1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
|
/*
* Copyright 2005-2007 Universiteit Leiden
* Copyright 2008-2009 Katholieke Universiteit Leuven
* Copyright 2010 INRIA Saclay
* Copyright 2012 Universiteit Leiden
* Copyright 2014 Ecole Normale Superieure
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
* Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
* and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
* B-3001 Leuven, Belgium
* and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
* ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
* and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
*/
#include <isl/val.h>
#include <isl/space.h>
#include <isl/set.h>
#include <isl/map.h>
#include <isl/union_set.h>
#include <isl/union_map.h>
#include <isl/flow.h>
#include <isl/schedule_node.h>
#include <isl_sort.h>
#include <isl/stream.h>
enum isl_restriction_type {
isl_restriction_type_empty,
isl_restriction_type_none,
isl_restriction_type_input,
isl_restriction_type_output
};
struct isl_restriction {
enum isl_restriction_type type;
isl_set *source;
isl_set *sink;
};
/* Create a restriction of the given type.
*/
static __isl_give isl_restriction *isl_restriction_alloc(
__isl_take isl_map *source_map, enum isl_restriction_type type)
{
isl_ctx *ctx;
isl_restriction *restr;
if (!source_map)
return NULL;
ctx = isl_map_get_ctx(source_map);
restr = isl_calloc_type(ctx, struct isl_restriction);
if (!restr)
goto error;
restr->type = type;
isl_map_free(source_map);
return restr;
error:
isl_map_free(source_map);
return NULL;
}
/* Create a restriction that doesn't restrict anything.
*/
__isl_give isl_restriction *isl_restriction_none(__isl_take isl_map *source_map)
{
return isl_restriction_alloc(source_map, isl_restriction_type_none);
}
/* Create a restriction that removes everything.
*/
__isl_give isl_restriction *isl_restriction_empty(
__isl_take isl_map *source_map)
{
return isl_restriction_alloc(source_map, isl_restriction_type_empty);
}
/* Create a restriction on the input of the maximization problem
* based on the given source and sink restrictions.
*/
__isl_give isl_restriction *isl_restriction_input(
__isl_take isl_set *source_restr, __isl_take isl_set *sink_restr)
{
isl_ctx *ctx;
isl_restriction *restr;
if (!source_restr || !sink_restr)
goto error;
ctx = isl_set_get_ctx(source_restr);
restr = isl_calloc_type(ctx, struct isl_restriction);
if (!restr)
goto error;
restr->type = isl_restriction_type_input;
restr->source = source_restr;
restr->sink = sink_restr;
return restr;
error:
isl_set_free(source_restr);
isl_set_free(sink_restr);
return NULL;
}
/* Create a restriction on the output of the maximization problem
* based on the given source restriction.
*/
__isl_give isl_restriction *isl_restriction_output(
__isl_take isl_set *source_restr)
{
isl_ctx *ctx;
isl_restriction *restr;
if (!source_restr)
return NULL;
ctx = isl_set_get_ctx(source_restr);
restr = isl_calloc_type(ctx, struct isl_restriction);
if (!restr)
goto error;
restr->type = isl_restriction_type_output;
restr->source = source_restr;
return restr;
error:
isl_set_free(source_restr);
return NULL;
}
__isl_null isl_restriction *isl_restriction_free(
__isl_take isl_restriction *restr)
{
if (!restr)
return NULL;
isl_set_free(restr->source);
isl_set_free(restr->sink);
free(restr);
return NULL;
}
isl_ctx *isl_restriction_get_ctx(__isl_keep isl_restriction *restr)
{
return restr ? isl_set_get_ctx(restr->source) : NULL;
}
/* A private structure to keep track of a mapping together with
* a user-specified identifier and a boolean indicating whether
* the map represents a must or may access/dependence.
*/
struct isl_labeled_map {
struct isl_map *map;
void *data;
int must;
};
typedef isl_bool (*isl_access_coscheduled)(void *first, void *second);
/* A structure containing the input for dependence analysis:
* - a sink
* - n_must + n_may (<= max_source) sources
* - a function for determining the relative order of sources and sink
* - an optional function "coscheduled" for determining whether sources
* may be coscheduled. If "coscheduled" is NULL, then the sources
* are assumed not to be coscheduled.
* The must sources are placed before the may sources.
*
* domain_map is an auxiliary map that maps the sink access relation
* to the domain of this access relation.
* This field is only needed when restrict_fn is set and
* the field itself is set by isl_access_info_compute_flow.
*
* restrict_fn is a callback that (if not NULL) will be called
* right before any lexicographical maximization.
*/
struct isl_access_info {
isl_map *domain_map;
struct isl_labeled_map sink;
isl_access_level_before level_before;
isl_access_coscheduled coscheduled;
isl_access_restrict restrict_fn;
void *restrict_user;
int max_source;
int n_must;
int n_may;
struct isl_labeled_map source[1];
};
/* A structure containing the output of dependence analysis:
* - n_source dependences
* - a wrapped subset of the sink for which definitely no source could be found
* - a wrapped subset of the sink for which possibly no source could be found
*/
struct isl_flow {
isl_set *must_no_source;
isl_set *may_no_source;
int n_source;
struct isl_labeled_map *dep;
};
/* Construct an isl_access_info structure and fill it up with
* the given data. The number of sources is set to 0.
*/
__isl_give isl_access_info *isl_access_info_alloc(__isl_take isl_map *sink,
void *sink_user, isl_access_level_before fn, int max_source)
{
isl_ctx *ctx;
struct isl_access_info *acc;
if (!sink)
return NULL;
ctx = isl_map_get_ctx(sink);
isl_assert(ctx, max_source >= 0, goto error);
acc = isl_calloc(ctx, struct isl_access_info,
sizeof(struct isl_access_info) +
(max_source - 1) * sizeof(struct isl_labeled_map));
if (!acc)
goto error;
acc->sink.map = sink;
acc->sink.data = sink_user;
acc->level_before = fn;
acc->max_source = max_source;
acc->n_must = 0;
acc->n_may = 0;
return acc;
error:
isl_map_free(sink);
return NULL;
}
/* Free the given isl_access_info structure.
*/
__isl_null isl_access_info *isl_access_info_free(
__isl_take isl_access_info *acc)
{
int i;
if (!acc)
return NULL;
isl_map_free(acc->domain_map);
isl_map_free(acc->sink.map);
for (i = 0; i < acc->n_must + acc->n_may; ++i)
isl_map_free(acc->source[i].map);
free(acc);
return NULL;
}
isl_ctx *isl_access_info_get_ctx(__isl_keep isl_access_info *acc)
{
return acc ? isl_map_get_ctx(acc->sink.map) : NULL;
}
__isl_give isl_access_info *isl_access_info_set_restrict(
__isl_take isl_access_info *acc, isl_access_restrict fn, void *user)
{
if (!acc)
return NULL;
acc->restrict_fn = fn;
acc->restrict_user = user;
return acc;
}
/* Add another source to an isl_access_info structure, making
* sure the "must" sources are placed before the "may" sources.
* This function may be called at most max_source times on a
* given isl_access_info structure, with max_source as specified
* in the call to isl_access_info_alloc that constructed the structure.
*/
__isl_give isl_access_info *isl_access_info_add_source(
__isl_take isl_access_info *acc, __isl_take isl_map *source,
int must, void *source_user)
{
isl_ctx *ctx;
if (!acc)
goto error;
ctx = isl_map_get_ctx(acc->sink.map);
isl_assert(ctx, acc->n_must + acc->n_may < acc->max_source, goto error);
if (must) {
if (acc->n_may)
acc->source[acc->n_must + acc->n_may] =
acc->source[acc->n_must];
acc->source[acc->n_must].map = source;
acc->source[acc->n_must].data = source_user;
acc->source[acc->n_must].must = 1;
acc->n_must++;
} else {
acc->source[acc->n_must + acc->n_may].map = source;
acc->source[acc->n_must + acc->n_may].data = source_user;
acc->source[acc->n_must + acc->n_may].must = 0;
acc->n_may++;
}
return acc;
error:
isl_map_free(source);
isl_access_info_free(acc);
return NULL;
}
/* A helper struct carrying the isl_access_info and an error condition.
*/
struct access_sort_info {
isl_access_info *access_info;
int error;
};
/* Return -n, 0 or n (with n a positive value), depending on whether
* the source access identified by p1 should be sorted before, together
* or after that identified by p2.
*
* If p1 appears before p2, then it should be sorted first.
* For more generic initial schedules, it is possible that neither
* p1 nor p2 appears before the other, or at least not in any obvious way.
* We therefore also check if p2 appears before p1, in which case p2
* should be sorted first.
* If not, we try to order the two statements based on the description
* of the iteration domains. This results in an arbitrary, but fairly
* stable ordering.
*
* In case of an error, sort_info.error is set to true and all elements are
* reported to be equal.
*/
static int access_sort_cmp(const void *p1, const void *p2, void *user)
{
struct access_sort_info *sort_info = user;
isl_access_info *acc = sort_info->access_info;
if (sort_info->error)
return 0;
const struct isl_labeled_map *i1, *i2;
int level1, level2;
uint32_t h1, h2;
i1 = (const struct isl_labeled_map *) p1;
i2 = (const struct isl_labeled_map *) p2;
level1 = acc->level_before(i1->data, i2->data);
if (level1 < 0)
goto error;
if (level1 % 2)
return -1;
level2 = acc->level_before(i2->data, i1->data);
if (level2 < 0)
goto error;
if (level2 % 2)
return 1;
h1 = isl_map_get_hash(i1->map);
h2 = isl_map_get_hash(i2->map);
return h1 > h2 ? 1 : h1 < h2 ? -1 : 0;
error:
sort_info->error = 1;
return 0;
}
/* Sort the must source accesses in their textual order.
*/
static __isl_give isl_access_info *isl_access_info_sort_sources(
__isl_take isl_access_info *acc)
{
struct access_sort_info sort_info;
sort_info.access_info = acc;
sort_info.error = 0;
if (!acc)
return NULL;
if (acc->n_must <= 1)
return acc;
if (isl_sort(acc->source, acc->n_must, sizeof(struct isl_labeled_map),
access_sort_cmp, &sort_info) < 0)
return isl_access_info_free(acc);
if (sort_info.error)
return isl_access_info_free(acc);
return acc;
}
/* Align the parameters of the two spaces if needed and then call
* isl_space_join.
*/
static __isl_give isl_space *space_align_and_join(__isl_take isl_space *left,
__isl_take isl_space *right)
{
isl_bool equal_params;
equal_params = isl_space_has_equal_params(left, right);
if (equal_params < 0)
goto error;
if (equal_params)
return isl_space_join(left, right);
left = isl_space_align_params(left, isl_space_copy(right));
right = isl_space_align_params(right, isl_space_copy(left));
return isl_space_join(left, right);
error:
isl_space_free(left);
isl_space_free(right);
return NULL;
}
/* Initialize an empty isl_flow structure corresponding to a given
* isl_access_info structure.
* For each must access, two dependences are created (initialized
* to the empty relation), one for the resulting must dependences
* and one for the resulting may dependences. May accesses can
* only lead to may dependences, so only one dependence is created
* for each of them.
* This function is private as isl_flow structures are only supposed
* to be created by isl_access_info_compute_flow.
*/
static __isl_give isl_flow *isl_flow_alloc(__isl_keep isl_access_info *acc)
{
int i, n;
struct isl_ctx *ctx;
struct isl_flow *dep;
if (!acc)
return NULL;
ctx = isl_map_get_ctx(acc->sink.map);
dep = isl_calloc_type(ctx, struct isl_flow);
if (!dep)
return NULL;
n = 2 * acc->n_must + acc->n_may;
dep->dep = isl_calloc_array(ctx, struct isl_labeled_map, n);
if (n && !dep->dep)
goto error;
dep->n_source = n;
for (i = 0; i < acc->n_must; ++i) {
isl_space *space;
space = space_align_and_join(
isl_map_get_space(acc->source[i].map),
isl_space_reverse(isl_map_get_space(acc->sink.map)));
dep->dep[2 * i].map = isl_map_empty(space);
dep->dep[2 * i + 1].map = isl_map_copy(dep->dep[2 * i].map);
dep->dep[2 * i].data = acc->source[i].data;
dep->dep[2 * i + 1].data = acc->source[i].data;
dep->dep[2 * i].must = 1;
dep->dep[2 * i + 1].must = 0;
if (!dep->dep[2 * i].map || !dep->dep[2 * i + 1].map)
goto error;
}
for (i = acc->n_must; i < acc->n_must + acc->n_may; ++i) {
isl_space *space;
space = space_align_and_join(
isl_map_get_space(acc->source[i].map),
isl_space_reverse(isl_map_get_space(acc->sink.map)));
dep->dep[acc->n_must + i].map = isl_map_empty(space);
dep->dep[acc->n_must + i].data = acc->source[i].data;
dep->dep[acc->n_must + i].must = 0;
if (!dep->dep[acc->n_must + i].map)
goto error;
}
return dep;
error:
isl_flow_free(dep);
return NULL;
}
/* Iterate over all sources and for each resulting flow dependence
* that is not empty, call the user specfied function.
* The second argument in this function call identifies the source,
* while the third argument correspond to the final argument of
* the isl_flow_foreach call.
*/
isl_stat isl_flow_foreach(__isl_keep isl_flow *deps,
isl_stat (*fn)(__isl_take isl_map *dep, int must, void *dep_user,
void *user),
void *user)
{
int i;
if (!deps)
return isl_stat_error;
for (i = 0; i < deps->n_source; ++i) {
if (isl_map_plain_is_empty(deps->dep[i].map))
continue;
if (fn(isl_map_copy(deps->dep[i].map), deps->dep[i].must,
deps->dep[i].data, user) < 0)
return isl_stat_error;
}
return isl_stat_ok;
}
/* Return a copy of the subset of the sink for which no source could be found.
*/
__isl_give isl_map *isl_flow_get_no_source(__isl_keep isl_flow *deps, int must)
{
if (!deps)
return NULL;
if (must)
return isl_set_unwrap(isl_set_copy(deps->must_no_source));
else
return isl_set_unwrap(isl_set_copy(deps->may_no_source));
}
__isl_null isl_flow *isl_flow_free(__isl_take isl_flow *deps)
{
int i;
if (!deps)
return NULL;
isl_set_free(deps->must_no_source);
isl_set_free(deps->may_no_source);
if (deps->dep) {
for (i = 0; i < deps->n_source; ++i)
isl_map_free(deps->dep[i].map);
free(deps->dep);
}
free(deps);
return NULL;
}
isl_ctx *isl_flow_get_ctx(__isl_keep isl_flow *deps)
{
return deps ? isl_set_get_ctx(deps->must_no_source) : NULL;
}
/* Return a map that enforces that the domain iteration occurs after
* the range iteration at the given level.
* If level is odd, then the domain iteration should occur after
* the target iteration in their shared level/2 outermost loops.
* In this case we simply need to enforce that these outermost
* loop iterations are the same.
* If level is even, then the loop iterator of the domain should
* be greater than the loop iterator of the range at the last
* of the level/2 shared loops, i.e., loop level/2 - 1.
*/
static __isl_give isl_map *after_at_level(__isl_take isl_space *space,
int level)
{
struct isl_basic_map *bmap;
if (level % 2)
bmap = isl_basic_map_equal(space, level/2);
else
bmap = isl_basic_map_more_at(space, level/2 - 1);
return isl_map_from_basic_map(bmap);
}
/* Compute the partial lexicographic maximum of "dep" on domain "sink",
* but first check if the user has set acc->restrict_fn and if so
* update either the input or the output of the maximization problem
* with respect to the resulting restriction.
*
* Since the user expects a mapping from sink iterations to source iterations,
* whereas the domain of "dep" is a wrapped map, mapping sink iterations
* to accessed array elements, we first need to project out the accessed
* sink array elements by applying acc->domain_map.
* Similarly, the sink restriction specified by the user needs to be
* converted back to the wrapped map.
*/
static __isl_give isl_map *restricted_partial_lexmax(
__isl_keep isl_access_info *acc, __isl_take isl_map *dep,
int source, __isl_take isl_set *sink, __isl_give isl_set **empty)
{
isl_map *source_map;
isl_restriction *restr;
isl_set *sink_domain;
isl_set *sink_restr;
isl_map *res;
if (!acc->restrict_fn)
return isl_map_partial_lexmax(dep, sink, empty);
source_map = isl_map_copy(dep);
source_map = isl_map_apply_domain(source_map,
isl_map_copy(acc->domain_map));
sink_domain = isl_set_copy(sink);
sink_domain = isl_set_apply(sink_domain, isl_map_copy(acc->domain_map));
restr = acc->restrict_fn(source_map, sink_domain,
acc->source[source].data, acc->restrict_user);
isl_set_free(sink_domain);
isl_map_free(source_map);
if (!restr)
goto error;
if (restr->type == isl_restriction_type_input) {
dep = isl_map_intersect_range(dep, isl_set_copy(restr->source));
sink_restr = isl_set_copy(restr->sink);
sink_restr = isl_set_apply(sink_restr,
isl_map_reverse(isl_map_copy(acc->domain_map)));
sink = isl_set_intersect(sink, sink_restr);
} else if (restr->type == isl_restriction_type_empty) {
isl_space *space = isl_map_get_space(dep);
isl_map_free(dep);
dep = isl_map_empty(space);
}
res = isl_map_partial_lexmax(dep, sink, empty);
if (restr->type == isl_restriction_type_output)
res = isl_map_intersect_range(res, isl_set_copy(restr->source));
isl_restriction_free(restr);
return res;
error:
isl_map_free(dep);
isl_set_free(sink);
*empty = NULL;
return NULL;
}
/* Compute the last iteration of must source j that precedes the sink
* at the given level for sink iterations in set_C.
* The subset of set_C for which no such iteration can be found is returned
* in *empty.
*/
static struct isl_map *last_source(struct isl_access_info *acc,
struct isl_set *set_C,
int j, int level, struct isl_set **empty)
{
struct isl_map *read_map;
struct isl_map *write_map;
struct isl_map *dep_map;
struct isl_map *after;
struct isl_map *result;
read_map = isl_map_copy(acc->sink.map);
write_map = isl_map_copy(acc->source[j].map);
write_map = isl_map_reverse(write_map);
dep_map = isl_map_apply_range(read_map, write_map);
after = after_at_level(isl_map_get_space(dep_map), level);
dep_map = isl_map_intersect(dep_map, after);
result = restricted_partial_lexmax(acc, dep_map, j, set_C, empty);
result = isl_map_reverse(result);
return result;
}
/* For a given mapping between iterations of must source j and iterations
* of the sink, compute the last iteration of must source k preceding
* the sink at level before_level for any of the sink iterations,
* but following the corresponding iteration of must source j at level
* after_level.
*/
static struct isl_map *last_later_source(struct isl_access_info *acc,
struct isl_map *old_map,
int j, int before_level,
int k, int after_level,
struct isl_set **empty)
{
isl_space *space;
struct isl_set *set_C;
struct isl_map *read_map;
struct isl_map *write_map;
struct isl_map *dep_map;
struct isl_map *after_write;
struct isl_map *before_read;
struct isl_map *result;
set_C = isl_map_range(isl_map_copy(old_map));
read_map = isl_map_copy(acc->sink.map);
write_map = isl_map_copy(acc->source[k].map);
write_map = isl_map_reverse(write_map);
dep_map = isl_map_apply_range(read_map, write_map);
space = space_align_and_join(isl_map_get_space(acc->source[k].map),
isl_space_reverse(isl_map_get_space(acc->source[j].map)));
after_write = after_at_level(space, after_level);
after_write = isl_map_apply_range(after_write, old_map);
after_write = isl_map_reverse(after_write);
dep_map = isl_map_intersect(dep_map, after_write);
before_read = after_at_level(isl_map_get_space(dep_map), before_level);
dep_map = isl_map_intersect(dep_map, before_read);
result = restricted_partial_lexmax(acc, dep_map, k, set_C, empty);
result = isl_map_reverse(result);
return result;
}
/* Given a shared_level between two accesses, return 1 if the
* the first can precede the second at the requested target_level.
* If the target level is odd, i.e., refers to a statement level
* dimension, then first needs to precede second at the requested
* level, i.e., shared_level must be equal to target_level.
* If the target level is odd, then the two loops should share
* at least the requested number of outer loops.
*/
static int can_precede_at_level(int shared_level, int target_level)
{
if (shared_level < target_level)
return 0;
if ((target_level % 2) && shared_level > target_level)
return 0;
return 1;
}
/* Given a possible flow dependence temp_rel[j] between source j and the sink
* at level sink_level, remove those elements for which
* there is an iteration of another source k < j that is closer to the sink.
* The flow dependences temp_rel[k] are updated with the improved sources.
* Any improved source needs to precede the sink at the same level
* and needs to follow source j at the same or a deeper level.
* The lower this level, the later the execution date of source k.
* We therefore consider lower levels first.
*
* If temp_rel[j] is empty, then there can be no improvement and
* we return immediately.
*
* This function returns isl_stat_ok in case it was executed successfully and
* isl_stat_error in case of errors during the execution of this function.
*/
static isl_stat intermediate_sources(__isl_keep isl_access_info *acc,
struct isl_map **temp_rel, int j, int sink_level)
{
int k, level;
isl_size n_in = isl_map_dim(acc->source[j].map, isl_dim_in);
int depth = 2 * n_in + 1;
if (n_in < 0)
return isl_stat_error;
if (isl_map_plain_is_empty(temp_rel[j]))
return isl_stat_ok;
for (k = j - 1; k >= 0; --k) {
int plevel, plevel2;
plevel = acc->level_before(acc->source[k].data, acc->sink.data);
if (plevel < 0)
return isl_stat_error;
if (!can_precede_at_level(plevel, sink_level))
continue;
plevel2 = acc->level_before(acc->source[j].data,
acc->source[k].data);
if (plevel2 < 0)
return isl_stat_error;
for (level = sink_level; level <= depth; ++level) {
struct isl_map *T;
struct isl_set *trest;
struct isl_map *copy;
if (!can_precede_at_level(plevel2, level))
continue;
copy = isl_map_copy(temp_rel[j]);
T = last_later_source(acc, copy, j, sink_level, k,
level, &trest);
if (isl_map_plain_is_empty(T)) {
isl_set_free(trest);
isl_map_free(T);
continue;
}
temp_rel[j] = isl_map_intersect_range(temp_rel[j], trest);
temp_rel[k] = isl_map_union_disjoint(temp_rel[k], T);
}
}
return isl_stat_ok;
}
/* Compute all iterations of may source j that precedes the sink at the given
* level for sink iterations in set_C.
*/
static __isl_give isl_map *all_sources(__isl_keep isl_access_info *acc,
__isl_take isl_set *set_C, int j, int level)
{
isl_map *read_map;
isl_map *write_map;
isl_map *dep_map;
isl_map *after;
read_map = isl_map_copy(acc->sink.map);
read_map = isl_map_intersect_domain(read_map, set_C);
write_map = isl_map_copy(acc->source[acc->n_must + j].map);
write_map = isl_map_reverse(write_map);
dep_map = isl_map_apply_range(read_map, write_map);
after = after_at_level(isl_map_get_space(dep_map), level);
dep_map = isl_map_intersect(dep_map, after);
return isl_map_reverse(dep_map);
}
/* For a given mapping between iterations of must source k and iterations
* of the sink, compute all iterations of may source j preceding
* the sink at level before_level for any of the sink iterations,
* but following the corresponding iteration of must source k at level
* after_level.
*/
static __isl_give isl_map *all_later_sources(__isl_keep isl_access_info *acc,
__isl_take isl_map *old_map,
int j, int before_level, int k, int after_level)
{
isl_space *space;
isl_set *set_C;
isl_map *read_map;
isl_map *write_map;
isl_map *dep_map;
isl_map *after_write;
isl_map *before_read;
set_C = isl_map_range(isl_map_copy(old_map));
read_map = isl_map_copy(acc->sink.map);
read_map = isl_map_intersect_domain(read_map, set_C);
write_map = isl_map_copy(acc->source[acc->n_must + j].map);
write_map = isl_map_reverse(write_map);
dep_map = isl_map_apply_range(read_map, write_map);
space = isl_space_join(isl_map_get_space(
acc->source[acc->n_must + j].map),
isl_space_reverse(isl_map_get_space(acc->source[k].map)));
after_write = after_at_level(space, after_level);
after_write = isl_map_apply_range(after_write, old_map);
after_write = isl_map_reverse(after_write);
dep_map = isl_map_intersect(dep_map, after_write);
before_read = after_at_level(isl_map_get_space(dep_map), before_level);
dep_map = isl_map_intersect(dep_map, before_read);
return isl_map_reverse(dep_map);
}
/* Given the must and may dependence relations for the must accesses
* for level sink_level, check if there are any accesses of may access j
* that occur in between and return their union.
* If some of these accesses are intermediate with respect to
* (previously thought to be) must dependences, then these
* must dependences are turned into may dependences.
*/
static __isl_give isl_map *all_intermediate_sources(
__isl_keep isl_access_info *acc, __isl_take isl_map *map,
struct isl_map **must_rel, struct isl_map **may_rel,
int j, int sink_level)
{
int k, level;
isl_size n_in = isl_map_dim(acc->source[acc->n_must + j].map,
isl_dim_in);
int depth = 2 * n_in + 1;
if (n_in < 0)
return isl_map_free(map);
for (k = 0; k < acc->n_must; ++k) {
int plevel;
if (isl_map_plain_is_empty(may_rel[k]) &&
isl_map_plain_is_empty(must_rel[k]))
continue;
plevel = acc->level_before(acc->source[k].data,
acc->source[acc->n_must + j].data);
if (plevel < 0)
return isl_map_free(map);
for (level = sink_level; level <= depth; ++level) {
isl_map *T;
isl_map *copy;
isl_set *ran;
if (!can_precede_at_level(plevel, level))
continue;
copy = isl_map_copy(may_rel[k]);
T = all_later_sources(acc, copy, j, sink_level, k, level);
map = isl_map_union(map, T);
copy = isl_map_copy(must_rel[k]);
T = all_later_sources(acc, copy, j, sink_level, k, level);
ran = isl_map_range(isl_map_copy(T));
map = isl_map_union(map, T);
may_rel[k] = isl_map_union_disjoint(may_rel[k],
isl_map_intersect_range(isl_map_copy(must_rel[k]),
isl_set_copy(ran)));
T = isl_map_from_domain_and_range(
isl_set_universe(
isl_space_domain(isl_map_get_space(must_rel[k]))),
ran);
must_rel[k] = isl_map_subtract(must_rel[k], T);
}
}
return map;
}
/* Given a dependence relation "old_map" between a must-source and the sink,
* return a subset of the dependences, augmented with instances
* of the source at position "pos" in "acc" that are coscheduled
* with the must-source and that access the same element.
* That is, if the input lives in a space T -> K, then the output
* lives in the space [T -> S] -> K, with S the space of source "pos", and
* the domain factor of the domain product is a subset of the input.
* The sources are considered to be coscheduled if they have the same values
* for the initial "depth" coordinates.
*
* First construct a dependence relation S -> K and a mapping
* between coscheduled sources T -> S.
* The second is combined with the original dependence relation T -> K
* to form a relation in T -> [S -> K], which is subsequently
* uncurried to [T -> S] -> K.
* This result is then intersected with the dependence relation S -> K
* to form the output.
*
* In case a negative depth is given, NULL is returned to indicate an error.
*/
static __isl_give isl_map *coscheduled_source(__isl_keep isl_access_info *acc,
__isl_keep isl_map *old_map, int pos, int depth)
{
isl_space *space;
isl_set *set_C;
isl_map *read_map;
isl_map *write_map;
isl_map *dep_map;
isl_map *equal;
isl_map *map;
if (depth < 0)
return NULL;
set_C = isl_map_range(isl_map_copy(old_map));
read_map = isl_map_copy(acc->sink.map);
read_map = isl_map_intersect_domain(read_map, set_C);
write_map = isl_map_copy(acc->source[pos].map);
dep_map = isl_map_domain_product(write_map, read_map);
dep_map = isl_set_unwrap(isl_map_domain(dep_map));
space = isl_space_join(isl_map_get_space(old_map),
isl_space_reverse(isl_map_get_space(dep_map)));
equal = isl_map_from_basic_map(isl_basic_map_equal(space, depth));
map = isl_map_range_product(equal, isl_map_copy(old_map));
map = isl_map_uncurry(map);
map = isl_map_intersect_domain_factor_range(map, dep_map);
return map;
}
/* After the dependences derived from a must-source have been computed
* at a certain level, check if any of the sources of the must-dependences
* may be coscheduled with other sources.
* If they are any such sources, then there is no way of determining
* which of the sources actually comes last and the must-dependences
* need to be turned into may-dependences, while dependences from
* the other sources need to be added to the may-dependences as well.
* "acc" describes the sources and a callback for checking whether
* two sources may be coscheduled. If acc->coscheduled is NULL then
* the sources are assumed not to be coscheduled.
* "must_rel" and "may_rel" describe the must and may-dependence relations
* computed at the current level for the must-sources. Some of the dependences
* may be moved from "must_rel" to "may_rel".
* "flow" contains all dependences computed so far (apart from those
* in "must_rel" and "may_rel") and may be updated with additional
* dependences derived from may-sources.
*
* In particular, consider all the must-sources with a non-empty
* dependence relation in "must_rel". They are considered in reverse
* order because that is the order in which they are considered in the caller.
* If any of the must-sources are coscheduled, then the last one
* is the one that will have a corresponding dependence relation.
* For each must-source i, consider both all the previous must-sources
* and all the may-sources. If any of those may be coscheduled with
* must-source i, then compute the coscheduled instances that access
* the same memory elements. The result is a relation [T -> S] -> K.
* The projection onto T -> K is a subset of the must-dependence relation
* that needs to be turned into may-dependences.
* The projection onto S -> K needs to be added to the may-dependences
* of source S.
* Since a given must-source instance may be coscheduled with several
* other source instances, the dependences that need to be turned
* into may-dependences are first collected and only actually removed
* from the must-dependences after all other sources have been considered.
*/
static __isl_give isl_flow *handle_coscheduled(__isl_keep isl_access_info *acc,
__isl_keep isl_map **must_rel, __isl_keep isl_map **may_rel,
__isl_take isl_flow *flow)
{
int i, j;
if (!acc->coscheduled)
return flow;
for (i = acc->n_must - 1; i >= 0; --i) {
isl_map *move;
if (isl_map_plain_is_empty(must_rel[i]))
continue;
move = isl_map_empty(isl_map_get_space(must_rel[i]));
for (j = i - 1; j >= 0; --j) {
int depth;
isl_bool coscheduled;
isl_map *map, *factor;
coscheduled = acc->coscheduled(acc->source[i].data,
acc->source[j].data);
if (coscheduled < 0) {
isl_map_free(move);
return isl_flow_free(flow);
}
if (!coscheduled)
continue;
depth = acc->level_before(acc->source[i].data,
acc->source[j].data) / 2;
map = coscheduled_source(acc, must_rel[i], j, depth);
factor = isl_map_domain_factor_range(isl_map_copy(map));
may_rel[j] = isl_map_union(may_rel[j], factor);
map = isl_map_domain_factor_domain(map);
move = isl_map_union(move, map);
}
for (j = 0; j < acc->n_may; ++j) {
int depth, pos;
isl_bool coscheduled;
isl_map *map, *factor;
pos = acc->n_must + j;
coscheduled = acc->coscheduled(acc->source[i].data,
acc->source[pos].data);
if (coscheduled < 0) {
isl_map_free(move);
return isl_flow_free(flow);
}
if (!coscheduled)
continue;
depth = acc->level_before(acc->source[i].data,
acc->source[pos].data) / 2;
map = coscheduled_source(acc, must_rel[i], pos, depth);
factor = isl_map_domain_factor_range(isl_map_copy(map));
pos = 2 * acc->n_must + j;
flow->dep[pos].map = isl_map_union(flow->dep[pos].map,
factor);
map = isl_map_domain_factor_domain(map);
move = isl_map_union(move, map);
}
must_rel[i] = isl_map_subtract(must_rel[i], isl_map_copy(move));
may_rel[i] = isl_map_union(may_rel[i], move);
}
return flow;
}
/* Compute dependences for the case where all accesses are "may"
* accesses, which boils down to computing memory based dependences.
* The generic algorithm would also work in this case, but it would
* be overkill to use it.
*/
static __isl_give isl_flow *compute_mem_based_dependences(
__isl_keep isl_access_info *acc)
{
int i;
isl_set *mustdo;
isl_set *maydo;
isl_flow *res;
res = isl_flow_alloc(acc);
if (!res)
return NULL;
mustdo = isl_map_domain(isl_map_copy(acc->sink.map));
maydo = isl_set_copy(mustdo);
for (i = 0; i < acc->n_may; ++i) {
int plevel;
int is_before;
isl_space *space;
isl_map *before;
isl_map *dep;
plevel = acc->level_before(acc->source[i].data, acc->sink.data);
if (plevel < 0)
goto error;
is_before = plevel & 1;
plevel >>= 1;
space = isl_map_get_space(res->dep[i].map);
if (is_before)
before = isl_map_lex_le_first(space, plevel);
else
before = isl_map_lex_lt_first(space, plevel);
dep = isl_map_apply_range(isl_map_copy(acc->source[i].map),
isl_map_reverse(isl_map_copy(acc->sink.map)));
dep = isl_map_intersect(dep, before);
mustdo = isl_set_subtract(mustdo,
isl_map_range(isl_map_copy(dep)));
res->dep[i].map = isl_map_union(res->dep[i].map, dep);
}
res->may_no_source = isl_set_subtract(maydo, isl_set_copy(mustdo));
res->must_no_source = mustdo;
return res;
error:
isl_set_free(mustdo);
isl_set_free(maydo);
isl_flow_free(res);
return NULL;
}
/* Compute dependences for the case where there is at least one
* "must" access.
*
* The core algorithm considers all levels in which a source may precede
* the sink, where a level may either be a statement level or a loop level.
* The outermost statement level is 1, the first loop level is 2, etc...
* The algorithm basically does the following:
* for all levels l of the read access from innermost to outermost
* for all sources w that may precede the sink access at that level
* compute the last iteration of the source that precedes the sink access
* at that level
* add result to possible last accesses at level l of source w
* for all sources w2 that we haven't considered yet at this level that may
* also precede the sink access
* for all levels l2 of w from l to innermost
* for all possible last accesses dep of w at l
* compute last iteration of w2 between the source and sink
* of dep
* add result to possible last accesses at level l of write w2
* and replace possible last accesses dep by the remainder
*
*
* The above algorithm is applied to the must access. During the course
* of the algorithm, we keep track of sink iterations that still
* need to be considered. These iterations are split into those that
* haven't been matched to any source access (mustdo) and those that have only
* been matched to may accesses (maydo).
* At the end of each level, must-sources and may-sources that are coscheduled
* with the sources of the must-dependences at that level are considered.
* If any coscheduled instances are found, then corresponding may-dependences
* are added and the original must-dependences are turned into may-dependences.
* Afterwards, the may accesses that occur after must-dependence sources
* are considered.
* In particular, we consider may accesses that precede the remaining
* sink iterations, moving elements from mustdo to maydo when appropriate,
* and may accesses that occur between a must source and a sink of any
* dependences found at the current level, turning must dependences into
* may dependences when appropriate.
*
*/
static __isl_give isl_flow *compute_val_based_dependences(
__isl_keep isl_access_info *acc)
{
isl_ctx *ctx;
isl_flow *res;
isl_set *mustdo = NULL;
isl_set *maydo = NULL;
int level, j;
isl_size n_in;
int depth;
isl_map **must_rel = NULL;
isl_map **may_rel = NULL;
if (!acc)
return NULL;
res = isl_flow_alloc(acc);
if (!res)
goto error;
ctx = isl_map_get_ctx(acc->sink.map);
n_in = isl_map_dim(acc->sink.map, isl_dim_in);
if (n_in < 0)
goto error;
depth = 2 * n_in + 1;
mustdo = isl_map_domain(isl_map_copy(acc->sink.map));
maydo = isl_set_empty(isl_set_get_space(mustdo));
if (!mustdo || !maydo)
goto error;
if (isl_set_plain_is_empty(mustdo))
goto done;
must_rel = isl_calloc_array(ctx, struct isl_map *, acc->n_must);
may_rel = isl_calloc_array(ctx, struct isl_map *, acc->n_must);
if (!must_rel || !may_rel)
goto error;
for (level = depth; level >= 1; --level) {
for (j = acc->n_must-1; j >=0; --j) {
isl_space *space;
space = isl_map_get_space(res->dep[2 * j].map);
must_rel[j] = isl_map_empty(space);
may_rel[j] = isl_map_copy(must_rel[j]);
}
for (j = acc->n_must - 1; j >= 0; --j) {
struct isl_map *T;
struct isl_set *rest;
int plevel;
plevel = acc->level_before(acc->source[j].data,
acc->sink.data);
if (plevel < 0)
goto error;
if (!can_precede_at_level(plevel, level))
continue;
T = last_source(acc, mustdo, j, level, &rest);
must_rel[j] = isl_map_union_disjoint(must_rel[j], T);
mustdo = rest;
if (intermediate_sources(acc, must_rel, j, level) < 0)
goto error;
T = last_source(acc, maydo, j, level, &rest);
may_rel[j] = isl_map_union_disjoint(may_rel[j], T);
maydo = rest;
if (intermediate_sources(acc, may_rel, j, level) < 0)
goto error;
if (isl_set_plain_is_empty(mustdo) &&
isl_set_plain_is_empty(maydo))
break;
}
for (j = j - 1; j >= 0; --j) {
int plevel;
plevel = acc->level_before(acc->source[j].data,
acc->sink.data);
if (plevel < 0)
goto error;
if (!can_precede_at_level(plevel, level))
continue;
if (intermediate_sources(acc, must_rel, j, level) < 0)
goto error;
if (intermediate_sources(acc, may_rel, j, level) < 0)
goto error;
}
res = handle_coscheduled(acc, must_rel, may_rel, res);
if (!res)
goto error;
for (j = 0; j < acc->n_may; ++j) {
int plevel;
isl_map *T;
isl_set *ran;
plevel = acc->level_before(acc->source[acc->n_must + j].data,
acc->sink.data);
if (plevel < 0)
goto error;
if (!can_precede_at_level(plevel, level))
continue;
T = all_sources(acc, isl_set_copy(maydo), j, level);
res->dep[2 * acc->n_must + j].map =
isl_map_union(res->dep[2 * acc->n_must + j].map, T);
T = all_sources(acc, isl_set_copy(mustdo), j, level);
ran = isl_map_range(isl_map_copy(T));
res->dep[2 * acc->n_must + j].map =
isl_map_union(res->dep[2 * acc->n_must + j].map, T);
mustdo = isl_set_subtract(mustdo, isl_set_copy(ran));
maydo = isl_set_union_disjoint(maydo, ran);
T = res->dep[2 * acc->n_must + j].map;
T = all_intermediate_sources(acc, T, must_rel, may_rel,
j, level);
res->dep[2 * acc->n_must + j].map = T;
}
for (j = acc->n_must - 1; j >= 0; --j) {
res->dep[2 * j].map =
isl_map_union_disjoint(res->dep[2 * j].map,
must_rel[j]);
res->dep[2 * j + 1].map =
isl_map_union_disjoint(res->dep[2 * j + 1].map,
may_rel[j]);
}
if (isl_set_plain_is_empty(mustdo) &&
isl_set_plain_is_empty(maydo))
break;
}
free(must_rel);
free(may_rel);
done:
res->must_no_source = mustdo;
res->may_no_source = maydo;
return res;
error:
if (must_rel)
for (j = 0; j < acc->n_must; ++j)
isl_map_free(must_rel[j]);
if (may_rel)
for (j = 0; j < acc->n_must; ++j)
isl_map_free(may_rel[j]);
isl_flow_free(res);
isl_set_free(mustdo);
isl_set_free(maydo);
free(must_rel);
free(may_rel);
return NULL;
}
/* Given a "sink" access, a list of n "source" accesses,
* compute for each iteration of the sink access
* and for each element accessed by that iteration,
* the source access in the list that last accessed the
* element accessed by the sink access before this sink access.
* Each access is given as a map from the loop iterators
* to the array indices.
* The result is a list of n relations between source and sink
* iterations and a subset of the domain of the sink access,
* corresponding to those iterations that access an element
* not previously accessed.
*
* To deal with multi-valued sink access relations, the sink iteration
* domain is first extended with dimensions that correspond to the data
* space. However, these extra dimensions are not projected out again.
* It is up to the caller to decide whether these dimensions should be kept.
*/
static __isl_give isl_flow *access_info_compute_flow_core(
__isl_take isl_access_info *acc)
{
struct isl_flow *res = NULL;
if (!acc)
return NULL;
acc->sink.map = isl_map_range_map(acc->sink.map);
if (!acc->sink.map)
goto error;
if (acc->n_must == 0)
res = compute_mem_based_dependences(acc);
else {
acc = isl_access_info_sort_sources(acc);
res = compute_val_based_dependences(acc);
}
acc = isl_access_info_free(acc);
if (!res)
return NULL;
if (!res->must_no_source || !res->may_no_source)
goto error;
return res;
error:
isl_access_info_free(acc);
isl_flow_free(res);
return NULL;
}
/* Given a "sink" access, a list of n "source" accesses,
* compute for each iteration of the sink access
* and for each element accessed by that iteration,
* the source access in the list that last accessed the
* element accessed by the sink access before this sink access.
* Each access is given as a map from the loop iterators
* to the array indices.
* The result is a list of n relations between source and sink
* iterations and a subset of the domain of the sink access,
* corresponding to those iterations that access an element
* not previously accessed.
*
* To deal with multi-valued sink access relations,
* access_info_compute_flow_core extends the sink iteration domain
* with dimensions that correspond to the data space. These extra dimensions
* are projected out from the result of access_info_compute_flow_core.
*/
__isl_give isl_flow *isl_access_info_compute_flow(__isl_take isl_access_info *acc)
{
int j;
struct isl_flow *res;
if (!acc)
return NULL;
acc->domain_map = isl_map_domain_map(isl_map_copy(acc->sink.map));
res = access_info_compute_flow_core(acc);
if (!res)
return NULL;
for (j = 0; j < res->n_source; ++j) {
res->dep[j].map = isl_map_range_factor_domain(res->dep[j].map);
if (!res->dep[j].map)
goto error;
}
return res;
error:
isl_flow_free(res);
return NULL;
}
/* Keep track of some information about a schedule for a given
* access. In particular, keep track of which dimensions
* have a constant value and of the actual constant values.
*/
struct isl_sched_info {
int *is_cst;
isl_vec *cst;
};
static void sched_info_free(__isl_take struct isl_sched_info *info)
{
if (!info)
return;
isl_vec_free(info->cst);
free(info->is_cst);
free(info);
}
/* Extract information on the constant dimensions of the schedule
* for a given access. The "map" is of the form
*
* [S -> D] -> A
*
* with S the schedule domain, D the iteration domain and A the data domain.
*/
static __isl_give struct isl_sched_info *sched_info_alloc(
__isl_keep isl_map *map)
{
isl_ctx *ctx;
isl_space *space;
struct isl_sched_info *info;
int i;
isl_size n;
if (!map)
return NULL;
space = isl_space_unwrap(isl_space_domain(isl_map_get_space(map)));
if (!space)
return NULL;
n = isl_space_dim(space, isl_dim_in);
isl_space_free(space);
if (n < 0)
return NULL;
ctx = isl_map_get_ctx(map);
info = isl_alloc_type(ctx, struct isl_sched_info);
if (!info)
return NULL;
info->is_cst = isl_alloc_array(ctx, int, n);
info->cst = isl_vec_alloc(ctx, n);
if (n && (!info->is_cst || !info->cst))
goto error;
for (i = 0; i < n; ++i) {
isl_val *v;
v = isl_map_plain_get_val_if_fixed(map, isl_dim_in, i);
if (!v)
goto error;
info->is_cst[i] = !isl_val_is_nan(v);
if (info->is_cst[i])
info->cst = isl_vec_set_element_val(info->cst, i, v);
else
isl_val_free(v);
}
return info;
error:
sched_info_free(info);
return NULL;
}
/* The different types of access relations that isl_union_access_info
* keeps track of.
* "isl_access_sink" represents the sink accesses.
* "isl_access_must_source" represents the definite source accesses.
* "isl_access_may_source" represents the possible source accesses.
* "isl_access_kill" represents the kills.
*
* isl_access_sink is sometimes treated differently and
* should therefore appear first.
*/
enum isl_access_type {
isl_access_sink,
isl_access_must_source,
isl_access_may_source,
isl_access_kill,
isl_access_end
};
/* This structure represents the input for a dependence analysis computation.
*
* "access" contains the access relations.
*
* "schedule" or "schedule_map" represents the execution order.
* Exactly one of these fields should be NULL. The other field
* determines the execution order.
*
* The domains of these four maps refer to the same iteration spaces(s).
* The ranges of the first three maps also refer to the same data space(s).
*
* After a call to isl_union_access_info_introduce_schedule,
* the "schedule_map" field no longer contains useful information.
*/
struct isl_union_access_info {
isl_union_map *access[isl_access_end];
isl_schedule *schedule;
isl_union_map *schedule_map;
};
/* Free "access" and return NULL.
*/
__isl_null isl_union_access_info *isl_union_access_info_free(
__isl_take isl_union_access_info *access)
{
enum isl_access_type i;
if (!access)
return NULL;
for (i = isl_access_sink; i < isl_access_end; ++i)
isl_union_map_free(access->access[i]);
isl_schedule_free(access->schedule);
isl_union_map_free(access->schedule_map);
free(access);
return NULL;
}
/* Return the isl_ctx to which "access" belongs.
*/
isl_ctx *isl_union_access_info_get_ctx(__isl_keep isl_union_access_info *access)
{
if (!access)
return NULL;
return isl_union_map_get_ctx(access->access[isl_access_sink]);
}
/* Construct an empty (invalid) isl_union_access_info object.
* The caller is responsible for setting the sink access relation and
* initializing all the other fields, e.g., by calling
* isl_union_access_info_init.
*/
static __isl_give isl_union_access_info *isl_union_access_info_alloc(
isl_ctx *ctx)
{
return isl_calloc_type(ctx, isl_union_access_info);
}
/* Initialize all the fields of "info", except the sink access relation,
* which is assumed to have been set by the caller.
*
* By default, we use the schedule field of the isl_union_access_info,
* but this may be overridden by a call
* to isl_union_access_info_set_schedule_map.
*/
static __isl_give isl_union_access_info *isl_union_access_info_init(
__isl_take isl_union_access_info *info)
{
isl_space *space;
isl_union_map *empty;
enum isl_access_type i;
if (!info)
return NULL;
if (!info->access[isl_access_sink])
return isl_union_access_info_free(info);
space = isl_union_map_get_space(info->access[isl_access_sink]);
empty = isl_union_map_empty(isl_space_copy(space));
for (i = isl_access_sink + 1; i < isl_access_end; ++i)
if (!info->access[i])
info->access[i] = isl_union_map_copy(empty);
isl_union_map_free(empty);
if (!info->schedule && !info->schedule_map)
info->schedule = isl_schedule_empty(isl_space_copy(space));
isl_space_free(space);
for (i = isl_access_sink + 1; i < isl_access_end; ++i)
if (!info->access[i])
return isl_union_access_info_free(info);
if (!info->schedule && !info->schedule_map)
return isl_union_access_info_free(info);
return info;
}
/* Create a new isl_union_access_info with the given sink accesses and
* and no other accesses or schedule information.
*/
__isl_give isl_union_access_info *isl_union_access_info_from_sink(
__isl_take isl_union_map *sink)
{
isl_ctx *ctx;
isl_union_access_info *access;
if (!sink)
return NULL;
ctx = isl_union_map_get_ctx(sink);
access = isl_union_access_info_alloc(ctx);
if (!access)
goto error;
access->access[isl_access_sink] = sink;
return isl_union_access_info_init(access);
error:
isl_union_map_free(sink);
return NULL;
}
/* Replace the access relation of type "type" of "info" by "access".
*/
static __isl_give isl_union_access_info *isl_union_access_info_set(
__isl_take isl_union_access_info *info,
enum isl_access_type type, __isl_take isl_union_map *access)
{
if (!info || !access)
goto error;
isl_union_map_free(info->access[type]);
info->access[type] = access;
return info;
error:
isl_union_access_info_free(info);
isl_union_map_free(access);
return NULL;
}
/* Replace the definite source accesses of "access" by "must_source".
*/
__isl_give isl_union_access_info *isl_union_access_info_set_must_source(
__isl_take isl_union_access_info *access,
__isl_take isl_union_map *must_source)
{
return isl_union_access_info_set(access, isl_access_must_source,
must_source);
}
/* Replace the possible source accesses of "access" by "may_source".
*/
__isl_give isl_union_access_info *isl_union_access_info_set_may_source(
__isl_take isl_union_access_info *access,
__isl_take isl_union_map *may_source)
{
return isl_union_access_info_set(access, isl_access_may_source,
may_source);
}
/* Replace the kills of "info" by "kill".
*/
__isl_give isl_union_access_info *isl_union_access_info_set_kill(
__isl_take isl_union_access_info *info, __isl_take isl_union_map *kill)
{
return isl_union_access_info_set(info, isl_access_kill, kill);
}
/* Return the access relation of type "type" of "info".
*/
static __isl_give isl_union_map *isl_union_access_info_get(
__isl_keep isl_union_access_info *info, enum isl_access_type type)
{
if (!info)
return NULL;
return isl_union_map_copy(info->access[type]);
}
/* Return the definite source accesses of "info".
*/
__isl_give isl_union_map *isl_union_access_info_get_must_source(
__isl_keep isl_union_access_info *info)
{
return isl_union_access_info_get(info, isl_access_must_source);
}
/* Return the possible source accesses of "info".
*/
__isl_give isl_union_map *isl_union_access_info_get_may_source(
__isl_keep isl_union_access_info *info)
{
return isl_union_access_info_get(info, isl_access_may_source);
}
/* Return the kills of "info".
*/
__isl_give isl_union_map *isl_union_access_info_get_kill(
__isl_keep isl_union_access_info *info)
{
return isl_union_access_info_get(info, isl_access_kill);
}
/* Does "info" specify any kills?
*/
static isl_bool isl_union_access_has_kill(
__isl_keep isl_union_access_info *info)
{
isl_bool empty;
if (!info)
return isl_bool_error;
empty = isl_union_map_is_empty(info->access[isl_access_kill]);
return isl_bool_not(empty);
}
/* Replace the schedule of "access" by "schedule".
* Also free the schedule_map in case it was set last.
*/
__isl_give isl_union_access_info *isl_union_access_info_set_schedule(
__isl_take isl_union_access_info *access,
__isl_take isl_schedule *schedule)
{
if (!access || !schedule)
goto error;
access->schedule_map = isl_union_map_free(access->schedule_map);
isl_schedule_free(access->schedule);
access->schedule = schedule;
return access;
error:
isl_union_access_info_free(access);
isl_schedule_free(schedule);
return NULL;
}
/* Replace the schedule map of "access" by "schedule_map".
* Also free the schedule in case it was set last.
*/
__isl_give isl_union_access_info *isl_union_access_info_set_schedule_map(
__isl_take isl_union_access_info *access,
__isl_take isl_union_map *schedule_map)
{
if (!access || !schedule_map)
goto error;
isl_union_map_free(access->schedule_map);
access->schedule = isl_schedule_free(access->schedule);
access->schedule_map = schedule_map;
return access;
error:
isl_union_access_info_free(access);
isl_union_map_free(schedule_map);
return NULL;
}
__isl_give isl_union_access_info *isl_union_access_info_copy(
__isl_keep isl_union_access_info *access)
{
isl_union_access_info *copy;
enum isl_access_type i;
if (!access)
return NULL;
copy = isl_union_access_info_from_sink(
isl_union_map_copy(access->access[isl_access_sink]));
for (i = isl_access_sink + 1; i < isl_access_end; ++i)
copy = isl_union_access_info_set(copy, i,
isl_union_map_copy(access->access[i]));
if (access->schedule)
copy = isl_union_access_info_set_schedule(copy,
isl_schedule_copy(access->schedule));
else
copy = isl_union_access_info_set_schedule_map(copy,
isl_union_map_copy(access->schedule_map));
return copy;
}
#undef BASE
#define BASE union_map
#include "print_yaml_field_templ.c"
/* An enumeration of the various keys that may appear in a YAML mapping
* of an isl_union_access_info object.
* The keys for the access relation types are assumed to have the same values
* as the access relation types in isl_access_type.
*/
enum isl_ai_key {
isl_ai_key_error = -1,
isl_ai_key_sink = isl_access_sink,
isl_ai_key_must_source = isl_access_must_source,
isl_ai_key_may_source = isl_access_may_source,
isl_ai_key_kill = isl_access_kill,
isl_ai_key_schedule_map,
isl_ai_key_schedule,
isl_ai_key_end
};
/* Textual representations of the YAML keys for an isl_union_access_info
* object.
*/
static char *key_str[] = {
[isl_ai_key_sink] = "sink",
[isl_ai_key_must_source] = "must_source",
[isl_ai_key_may_source] = "may_source",
[isl_ai_key_kill] = "kill",
[isl_ai_key_schedule_map] = "schedule_map",
[isl_ai_key_schedule] = "schedule",
};
/* Print a key-value pair corresponding to the access relation of type "type"
* of a YAML mapping of "info" to "p".
*
* The sink access relation is always printed, but any other access relation
* is only printed if it is non-empty.
*/
static __isl_give isl_printer *print_access_field(__isl_take isl_printer *p,
__isl_keep isl_union_access_info *info, enum isl_access_type type)
{
if (type != isl_access_sink) {
isl_bool empty;
empty = isl_union_map_is_empty(info->access[type]);
if (empty < 0)
return isl_printer_free(p);
if (empty)
return p;
}
return print_yaml_field_union_map(p, key_str[type], info->access[type]);
}
/* Print the information contained in "access" to "p".
* The information is printed as a YAML document.
*/
__isl_give isl_printer *isl_printer_print_union_access_info(
__isl_take isl_printer *p, __isl_keep isl_union_access_info *access)
{
enum isl_access_type i;
if (!access)
return isl_printer_free(p);
p = isl_printer_yaml_start_mapping(p);
for (i = isl_access_sink; i < isl_access_end; ++i)
p = print_access_field(p, access, i);
if (access->schedule) {
p = isl_printer_print_str(p, key_str[isl_ai_key_schedule]);
p = isl_printer_yaml_next(p);
p = isl_printer_print_schedule(p, access->schedule);
p = isl_printer_yaml_next(p);
} else {
p = print_yaml_field_union_map(p,
key_str[isl_ai_key_schedule_map], access->schedule_map);
}
p = isl_printer_yaml_end_mapping(p);
return p;
}
/* Return a string representation of the information in "access".
* The information is printed in flow format.
*/
__isl_give char *isl_union_access_info_to_str(
__isl_keep isl_union_access_info *access)
{
isl_printer *p;
char *s;
if (!access)
return NULL;
p = isl_printer_to_str(isl_union_access_info_get_ctx(access));
p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_FLOW);
p = isl_printer_print_union_access_info(p, access);
s = isl_printer_get_str(p);
isl_printer_free(p);
return s;
}
#undef KEY
#define KEY enum isl_ai_key
#undef KEY_ERROR
#define KEY_ERROR isl_ai_key_error
#undef KEY_END
#define KEY_END isl_ai_key_end
#include "extract_key.c"
#undef BASE
#define BASE union_map
#include "read_in_string_templ.c"
/* Read an isl_union_access_info object from "s".
*
* Start off with an empty (invalid) isl_union_access_info object and
* then fill up the fields based on the input.
* The input needs to contain at least a description of the sink
* access relation as well as some form of schedule.
* The other access relations are set to empty relations
* by isl_union_access_info_init if they are not specified in the input.
*/
__isl_give isl_union_access_info *isl_stream_read_union_access_info(
isl_stream *s)
{
isl_ctx *ctx;
isl_union_access_info *info;
int more;
int sink_set = 0;
int schedule_set = 0;
if (isl_stream_yaml_read_start_mapping(s))
return NULL;
ctx = isl_stream_get_ctx(s);
info = isl_union_access_info_alloc(ctx);
while ((more = isl_stream_yaml_next(s)) > 0) {
enum isl_ai_key key;
isl_union_map *access, *schedule_map;
isl_schedule *schedule;
key = get_key(s);
if (isl_stream_yaml_next(s) < 0)
return isl_union_access_info_free(info);
switch (key) {
case isl_ai_key_end:
case isl_ai_key_error:
return isl_union_access_info_free(info);
case isl_ai_key_sink:
sink_set = 1;
case isl_ai_key_must_source:
case isl_ai_key_may_source:
case isl_ai_key_kill:
access = read_union_map(s);
info = isl_union_access_info_set(info, key, access);
if (!info)
return NULL;
break;
case isl_ai_key_schedule_map:
schedule_set = 1;
schedule_map = read_union_map(s);
info = isl_union_access_info_set_schedule_map(info,
schedule_map);
if (!info)
return NULL;
break;
case isl_ai_key_schedule:
schedule_set = 1;
schedule = isl_stream_read_schedule(s);
info = isl_union_access_info_set_schedule(info,
schedule);
if (!info)
return NULL;
break;
}
}
if (more < 0)
return isl_union_access_info_free(info);
if (isl_stream_yaml_read_end_mapping(s) < 0) {
isl_stream_error(s, NULL, "unexpected extra elements");
return isl_union_access_info_free(info);
}
if (!sink_set) {
isl_stream_error(s, NULL, "no sink specified");
return isl_union_access_info_free(info);
}
if (!schedule_set) {
isl_stream_error(s, NULL, "no schedule specified");
return isl_union_access_info_free(info);
}
return isl_union_access_info_init(info);
}
/* Read an isl_union_access_info object from the file "input".
*/
__isl_give isl_union_access_info *isl_union_access_info_read_from_file(
isl_ctx *ctx, FILE *input)
{
isl_stream *s;
isl_union_access_info *access;
s = isl_stream_new_file(ctx, input);
if (!s)
return NULL;
access = isl_stream_read_union_access_info(s);
isl_stream_free(s);
return access;
}
/* Update the fields of "access" such that they all have the same parameters,
* keeping in mind that the schedule_map field may be NULL and ignoring
* the schedule field.
*/
static __isl_give isl_union_access_info *isl_union_access_info_align_params(
__isl_take isl_union_access_info *access)
{
isl_space *space;
enum isl_access_type i;
if (!access)
return NULL;
space = isl_union_map_get_space(access->access[isl_access_sink]);
for (i = isl_access_sink + 1; i < isl_access_end; ++i)
space = isl_space_align_params(space,
isl_union_map_get_space(access->access[i]));
if (access->schedule_map)
space = isl_space_align_params(space,
isl_union_map_get_space(access->schedule_map));
for (i = isl_access_sink; i < isl_access_end; ++i)
access->access[i] =
isl_union_map_align_params(access->access[i],
isl_space_copy(space));
if (!access->schedule_map) {
isl_space_free(space);
} else {
access->schedule_map =
isl_union_map_align_params(access->schedule_map, space);
if (!access->schedule_map)
return isl_union_access_info_free(access);
}
for (i = isl_access_sink; i < isl_access_end; ++i)
if (!access->access[i])
return isl_union_access_info_free(access);
return access;
}
/* Prepend the schedule dimensions to the iteration domains.
*
* That is, if the schedule is of the form
*
* D -> S
*
* while the access relations are of the form
*
* D -> A
*
* then the updated access relations are of the form
*
* [S -> D] -> A
*
* The schedule map is also replaced by the map
*
* [S -> D] -> D
*
* that is used during the internal computation.
* Neither the original schedule map nor this updated schedule map
* are used after the call to this function.
*/
static __isl_give isl_union_access_info *
isl_union_access_info_introduce_schedule(
__isl_take isl_union_access_info *access)
{
isl_union_map *sm;
enum isl_access_type i;
if (!access)
return NULL;
sm = isl_union_map_reverse(access->schedule_map);
sm = isl_union_map_range_map(sm);
for (i = isl_access_sink; i < isl_access_end; ++i)
access->access[i] =
isl_union_map_apply_range(isl_union_map_copy(sm),
access->access[i]);
access->schedule_map = sm;
for (i = isl_access_sink; i < isl_access_end; ++i)
if (!access->access[i])
return isl_union_access_info_free(access);
if (!access->schedule_map)
return isl_union_access_info_free(access);
return access;
}
/* This structure represents the result of a dependence analysis computation.
*
* "must_dep" represents the full definite dependences
* "may_dep" represents the full non-definite dependences.
* Both are of the form
*
* [Source] -> [[Sink -> Data]]
*
* (after the schedule dimensions have been projected out).
* "must_no_source" represents the subset of the sink accesses for which
* definitely no source was found.
* "may_no_source" represents the subset of the sink accesses for which
* possibly, but not definitely, no source was found.
*/
struct isl_union_flow {
isl_union_map *must_dep;
isl_union_map *may_dep;
isl_union_map *must_no_source;
isl_union_map *may_no_source;
};
/* Return the isl_ctx to which "flow" belongs.
*/
isl_ctx *isl_union_flow_get_ctx(__isl_keep isl_union_flow *flow)
{
return flow ? isl_union_map_get_ctx(flow->must_dep) : NULL;
}
/* Free "flow" and return NULL.
*/
__isl_null isl_union_flow *isl_union_flow_free(__isl_take isl_union_flow *flow)
{
if (!flow)
return NULL;
isl_union_map_free(flow->must_dep);
isl_union_map_free(flow->may_dep);
isl_union_map_free(flow->must_no_source);
isl_union_map_free(flow->may_no_source);
free(flow);
return NULL;
}
void isl_union_flow_dump(__isl_keep isl_union_flow *flow)
{
if (!flow)
return;
fprintf(stderr, "must dependences: ");
isl_union_map_dump(flow->must_dep);
fprintf(stderr, "may dependences: ");
isl_union_map_dump(flow->may_dep);
fprintf(stderr, "must no source: ");
isl_union_map_dump(flow->must_no_source);
fprintf(stderr, "may no source: ");
isl_union_map_dump(flow->may_no_source);
}
/* Return the full definite dependences in "flow", with accessed elements.
*/
__isl_give isl_union_map *isl_union_flow_get_full_must_dependence(
__isl_keep isl_union_flow *flow)
{
if (!flow)
return NULL;
return isl_union_map_copy(flow->must_dep);
}
/* Return the full possible dependences in "flow", including the definite
* dependences, with accessed elements.
*/
__isl_give isl_union_map *isl_union_flow_get_full_may_dependence(
__isl_keep isl_union_flow *flow)
{
if (!flow)
return NULL;
return isl_union_map_union(isl_union_map_copy(flow->must_dep),
isl_union_map_copy(flow->may_dep));
}
/* Return the definite dependences in "flow", without the accessed elements.
*/
__isl_give isl_union_map *isl_union_flow_get_must_dependence(
__isl_keep isl_union_flow *flow)
{
isl_union_map *dep;
if (!flow)
return NULL;
dep = isl_union_map_copy(flow->must_dep);
return isl_union_map_range_factor_domain(dep);
}
/* Return the possible dependences in "flow", including the definite
* dependences, without the accessed elements.
*/
__isl_give isl_union_map *isl_union_flow_get_may_dependence(
__isl_keep isl_union_flow *flow)
{
isl_union_map *dep;
if (!flow)
return NULL;
dep = isl_union_map_union(isl_union_map_copy(flow->must_dep),
isl_union_map_copy(flow->may_dep));
return isl_union_map_range_factor_domain(dep);
}
/* Return the non-definite dependences in "flow".
*/
static __isl_give isl_union_map *isl_union_flow_get_non_must_dependence(
__isl_keep isl_union_flow *flow)
{
if (!flow)
return NULL;
return isl_union_map_copy(flow->may_dep);
}
/* Return the subset of the sink accesses for which definitely
* no source was found.
*/
__isl_give isl_union_map *isl_union_flow_get_must_no_source(
__isl_keep isl_union_flow *flow)
{
if (!flow)
return NULL;
return isl_union_map_copy(flow->must_no_source);
}
/* Return the subset of the sink accesses for which possibly
* no source was found, including those for which definitely
* no source was found.
*/
__isl_give isl_union_map *isl_union_flow_get_may_no_source(
__isl_keep isl_union_flow *flow)
{
if (!flow)
return NULL;
return isl_union_map_union(isl_union_map_copy(flow->must_no_source),
isl_union_map_copy(flow->may_no_source));
}
/* Return the subset of the sink accesses for which possibly, but not
* definitely, no source was found.
*/
static __isl_give isl_union_map *isl_union_flow_get_non_must_no_source(
__isl_keep isl_union_flow *flow)
{
if (!flow)
return NULL;
return isl_union_map_copy(flow->may_no_source);
}
/* Create a new isl_union_flow object, initialized with empty
* dependence relations and sink subsets.
*/
static __isl_give isl_union_flow *isl_union_flow_alloc(
__isl_take isl_space *space)
{
isl_ctx *ctx;
isl_union_map *empty;
isl_union_flow *flow;
if (!space)
return NULL;
ctx = isl_space_get_ctx(space);
flow = isl_alloc_type(ctx, isl_union_flow);
if (!flow)
goto error;
empty = isl_union_map_empty(space);
flow->must_dep = isl_union_map_copy(empty);
flow->may_dep = isl_union_map_copy(empty);
flow->must_no_source = isl_union_map_copy(empty);
flow->may_no_source = empty;
if (!flow->must_dep || !flow->may_dep ||
!flow->must_no_source || !flow->may_no_source)
return isl_union_flow_free(flow);
return flow;
error:
isl_space_free(space);
return NULL;
}
/* Copy this isl_union_flow object.
*/
__isl_give isl_union_flow *isl_union_flow_copy(__isl_keep isl_union_flow *flow)
{
isl_union_flow *copy;
if (!flow)
return NULL;
copy = isl_union_flow_alloc(isl_union_map_get_space(flow->must_dep));
if (!copy)
return NULL;
copy->must_dep = isl_union_map_union(copy->must_dep,
isl_union_map_copy(flow->must_dep));
copy->may_dep = isl_union_map_union(copy->may_dep,
isl_union_map_copy(flow->may_dep));
copy->must_no_source = isl_union_map_union(copy->must_no_source,
isl_union_map_copy(flow->must_no_source));
copy->may_no_source = isl_union_map_union(copy->may_no_source,
isl_union_map_copy(flow->may_no_source));
if (!copy->must_dep || !copy->may_dep ||
!copy->must_no_source || !copy->may_no_source)
return isl_union_flow_free(copy);
return copy;
}
/* Drop the schedule dimensions from the iteration domains in "flow".
* In particular, the schedule dimensions have been prepended
* to the iteration domains prior to the dependence analysis by
* replacing the iteration domain D, by the wrapped map [S -> D].
* Replace these wrapped maps by the original D.
*
* In particular, the dependences computed by access_info_compute_flow_core
* are of the form
*
* [S -> D] -> [[S' -> D'] -> A]
*
* The schedule dimensions are projected out by first currying the range,
* resulting in
*
* [S -> D] -> [S' -> [D' -> A]]
*
* and then computing the factor range
*
* D -> [D' -> A]
*/
static __isl_give isl_union_flow *isl_union_flow_drop_schedule(
__isl_take isl_union_flow *flow)
{
if (!flow)
return NULL;
flow->must_dep = isl_union_map_range_curry(flow->must_dep);
flow->must_dep = isl_union_map_factor_range(flow->must_dep);
flow->may_dep = isl_union_map_range_curry(flow->may_dep);
flow->may_dep = isl_union_map_factor_range(flow->may_dep);
flow->must_no_source =
isl_union_map_domain_factor_range(flow->must_no_source);
flow->may_no_source =
isl_union_map_domain_factor_range(flow->may_no_source);
if (!flow->must_dep || !flow->may_dep ||
!flow->must_no_source || !flow->may_no_source)
return isl_union_flow_free(flow);
return flow;
}
struct isl_compute_flow_data {
isl_union_map *must_source;
isl_union_map *may_source;
isl_union_flow *flow;
int count;
int must;
isl_space *dim;
struct isl_sched_info *sink_info;
struct isl_sched_info **source_info;
isl_access_info *accesses;
};
static isl_stat count_matching_array(__isl_take isl_map *map, void *user)
{
int eq;
isl_space *space;
struct isl_compute_flow_data *data;
data = (struct isl_compute_flow_data *)user;
space = isl_space_range(isl_map_get_space(map));
eq = isl_space_is_equal(space, data->dim);
isl_space_free(space);
isl_map_free(map);
if (eq < 0)
return isl_stat_error;
if (eq)
data->count++;
return isl_stat_ok;
}
static isl_stat collect_matching_array(__isl_take isl_map *map, void *user)
{
int eq;
isl_space *space;
struct isl_sched_info *info;
struct isl_compute_flow_data *data;
data = (struct isl_compute_flow_data *)user;
space = isl_space_range(isl_map_get_space(map));
eq = isl_space_is_equal(space, data->dim);
isl_space_free(space);
if (eq < 0)
goto error;
if (!eq) {
isl_map_free(map);
return isl_stat_ok;
}
info = sched_info_alloc(map);
data->source_info[data->count] = info;
data->accesses = isl_access_info_add_source(data->accesses,
map, data->must, info);
data->count++;
return isl_stat_ok;
error:
isl_map_free(map);
return isl_stat_error;
}
/* Determine the shared nesting level and the "textual order" of
* the given accesses.
*
* We first determine the minimal schedule dimension for both accesses.
*
* If among those dimensions, we can find one where both have a fixed
* value and if moreover those values are different, then the previous
* dimension is the last shared nesting level and the textual order
* is determined based on the order of the fixed values.
* If no such fixed values can be found, then we set the shared
* nesting level to the minimal schedule dimension, with no textual ordering.
*/
static int before(void *first, void *second)
{
struct isl_sched_info *info1 = first;
struct isl_sched_info *info2 = second;
isl_size n1, n2;
int i;
n1 = isl_vec_size(info1->cst);
n2 = isl_vec_size(info2->cst);
if (n1 < 0 || n2 < 0)
return -1;
if (n2 < n1)
n1 = n2;
for (i = 0; i < n1; ++i) {
int r;
int cmp;
if (!info1->is_cst[i])
continue;
if (!info2->is_cst[i])
continue;
cmp = isl_vec_cmp_element(info1->cst, info2->cst, i);
if (cmp == 0)
continue;
r = 2 * i + (cmp < 0);
return r;
}
return 2 * n1;
}
/* Check if the given two accesses may be coscheduled.
* If so, return isl_bool_true. Otherwise return isl_bool_false.
*
* Two accesses may only be coscheduled if the fixed schedule
* coordinates have the same values.
*/
static isl_bool coscheduled(void *first, void *second)
{
struct isl_sched_info *info1 = first;
struct isl_sched_info *info2 = second;
isl_size n1, n2;
int i;
n1 = isl_vec_size(info1->cst);
n2 = isl_vec_size(info2->cst);
if (n1 < 0 || n2 < 0)
return isl_bool_error;
if (n2 < n1)
n1 = n2;
for (i = 0; i < n1; ++i) {
int cmp;
if (!info1->is_cst[i])
continue;
if (!info2->is_cst[i])
continue;
cmp = isl_vec_cmp_element(info1->cst, info2->cst, i);
if (cmp != 0)
return isl_bool_false;
}
return isl_bool_true;
}
/* Given a sink access, look for all the source accesses that access
* the same array and perform dataflow analysis on them using
* isl_access_info_compute_flow_core.
*/
static isl_stat compute_flow(__isl_take isl_map *map, void *user)
{
int i;
isl_ctx *ctx;
struct isl_compute_flow_data *data;
isl_flow *flow;
isl_union_flow *df;
data = (struct isl_compute_flow_data *)user;
df = data->flow;
ctx = isl_map_get_ctx(map);
data->accesses = NULL;
data->sink_info = NULL;
data->source_info = NULL;
data->count = 0;
data->dim = isl_space_range(isl_map_get_space(map));
if (isl_union_map_foreach_map(data->must_source,
&count_matching_array, data) < 0)
goto error;
if (isl_union_map_foreach_map(data->may_source,
&count_matching_array, data) < 0)
goto error;
data->sink_info = sched_info_alloc(map);
data->source_info = isl_calloc_array(ctx, struct isl_sched_info *,
data->count);
data->accesses = isl_access_info_alloc(isl_map_copy(map),
data->sink_info, &before, data->count);
if (!data->sink_info || (data->count && !data->source_info) ||
!data->accesses)
goto error;
data->accesses->coscheduled = &coscheduled;
data->count = 0;
data->must = 1;
if (isl_union_map_foreach_map(data->must_source,
&collect_matching_array, data) < 0)
goto error;
data->must = 0;
if (isl_union_map_foreach_map(data->may_source,
&collect_matching_array, data) < 0)
goto error;
flow = access_info_compute_flow_core(data->accesses);
data->accesses = NULL;
if (!flow)
goto error;
df->must_no_source = isl_union_map_union(df->must_no_source,
isl_union_map_from_map(isl_flow_get_no_source(flow, 1)));
df->may_no_source = isl_union_map_union(df->may_no_source,
isl_union_map_from_map(isl_flow_get_no_source(flow, 0)));
for (i = 0; i < flow->n_source; ++i) {
isl_union_map *dep;
dep = isl_union_map_from_map(isl_map_copy(flow->dep[i].map));
if (flow->dep[i].must)
df->must_dep = isl_union_map_union(df->must_dep, dep);
else
df->may_dep = isl_union_map_union(df->may_dep, dep);
}
isl_flow_free(flow);
sched_info_free(data->sink_info);
if (data->source_info) {
for (i = 0; i < data->count; ++i)
sched_info_free(data->source_info[i]);
free(data->source_info);
}
isl_space_free(data->dim);
isl_map_free(map);
return isl_stat_ok;
error:
isl_access_info_free(data->accesses);
sched_info_free(data->sink_info);
if (data->source_info) {
for (i = 0; i < data->count; ++i)
sched_info_free(data->source_info[i]);
free(data->source_info);
}
isl_space_free(data->dim);
isl_map_free(map);
return isl_stat_error;
}
/* Add the kills of "info" to the must-sources.
*/
static __isl_give isl_union_access_info *
isl_union_access_info_add_kill_to_must_source(
__isl_take isl_union_access_info *info)
{
isl_union_map *must, *kill;
must = isl_union_access_info_get_must_source(info);
kill = isl_union_access_info_get_kill(info);
must = isl_union_map_union(must, kill);
return isl_union_access_info_set_must_source(info, must);
}
/* Drop dependences from "flow" that purely originate from kills.
* That is, only keep those dependences that originate from
* the original must-sources "must" and/or the original may-sources "may".
* In particular, "must" contains the must-sources from before
* the kills were added and "may" contains the may-source from before
* the kills were removed.
*
* The dependences are of the form
*
* Source -> [Sink -> Data]
*
* Only those dependences are kept where the Source -> Data part
* is a subset of the original may-sources or must-sources.
* Of those, only the must-dependences that intersect with the must-sources
* remain must-dependences.
* If there is some overlap between the may-sources and the must-sources,
* then the may-dependences and must-dependences may also overlap.
* This should be fine since the may-dependences are only kept
* disjoint from the must-dependences for the isl_union_map_compute_flow
* interface. This interface does not support kills, so it will
* not end up calling this function.
*/
static __isl_give isl_union_flow *isl_union_flow_drop_kill_source(
__isl_take isl_union_flow *flow, __isl_take isl_union_map *must,
__isl_take isl_union_map *may)
{
isl_union_map *move;
if (!flow)
goto error;
move = isl_union_map_copy(flow->must_dep);
move = isl_union_map_intersect_range_factor_range(move,
isl_union_map_copy(may));
may = isl_union_map_union(may, isl_union_map_copy(must));
flow->may_dep = isl_union_map_intersect_range_factor_range(
flow->may_dep, may);
flow->must_dep = isl_union_map_intersect_range_factor_range(
flow->must_dep, must);
flow->may_dep = isl_union_map_union(flow->may_dep, move);
if (!flow->must_dep || !flow->may_dep)
return isl_union_flow_free(flow);
return flow;
error:
isl_union_map_free(must);
isl_union_map_free(may);
return NULL;
}
/* Remove the must accesses from the may accesses.
*
* A must access always trumps a may access, so there is no need
* for a must access to also be considered as a may access. Doing so
* would only cost extra computations only to find out that
* the duplicated may access does not make any difference.
*/
static __isl_give isl_union_access_info *isl_union_access_info_normalize(
__isl_take isl_union_access_info *access)
{
if (!access)
return NULL;
access->access[isl_access_may_source] =
isl_union_map_subtract(access->access[isl_access_may_source],
isl_union_map_copy(access->access[isl_access_must_source]));
if (!access->access[isl_access_may_source])
return isl_union_access_info_free(access);
return access;
}
/* Given a description of the "sink" accesses, the "source" accesses and
* a schedule, compute for each instance of a sink access
* and for each element accessed by that instance,
* the possible or definite source accesses that last accessed the
* element accessed by the sink access before this sink access
* in the sense that there is no intermediate definite source access.
*
* The must_no_source and may_no_source elements of the result
* are subsets of access->sink. The elements must_dep and may_dep
* map domain elements of access->{may,must)_source to
* domain elements of access->sink.
*
* This function is used when only the schedule map representation
* is available.
*
* We first prepend the schedule dimensions to the domain
* of the accesses so that we can easily compare their relative order.
* Then we consider each sink access individually in compute_flow.
*/
static __isl_give isl_union_flow *compute_flow_union_map(
__isl_take isl_union_access_info *access)
{
struct isl_compute_flow_data data;
isl_union_map *sink;
access = isl_union_access_info_align_params(access);
access = isl_union_access_info_introduce_schedule(access);
if (!access)
return NULL;
data.must_source = access->access[isl_access_must_source];
data.may_source = access->access[isl_access_may_source];
sink = access->access[isl_access_sink];
data.flow = isl_union_flow_alloc(isl_union_map_get_space(sink));
if (isl_union_map_foreach_map(sink, &compute_flow, &data) < 0)
goto error;
data.flow = isl_union_flow_drop_schedule(data.flow);
isl_union_access_info_free(access);
return data.flow;
error:
isl_union_access_info_free(access);
isl_union_flow_free(data.flow);
return NULL;
}
/* A schedule access relation.
*
* The access relation "access" is of the form [S -> D] -> A,
* where S corresponds to the prefix schedule at "node".
* "must" is only relevant for source accesses and indicates
* whether the access is a must source or a may source.
*/
struct isl_scheduled_access {
isl_map *access;
int must;
isl_schedule_node *node;
};
/* Data structure for keeping track of individual scheduled sink and source
* accesses when computing dependence analysis based on a schedule tree.
*
* "n_sink" is the number of used entries in "sink"
* "n_source" is the number of used entries in "source"
*
* "set_sink", "must" and "node" are only used inside collect_sink_source,
* to keep track of the current node and
* of what extract_sink_source needs to do.
*/
struct isl_compute_flow_schedule_data {
isl_union_access_info *access;
int n_sink;
int n_source;
struct isl_scheduled_access *sink;
struct isl_scheduled_access *source;
int set_sink;
int must;
isl_schedule_node *node;
};
/* Align the parameters of all sinks with all sources.
*
* If there are no sinks or no sources, then no alignment is needed.
*/
static void isl_compute_flow_schedule_data_align_params(
struct isl_compute_flow_schedule_data *data)
{
int i;
isl_space *space;
if (data->n_sink == 0 || data->n_source == 0)
return;
space = isl_map_get_space(data->sink[0].access);
for (i = 1; i < data->n_sink; ++i)
space = isl_space_align_params(space,
isl_map_get_space(data->sink[i].access));
for (i = 0; i < data->n_source; ++i)
space = isl_space_align_params(space,
isl_map_get_space(data->source[i].access));
for (i = 0; i < data->n_sink; ++i)
data->sink[i].access =
isl_map_align_params(data->sink[i].access,
isl_space_copy(space));
for (i = 0; i < data->n_source; ++i)
data->source[i].access =
isl_map_align_params(data->source[i].access,
isl_space_copy(space));
isl_space_free(space);
}
/* Free all the memory referenced from "data".
* Do not free "data" itself as it may be allocated on the stack.
*/
static void isl_compute_flow_schedule_data_clear(
struct isl_compute_flow_schedule_data *data)
{
int i;
if (!data->sink)
return;
for (i = 0; i < data->n_sink; ++i) {
isl_map_free(data->sink[i].access);
isl_schedule_node_free(data->sink[i].node);
}
for (i = 0; i < data->n_source; ++i) {
isl_map_free(data->source[i].access);
isl_schedule_node_free(data->source[i].node);
}
free(data->sink);
}
/* isl_schedule_foreach_schedule_node_top_down callback for counting
* (an upper bound on) the number of sinks and sources.
*
* Sinks and sources are only extracted at leaves of the tree,
* so we skip the node if it is not a leaf.
* Otherwise we increment data->n_sink and data->n_source with
* the number of spaces in the sink and source access domains
* that reach this node.
*/
static isl_bool count_sink_source(__isl_keep isl_schedule_node *node,
void *user)
{
struct isl_compute_flow_schedule_data *data = user;
isl_union_set *domain;
isl_union_map *umap;
isl_bool r = isl_bool_false;
isl_size n;
if (isl_schedule_node_get_type(node) != isl_schedule_node_leaf)
return isl_bool_true;
domain = isl_schedule_node_get_universe_domain(node);
umap = isl_union_map_copy(data->access->access[isl_access_sink]);
umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(domain));
data->n_sink += n = isl_union_map_n_map(umap);
isl_union_map_free(umap);
if (n < 0)
r = isl_bool_error;
umap = isl_union_map_copy(data->access->access[isl_access_must_source]);
umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(domain));
data->n_source += n = isl_union_map_n_map(umap);
isl_union_map_free(umap);
if (n < 0)
r = isl_bool_error;
umap = isl_union_map_copy(data->access->access[isl_access_may_source]);
umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(domain));
data->n_source += n = isl_union_map_n_map(umap);
isl_union_map_free(umap);
if (n < 0)
r = isl_bool_error;
isl_union_set_free(domain);
return r;
}
/* Add a single scheduled sink or source (depending on data->set_sink)
* with scheduled access relation "map", must property data->must and
* schedule node data->node to the list of sinks or sources.
*/
static isl_stat extract_sink_source(__isl_take isl_map *map, void *user)
{
struct isl_compute_flow_schedule_data *data = user;
struct isl_scheduled_access *access;
if (data->set_sink)
access = data->sink + data->n_sink++;
else
access = data->source + data->n_source++;
access->access = map;
access->must = data->must;
access->node = isl_schedule_node_copy(data->node);
return isl_stat_ok;
}
/* isl_schedule_foreach_schedule_node_top_down callback for collecting
* individual scheduled source and sink accesses (taking into account
* the domain of the schedule).
*
* We only collect accesses at the leaves of the schedule tree.
* We prepend the schedule dimensions at the leaf to the iteration
* domains of the source and sink accesses and then extract
* the individual accesses (per space).
*
* In particular, if the prefix schedule at the node is of the form
*
* D -> S
*
* while the access relations are of the form
*
* D -> A
*
* then the updated access relations are of the form
*
* [S -> D] -> A
*
* Note that S consists of a single space such that introducing S
* in the access relations does not increase the number of spaces.
*/
static isl_bool collect_sink_source(__isl_keep isl_schedule_node *node,
void *user)
{
struct isl_compute_flow_schedule_data *data = user;
isl_union_map *prefix;
isl_union_map *umap;
isl_bool r = isl_bool_false;
if (isl_schedule_node_get_type(node) != isl_schedule_node_leaf)
return isl_bool_true;
data->node = node;
prefix = isl_schedule_node_get_prefix_schedule_relation(node);
prefix = isl_union_map_reverse(prefix);
prefix = isl_union_map_range_map(prefix);
data->set_sink = 1;
umap = isl_union_map_copy(data->access->access[isl_access_sink]);
umap = isl_union_map_apply_range(isl_union_map_copy(prefix), umap);
if (isl_union_map_foreach_map(umap, &extract_sink_source, data) < 0)
r = isl_bool_error;
isl_union_map_free(umap);
data->set_sink = 0;
data->must = 1;
umap = isl_union_map_copy(data->access->access[isl_access_must_source]);
umap = isl_union_map_apply_range(isl_union_map_copy(prefix), umap);
if (isl_union_map_foreach_map(umap, &extract_sink_source, data) < 0)
r = isl_bool_error;
isl_union_map_free(umap);
data->set_sink = 0;
data->must = 0;
umap = isl_union_map_copy(data->access->access[isl_access_may_source]);
umap = isl_union_map_apply_range(isl_union_map_copy(prefix), umap);
if (isl_union_map_foreach_map(umap, &extract_sink_source, data) < 0)
r = isl_bool_error;
isl_union_map_free(umap);
isl_union_map_free(prefix);
return r;
}
/* isl_access_info_compute_flow callback for determining whether
* the shared nesting level and the ordering within that level
* for two scheduled accesses for use in compute_single_flow.
*
* The tokens passed to this function refer to the leaves
* in the schedule tree where the accesses take place.
*
* If n is the shared number of loops, then we need to return
* "2 * n + 1" if "first" precedes "second" inside the innermost
* shared loop and "2 * n" otherwise.
*
* The innermost shared ancestor may be the leaves themselves
* if the accesses take place in the same leaf. Otherwise,
* it is either a set node or a sequence node. Only in the case
* of a sequence node do we consider one access to precede the other.
*/
static int before_node(void *first, void *second)
{
isl_schedule_node *node1 = first;
isl_schedule_node *node2 = second;
isl_schedule_node *shared;
isl_size depth;
int before = 0;
shared = isl_schedule_node_get_shared_ancestor(node1, node2);
depth = isl_schedule_node_get_schedule_depth(shared);
if (depth < 0) {
isl_schedule_node_free(shared);
return -1;
}
if (isl_schedule_node_get_type(shared) == isl_schedule_node_sequence) {
isl_size pos1, pos2;
pos1 = isl_schedule_node_get_ancestor_child_position(node1,
shared);
pos2 = isl_schedule_node_get_ancestor_child_position(node2,
shared);
if (pos1 < 0 || pos2 < 0) {
isl_schedule_node_free(shared);
return -1;
}
before = pos1 < pos2;
}
isl_schedule_node_free(shared);
return 2 * depth + before;
}
/* Check if the given two accesses may be coscheduled.
* If so, return isl_bool_true. Otherwise return isl_bool_false.
*
* Two accesses may only be coscheduled if they appear in the same leaf.
*/
static isl_bool coscheduled_node(void *first, void *second)
{
isl_schedule_node *node1 = first;
isl_schedule_node *node2 = second;
return isl_bool_ok(node1 == node2);
}
/* Add the scheduled sources from "data" that access
* the same data space as "sink" to "access".
*/
static __isl_give isl_access_info *add_matching_sources(
__isl_take isl_access_info *access, struct isl_scheduled_access *sink,
struct isl_compute_flow_schedule_data *data)
{
int i;
isl_space *space;
space = isl_space_range(isl_map_get_space(sink->access));
for (i = 0; i < data->n_source; ++i) {
struct isl_scheduled_access *source;
isl_space *source_space;
int eq;
source = &data->source[i];
source_space = isl_map_get_space(source->access);
source_space = isl_space_range(source_space);
eq = isl_space_is_equal(space, source_space);
isl_space_free(source_space);
if (!eq)
continue;
if (eq < 0)
goto error;
access = isl_access_info_add_source(access,
isl_map_copy(source->access), source->must, source->node);
}
isl_space_free(space);
return access;
error:
isl_space_free(space);
isl_access_info_free(access);
return NULL;
}
/* Given a scheduled sink access relation "sink", compute the corresponding
* dependences on the sources in "data" and add the computed dependences
* to "uf".
*
* The dependences computed by access_info_compute_flow_core are of the form
*
* [S -> I] -> [[S' -> I'] -> A]
*
* The schedule dimensions are projected out by first currying the range,
* resulting in
*
* [S -> I] -> [S' -> [I' -> A]]
*
* and then computing the factor range
*
* I -> [I' -> A]
*/
static __isl_give isl_union_flow *compute_single_flow(
__isl_take isl_union_flow *uf, struct isl_scheduled_access *sink,
struct isl_compute_flow_schedule_data *data)
{
int i;
isl_access_info *access;
isl_flow *flow;
isl_map *map;
if (!uf)
return NULL;
access = isl_access_info_alloc(isl_map_copy(sink->access), sink->node,
&before_node, data->n_source);
if (access)
access->coscheduled = &coscheduled_node;
access = add_matching_sources(access, sink, data);
flow = access_info_compute_flow_core(access);
if (!flow)
return isl_union_flow_free(uf);
map = isl_map_domain_factor_range(isl_flow_get_no_source(flow, 1));
uf->must_no_source = isl_union_map_union(uf->must_no_source,
isl_union_map_from_map(map));
map = isl_map_domain_factor_range(isl_flow_get_no_source(flow, 0));
uf->may_no_source = isl_union_map_union(uf->may_no_source,
isl_union_map_from_map(map));
for (i = 0; i < flow->n_source; ++i) {
isl_union_map *dep;
map = isl_map_range_curry(isl_map_copy(flow->dep[i].map));
map = isl_map_factor_range(map);
dep = isl_union_map_from_map(map);
if (flow->dep[i].must)
uf->must_dep = isl_union_map_union(uf->must_dep, dep);
else
uf->may_dep = isl_union_map_union(uf->may_dep, dep);
}
isl_flow_free(flow);
return uf;
}
/* Given a description of the "sink" accesses, the "source" accesses and
* a schedule, compute for each instance of a sink access
* and for each element accessed by that instance,
* the possible or definite source accesses that last accessed the
* element accessed by the sink access before this sink access
* in the sense that there is no intermediate definite source access.
* Only consider dependences between statement instances that belong
* to the domain of the schedule.
*
* The must_no_source and may_no_source elements of the result
* are subsets of access->sink. The elements must_dep and may_dep
* map domain elements of access->{may,must)_source to
* domain elements of access->sink.
*
* This function is used when a schedule tree representation
* is available.
*
* We extract the individual scheduled source and sink access relations
* (taking into account the domain of the schedule) and
* then compute dependences for each scheduled sink individually.
*/
static __isl_give isl_union_flow *compute_flow_schedule(
__isl_take isl_union_access_info *access)
{
struct isl_compute_flow_schedule_data data = { access };
int i, n;
isl_ctx *ctx;
isl_space *space;
isl_union_flow *flow;
ctx = isl_union_access_info_get_ctx(access);
data.n_sink = 0;
data.n_source = 0;
if (isl_schedule_foreach_schedule_node_top_down(access->schedule,
&count_sink_source, &data) < 0)
goto error;
n = data.n_sink + data.n_source;
data.sink = isl_calloc_array(ctx, struct isl_scheduled_access, n);
if (n && !data.sink)
goto error;
data.source = data.sink + data.n_sink;
data.n_sink = 0;
data.n_source = 0;
if (isl_schedule_foreach_schedule_node_top_down(access->schedule,
&collect_sink_source, &data) < 0)
goto error;
space = isl_union_map_get_space(access->access[isl_access_sink]);
flow = isl_union_flow_alloc(space);
isl_compute_flow_schedule_data_align_params(&data);
for (i = 0; i < data.n_sink; ++i)
flow = compute_single_flow(flow, &data.sink[i], &data);
isl_compute_flow_schedule_data_clear(&data);
isl_union_access_info_free(access);
return flow;
error:
isl_union_access_info_free(access);
isl_compute_flow_schedule_data_clear(&data);
return NULL;
}
/* Given a description of the "sink" accesses, the "source" accesses and
* a schedule, compute for each instance of a sink access
* and for each element accessed by that instance,
* the possible or definite source accesses that last accessed the
* element accessed by the sink access before this sink access
* in the sense that there is no intermediate definite source access.
*
* The must_no_source and may_no_source elements of the result
* are subsets of access->sink. The elements must_dep and may_dep
* map domain elements of access->{may,must)_source to
* domain elements of access->sink.
*
* If any kills have been specified, then they are treated as
* must-sources internally. Any dependence that purely derives
* from an original kill is removed from the output.
*
* We check whether the schedule is available as a schedule tree
* or a schedule map and call the corresponding function to perform
* the analysis.
*/
__isl_give isl_union_flow *isl_union_access_info_compute_flow(
__isl_take isl_union_access_info *access)
{
isl_bool has_kill;
isl_union_map *must = NULL, *may = NULL;
isl_union_flow *flow;
has_kill = isl_union_access_has_kill(access);
if (has_kill < 0)
goto error;
if (has_kill) {
must = isl_union_access_info_get_must_source(access);
may = isl_union_access_info_get_may_source(access);
}
access = isl_union_access_info_add_kill_to_must_source(access);
access = isl_union_access_info_normalize(access);
if (!access)
goto error;
if (access->schedule)
flow = compute_flow_schedule(access);
else
flow = compute_flow_union_map(access);
if (has_kill)
flow = isl_union_flow_drop_kill_source(flow, must, may);
return flow;
error:
isl_union_access_info_free(access);
isl_union_map_free(must);
isl_union_map_free(may);
return NULL;
}
/* Print the information contained in "flow" to "p".
* The information is printed as a YAML document.
*/
__isl_give isl_printer *isl_printer_print_union_flow(
__isl_take isl_printer *p, __isl_keep isl_union_flow *flow)
{
isl_union_map *umap;
if (!flow)
return isl_printer_free(p);
p = isl_printer_yaml_start_mapping(p);
umap = isl_union_flow_get_full_must_dependence(flow);
p = print_yaml_field_union_map(p, "must_dependence", umap);
isl_union_map_free(umap);
umap = isl_union_flow_get_full_may_dependence(flow);
p = print_yaml_field_union_map(p, "may_dependence", umap);
isl_union_map_free(umap);
p = print_yaml_field_union_map(p, "must_no_source",
flow->must_no_source);
umap = isl_union_flow_get_may_no_source(flow);
p = print_yaml_field_union_map(p, "may_no_source", umap);
isl_union_map_free(umap);
p = isl_printer_yaml_end_mapping(p);
return p;
}
/* Return a string representation of the information in "flow".
* The information is printed in flow format.
*/
__isl_give char *isl_union_flow_to_str(__isl_keep isl_union_flow *flow)
{
isl_printer *p;
char *s;
if (!flow)
return NULL;
p = isl_printer_to_str(isl_union_flow_get_ctx(flow));
p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_FLOW);
p = isl_printer_print_union_flow(p, flow);
s = isl_printer_get_str(p);
isl_printer_free(p);
return s;
}
/* Given a collection of "sink" and "source" accesses,
* compute for each iteration of a sink access
* and for each element accessed by that iteration,
* the source access in the list that last accessed the
* element accessed by the sink access before this sink access.
* Each access is given as a map from the loop iterators
* to the array indices.
* The result is a relations between source and sink
* iterations and a subset of the domain of the sink accesses,
* corresponding to those iterations that access an element
* not previously accessed.
*
* We collect the inputs in an isl_union_access_info object,
* call isl_union_access_info_compute_flow and extract
* the outputs from the result.
*/
int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
__isl_take isl_union_map *must_source,
__isl_take isl_union_map *may_source,
__isl_take isl_union_map *schedule,
__isl_give isl_union_map **must_dep, __isl_give isl_union_map **may_dep,
__isl_give isl_union_map **must_no_source,
__isl_give isl_union_map **may_no_source)
{
isl_union_access_info *access;
isl_union_flow *flow;
access = isl_union_access_info_from_sink(sink);
access = isl_union_access_info_set_must_source(access, must_source);
access = isl_union_access_info_set_may_source(access, may_source);
access = isl_union_access_info_set_schedule_map(access, schedule);
flow = isl_union_access_info_compute_flow(access);
if (must_dep)
*must_dep = isl_union_flow_get_must_dependence(flow);
if (may_dep)
*may_dep = isl_union_flow_get_non_must_dependence(flow);
if (must_no_source)
*must_no_source = isl_union_flow_get_must_no_source(flow);
if (may_no_source)
*may_no_source = isl_union_flow_get_non_must_no_source(flow);
isl_union_flow_free(flow);
if ((must_dep && !*must_dep) || (may_dep && !*may_dep) ||
(must_no_source && !*must_no_source) ||
(may_no_source && !*may_no_source))
goto error;
return 0;
error:
if (must_dep)
*must_dep = isl_union_map_free(*must_dep);
if (may_dep)
*may_dep = isl_union_map_free(*may_dep);
if (must_no_source)
*must_no_source = isl_union_map_free(*must_no_source);
if (may_no_source)
*may_no_source = isl_union_map_free(*may_no_source);
return -1;
}
|