaxConstantTerm);
isl_options_set_schedule_max_coefficient(Ctx, MaxCoefficient);
isl_options_set_tile_scale_tile_loops(Ctx, 0);
auto OnErrorStatus = isl_options_get_on_error(Ctx);
isl_options_set_on_error(Ctx, ISL_ON_ERROR_CONTINUE);
auto SC = isl::schedule_constraints::on_domain(Domain);
SC = SC.set_proximity(Proximity);
SC = SC.set_validity(Validity);
SC = SC.set_coincidence(Validity);
auto Schedule = SC.compute_schedule();
isl_options_set_on_error(Ctx, OnErrorStatus);
walkScheduleTreeForStatistics(Schedule, 1);
// In cases the scheduler is not able to optimize the code, we just do not
// touch the schedule.
if (!Schedule)
return false;
ScopsRescheduled++;
LLVM_DEBUG({
auto *P = isl_printer_to_str(Ctx);
P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
P = isl_printer_print_schedule(P, Schedule.get());
auto *str = isl_printer_get_str(P);
dbgs() << "NewScheduleTree: \n" << str << "\n";
free(str);
isl_printer_free(P);
});
Function &F = S.getFunction();
auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
const OptimizerAdditionalInfoTy OAI = {TTI, const_cast<Dependences *>(&D)};
auto NewSchedule = ScheduleTreeOptimizer::optimizeSchedule(Schedule, &OAI);
NewSchedule = hoistExtensionNodes(NewSchedule);
walkScheduleTreeForStatistics(NewSchedule, 2);
if (!ScheduleTreeOptimizer::isProfitableSchedule(S, NewSchedule))
return false;
auto ScopStats = S.getStatistics();
ScopsOptimized++;
NumAffineLoopsOptimized += ScopStats.NumAffineLoops;
NumBoxedLoopsOptimized += ScopStats.NumBoxedLoops;
LastSchedule = NewSchedule.copy();
IslCtx = S.getSharedIslCtx();
S.setScheduleTree(NewSchedule);
S.markAsOptimized();
if (OptimizedScops)
errs() << S;
return false;
}
void IslScheduleOptimizer::printScop(raw_ostream &OS, Scop &) const {
isl_printer *p;
char *ScheduleStr;
OS << "Calculated schedule:\n";
if (!LastSchedule) {
OS << "n/a\n";
return;
}
p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule));
p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_BLOCK);
p = isl_printer_print_schedule(p, LastSchedule);
ScheduleStr = isl_printer_get_str(p);
isl_printer_free(p);
OS << ScheduleStr << "\n";
free(ScheduleStr);
}
void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const {
ScopPass::getAnalysisUsage(AU);
AU.addRequired<DependenceInfo>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addPreserved<DependenceInfo>();
}
Pass *polly::createIslScheduleOptimizerPass() {
return new IslScheduleOptimizer();
}
INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl",
"Polly - Optimize schedule of SCoP", false, false);
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass);
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass);
INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl",
"Polly - Optimize schedule of SCoP", false, false)
|