1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
|
//===------ IslExprBuilder.cpp ----- Code generate isl AST expressions ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
#include "polly/CodeGen/IslExprBuilder.h"
#include "polly/CodeGen/RuntimeDebugBuilder.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;
using namespace polly;
/// Different overflow tracking modes.
enum OverflowTrackingChoice {
OT_NEVER, ///< Never tack potential overflows.
OT_REQUEST, ///< Track potential overflows if requested.
OT_ALWAYS ///< Always track potential overflows.
};
static cl::opt<OverflowTrackingChoice> OTMode(
"polly-overflow-tracking",
cl::desc("Define where potential integer overflows in generated "
"expressions should be tracked."),
cl::values(clEnumValN(OT_NEVER, "never", "Never track the overflow bit."),
clEnumValN(OT_REQUEST, "request",
"Track the overflow bit if requested."),
clEnumValN(OT_ALWAYS, "always",
"Always track the overflow bit.")),
cl::Hidden, cl::init(OT_REQUEST), cl::ZeroOrMore, cl::cat(PollyCategory));
IslExprBuilder::IslExprBuilder(Scop &S, PollyIRBuilder &Builder,
IDToValueTy &IDToValue, ValueMapT &GlobalMap,
const DataLayout &DL, ScalarEvolution &SE,
DominatorTree &DT, LoopInfo &LI,
BasicBlock *StartBlock)
: S(S), Builder(Builder), IDToValue(IDToValue), GlobalMap(GlobalMap),
DL(DL), SE(SE), DT(DT), LI(LI), StartBlock(StartBlock) {
OverflowState = (OTMode == OT_ALWAYS) ? Builder.getFalse() : nullptr;
}
void IslExprBuilder::setTrackOverflow(bool Enable) {
// If potential overflows are tracked always or never we ignore requests
// to change the behavior.
if (OTMode != OT_REQUEST)
return;
if (Enable) {
// If tracking should be enabled initialize the OverflowState.
OverflowState = Builder.getFalse();
} else {
// If tracking should be disabled just unset the OverflowState.
OverflowState = nullptr;
}
}
Value *IslExprBuilder::getOverflowState() const {
// If the overflow tracking was requested but it is disabled we avoid the
// additional nullptr checks at the call sides but instead provide a
// meaningful result.
if (OTMode == OT_NEVER)
return Builder.getFalse();
return OverflowState;
}
bool IslExprBuilder::hasLargeInts(isl::ast_expr Expr) {
enum isl_ast_expr_type Type = isl_ast_expr_get_type(Expr.get());
if (Type == isl_ast_expr_id)
return false;
if (Type == isl_ast_expr_int) {
isl::val Val = Expr.get_val();
APInt APValue = APIntFromVal(Val);
auto BitWidth = APValue.getBitWidth();
return BitWidth >= 64;
}
assert(Type == isl_ast_expr_op && "Expected isl_ast_expr of type operation");
int NumArgs = isl_ast_expr_get_op_n_arg(Expr.get());
for (int i = 0; i < NumArgs; i++) {
isl::ast_expr Operand = Expr.get_op_arg(i);
if (hasLargeInts(Operand))
return true;
}
return false;
}
Value *IslExprBuilder::createBinOp(BinaryOperator::BinaryOps Opc, Value *LHS,
Value *RHS, const Twine &Name) {
// Handle the plain operation (without overflow tracking) first.
if (!OverflowState) {
switch (Opc) {
case Instruction::Add:
return Builder.CreateNSWAdd(LHS, RHS, Name);
case Instruction::Sub:
return Builder.CreateNSWSub(LHS, RHS, Name);
case Instruction::Mul:
return Builder.CreateNSWMul(LHS, RHS, Name);
default:
llvm_unreachable("Unknown binary operator!");
}
}
Function *F = nullptr;
Module *M = Builder.GetInsertBlock()->getModule();
switch (Opc) {
case Instruction::Add:
F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
{LHS->getType()});
break;
case Instruction::Sub:
F = Intrinsic::getDeclaration(M, Intrinsic::ssub_with_overflow,
{LHS->getType()});
break;
case Instruction::Mul:
F = Intrinsic::getDeclaration(M, Intrinsic::smul_with_overflow,
{LHS->getType()});
break;
default:
llvm_unreachable("No overflow intrinsic for binary operator found!");
}
auto *ResultStruct = Builder.CreateCall(F, {LHS, RHS}, Name);
assert(ResultStruct->getType()->isStructTy());
auto *OverflowFlag =
Builder.CreateExtractValue(ResultStruct, 1, Name + ".obit");
// If all overflows are tracked we do not combine the results as this could
// cause dominance problems. Instead we will always keep the last overflow
// flag as current state.
if (OTMode == OT_ALWAYS)
OverflowState = OverflowFlag;
else
OverflowState =
Builder.CreateOr(OverflowState, OverflowFlag, "polly.overflow.state");
return Builder.CreateExtractValue(ResultStruct, 0, Name + ".res");
}
Value *IslExprBuilder::createAdd(Value *LHS, Value *RHS, const Twine &Name) {
return createBinOp(Instruction::Add, LHS, RHS, Name);
}
Value *IslExprBuilder::createSub(Value *LHS, Value *RHS, const Twine &Name) {
return createBinOp(Instruction::Sub, LHS, RHS, Name);
}
Value *IslExprBuilder::createMul(Value *LHS, Value *RHS, const Twine &Name) {
return createBinOp(Instruction::Mul, LHS, RHS, Name);
}
Type *IslExprBuilder::getWidestType(Type *T1, Type *T2) {
assert(isa<IntegerType>(T1) && isa<IntegerType>(T2));
if (T1->getPrimitiveSizeInBits() < T2->getPrimitiveSizeInBits())
return T2;
else
return T1;
}
Value *IslExprBuilder::createOpUnary(__isl_take isl_ast_expr *Expr) {
assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_minus &&
"Unsupported unary operation");
Value *V;
Type *MaxType = getType(Expr);
assert(MaxType->isIntegerTy() &&
"Unary expressions can only be created for integer types");
V = create(isl_ast_expr_get_op_arg(Expr, 0));
MaxType = getWidestType(MaxType, V->getType());
if (MaxType != V->getType())
V = Builder.CreateSExt(V, MaxType);
isl_ast_expr_free(Expr);
return createSub(ConstantInt::getNullValue(MaxType), V);
}
Value *IslExprBuilder::createOpNAry(__isl_take isl_ast_expr *Expr) {
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
"isl ast expression not of type isl_ast_op");
assert(isl_ast_expr_get_op_n_arg(Expr) >= 2 &&
"We need at least two operands in an n-ary operation");
CmpInst::Predicate Pred;
switch (isl_ast_expr_get_op_type(Expr)) {
default:
llvm_unreachable("This is not a an n-ary isl ast expression");
case isl_ast_op_max:
Pred = CmpInst::ICMP_SGT;
break;
case isl_ast_op_min:
Pred = CmpInst::ICMP_SLT;
break;
}
Value *V = create(isl_ast_expr_get_op_arg(Expr, 0));
for (int i = 1; i < isl_ast_expr_get_op_n_arg(Expr); ++i) {
Value *OpV = create(isl_ast_expr_get_op_arg(Expr, i));
Type *Ty = getWidestType(V->getType(), OpV->getType());
if (Ty != OpV->getType())
OpV = Builder.CreateSExt(OpV, Ty);
if (Ty != V->getType())
V = Builder.CreateSExt(V, Ty);
Value *Cmp = Builder.CreateICmp(Pred, V, OpV);
V = Builder.CreateSelect(Cmp, V, OpV);
}
// TODO: We can truncate the result, if it fits into a smaller type. This can
// help in cases where we have larger operands (e.g. i67) but the result is
// known to fit into i64. Without the truncation, the larger i67 type may
// force all subsequent operations to be performed on a non-native type.
isl_ast_expr_free(Expr);
return V;
}
Value *IslExprBuilder::createAccessAddress(isl_ast_expr *Expr) {
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
"isl ast expression not of type isl_ast_op");
assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_access &&
"not an access isl ast expression");
assert(isl_ast_expr_get_op_n_arg(Expr) >= 1 &&
"We need at least two operands to create a member access.");
Value *Base, *IndexOp, *Access;
isl_ast_expr *BaseExpr;
isl_id *BaseId;
BaseExpr = isl_ast_expr_get_op_arg(Expr, 0);
BaseId = isl_ast_expr_get_id(BaseExpr);
isl_ast_expr_free(BaseExpr);
const ScopArrayInfo *SAI = nullptr;
if (PollyDebugPrinting)
RuntimeDebugBuilder::createCPUPrinter(Builder, isl_id_get_name(BaseId));
if (IDToSAI)
SAI = (*IDToSAI)[BaseId];
if (!SAI)
SAI = ScopArrayInfo::getFromId(isl::manage(BaseId));
else
isl_id_free(BaseId);
assert(SAI && "No ScopArrayInfo found for this isl_id.");
Base = SAI->getBasePtr();
if (auto NewBase = GlobalMap.lookup(Base))
Base = NewBase;
assert(Base->getType()->isPointerTy() && "Access base should be a pointer");
StringRef BaseName = Base->getName();
auto PointerTy = PointerType::get(SAI->getElementType(),
Base->getType()->getPointerAddressSpace());
if (Base->getType() != PointerTy) {
Base =
Builder.CreateBitCast(Base, PointerTy, "polly.access.cast." + BaseName);
}
if (isl_ast_expr_get_op_n_arg(Expr) == 1) {
isl_ast_expr_free(Expr);
if (PollyDebugPrinting)
RuntimeDebugBuilder::createCPUPrinter(Builder, "\n");
return Base;
}
IndexOp = nullptr;
for (unsigned u = 1, e = isl_ast_expr_get_op_n_arg(Expr); u < e; u++) {
Value *NextIndex = create(isl_ast_expr_get_op_arg(Expr, u));
assert(NextIndex->getType()->isIntegerTy() &&
"Access index should be an integer");
if (PollyDebugPrinting)
RuntimeDebugBuilder::createCPUPrinter(Builder, "[", NextIndex, "]");
if (!IndexOp) {
IndexOp = NextIndex;
} else {
Type *Ty = getWidestType(NextIndex->getType(), IndexOp->getType());
if (Ty != NextIndex->getType())
NextIndex = Builder.CreateIntCast(NextIndex, Ty, true);
if (Ty != IndexOp->getType())
IndexOp = Builder.CreateIntCast(IndexOp, Ty, true);
IndexOp = createAdd(IndexOp, NextIndex, "polly.access.add." + BaseName);
}
// For every but the last dimension multiply the size, for the last
// dimension we can exit the loop.
if (u + 1 >= e)
break;
const SCEV *DimSCEV = SAI->getDimensionSize(u);
llvm::ValueToSCEVMapTy Map;
for (auto &KV : GlobalMap)
Map[KV.first] = SE.getSCEV(KV.second);
DimSCEV = SCEVParameterRewriter::rewrite(DimSCEV, SE, Map);
Value *DimSize =
expandCodeFor(S, SE, DL, "polly", DimSCEV, DimSCEV->getType(),
&*Builder.GetInsertPoint(), nullptr,
StartBlock->getSinglePredecessor());
Type *Ty = getWidestType(DimSize->getType(), IndexOp->getType());
if (Ty != IndexOp->getType())
IndexOp = Builder.CreateSExtOrTrunc(IndexOp, Ty,
"polly.access.sext." + BaseName);
if (Ty != DimSize->getType())
DimSize = Builder.CreateSExtOrTrunc(DimSize, Ty,
"polly.access.sext." + BaseName);
IndexOp = createMul(IndexOp, DimSize, "polly.access.mul." + BaseName);
}
Access = Builder.CreateGEP(Base, IndexOp, "polly.access." + BaseName);
if (PollyDebugPrinting)
RuntimeDebugBuilder::createCPUPrinter(Builder, "\n");
isl_ast_expr_free(Expr);
return Access;
}
Value *IslExprBuilder::createOpAccess(isl_ast_expr *Expr) {
Value *Addr = createAccessAddress(Expr);
assert(Addr && "Could not create op access address");
return Builder.CreateLoad(Addr, Addr->getName() + ".load");
}
Value *IslExprBuilder::createOpBin(__isl_take isl_ast_expr *Expr) {
Value *LHS, *RHS, *Res;
Type *MaxType;
isl_ast_op_type OpType;
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
"isl ast expression not of type isl_ast_op");
assert(isl_ast_expr_get_op_n_arg(Expr) == 2 &&
"not a binary isl ast expression");
OpType = isl_ast_expr_get_op_type(Expr);
LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
Type *LHSType = LHS->getType();
Type *RHSType = RHS->getType();
MaxType = getWidestType(LHSType, RHSType);
// Take the result into account when calculating the widest type.
//
// For operations such as '+' the result may require a type larger than
// the type of the individual operands. For other operations such as '/', the
// result type cannot be larger than the type of the individual operand. isl
// does not calculate correct types for these operations and we consequently
// exclude those operations here.
switch (OpType) {
case isl_ast_op_pdiv_q:
case isl_ast_op_pdiv_r:
case isl_ast_op_div:
case isl_ast_op_fdiv_q:
case isl_ast_op_zdiv_r:
// Do nothing
break;
case isl_ast_op_add:
case isl_ast_op_sub:
case isl_ast_op_mul:
MaxType = getWidestType(MaxType, getType(Expr));
break;
default:
llvm_unreachable("This is no binary isl ast expression");
}
if (MaxType != RHS->getType())
RHS = Builder.CreateSExt(RHS, MaxType);
if (MaxType != LHS->getType())
LHS = Builder.CreateSExt(LHS, MaxType);
switch (OpType) {
default:
llvm_unreachable("This is no binary isl ast expression");
case isl_ast_op_add:
Res = createAdd(LHS, RHS);
break;
case isl_ast_op_sub:
Res = createSub(LHS, RHS);
break;
case isl_ast_op_mul:
Res = createMul(LHS, RHS);
break;
case isl_ast_op_div:
Res = Builder.CreateSDiv(LHS, RHS, "pexp.div", true);
break;
case isl_ast_op_pdiv_q: // Dividend is non-negative
Res = Builder.CreateUDiv(LHS, RHS, "pexp.p_div_q");
break;
case isl_ast_op_fdiv_q: { // Round towards -infty
if (auto *Const = dyn_cast<ConstantInt>(RHS)) {
auto &Val = Const->getValue();
if (Val.isPowerOf2() && Val.isNonNegative()) {
Res = Builder.CreateAShr(LHS, Val.ceilLogBase2(), "polly.fdiv_q.shr");
break;
}
}
// TODO: Review code and check that this calculation does not yield
// incorrect overflow in some edge cases.
//
// floord(n,d) ((n < 0) ? (n - d + 1) : n) / d
Value *One = ConstantInt::get(MaxType, 1);
Value *Zero = ConstantInt::get(MaxType, 0);
Value *Sum1 = createSub(LHS, RHS, "pexp.fdiv_q.0");
Value *Sum2 = createAdd(Sum1, One, "pexp.fdiv_q.1");
Value *isNegative = Builder.CreateICmpSLT(LHS, Zero, "pexp.fdiv_q.2");
Value *Dividend =
Builder.CreateSelect(isNegative, Sum2, LHS, "pexp.fdiv_q.3");
Res = Builder.CreateSDiv(Dividend, RHS, "pexp.fdiv_q.4");
break;
}
case isl_ast_op_pdiv_r: // Dividend is non-negative
Res = Builder.CreateURem(LHS, RHS, "pexp.pdiv_r");
break;
case isl_ast_op_zdiv_r: // Result only compared against zero
Res = Builder.CreateSRem(LHS, RHS, "pexp.zdiv_r");
break;
}
// TODO: We can truncate the result, if it fits into a smaller type. This can
// help in cases where we have larger operands (e.g. i67) but the result is
// known to fit into i64. Without the truncation, the larger i67 type may
// force all subsequent operations to be performed on a non-native type.
isl_ast_expr_free(Expr);
return Res;
}
Value *IslExprBuilder::createOpSelect(__isl_take isl_ast_expr *Expr) {
assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_select &&
"Unsupported unary isl ast expression");
Value *LHS, *RHS, *Cond;
Type *MaxType = getType(Expr);
Cond = create(isl_ast_expr_get_op_arg(Expr, 0));
if (!Cond->getType()->isIntegerTy(1))
Cond = Builder.CreateIsNotNull(Cond);
LHS = create(isl_ast_expr_get_op_arg(Expr, 1));
RHS = create(isl_ast_expr_get_op_arg(Expr, 2));
MaxType = getWidestType(MaxType, LHS->getType());
MaxType = getWidestType(MaxType, RHS->getType());
if (MaxType != RHS->getType())
RHS = Builder.CreateSExt(RHS, MaxType);
if (MaxType != LHS->getType())
LHS = Builder.CreateSExt(LHS, MaxType);
// TODO: Do we want to truncate the result?
isl_ast_expr_free(Expr);
return Builder.CreateSelect(Cond, LHS, RHS);
}
Value *IslExprBuilder::createOpICmp(__isl_take isl_ast_expr *Expr) {
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
"Expected an isl_ast_expr_op expression");
Value *LHS, *RHS, *Res;
auto *Op0 = isl_ast_expr_get_op_arg(Expr, 0);
auto *Op1 = isl_ast_expr_get_op_arg(Expr, 1);
bool HasNonAddressOfOperand =
isl_ast_expr_get_type(Op0) != isl_ast_expr_op ||
isl_ast_expr_get_type(Op1) != isl_ast_expr_op ||
isl_ast_expr_get_op_type(Op0) != isl_ast_op_address_of ||
isl_ast_expr_get_op_type(Op1) != isl_ast_op_address_of;
LHS = create(Op0);
RHS = create(Op1);
auto *LHSTy = LHS->getType();
auto *RHSTy = RHS->getType();
bool IsPtrType = LHSTy->isPointerTy() || RHSTy->isPointerTy();
bool UseUnsignedCmp = IsPtrType && !HasNonAddressOfOperand;
auto *PtrAsIntTy = Builder.getIntNTy(DL.getPointerSizeInBits());
if (LHSTy->isPointerTy())
LHS = Builder.CreatePtrToInt(LHS, PtrAsIntTy);
if (RHSTy->isPointerTy())
RHS = Builder.CreatePtrToInt(RHS, PtrAsIntTy);
if (LHS->getType() != RHS->getType()) {
Type *MaxType = LHS->getType();
MaxType = getWidestType(MaxType, RHS->getType());
if (MaxType != RHS->getType())
RHS = Builder.CreateSExt(RHS, MaxType);
if (MaxType != LHS->getType())
LHS = Builder.CreateSExt(LHS, MaxType);
}
isl_ast_op_type OpType = isl_ast_expr_get_op_type(Expr);
assert(OpType >= isl_ast_op_eq && OpType <= isl_ast_op_gt &&
"Unsupported ICmp isl ast expression");
assert(isl_ast_op_eq + 4 == isl_ast_op_gt &&
"Isl ast op type interface changed");
CmpInst::Predicate Predicates[5][2] = {
{CmpInst::ICMP_EQ, CmpInst::ICMP_EQ},
{CmpInst::ICMP_SLE, CmpInst::ICMP_ULE},
{CmpInst::ICMP_SLT, CmpInst::ICMP_ULT},
{CmpInst::ICMP_SGE, CmpInst::ICMP_UGE},
{CmpInst::ICMP_SGT, CmpInst::ICMP_UGT},
};
Res = Builder.CreateICmp(Predicates[OpType - isl_ast_op_eq][UseUnsignedCmp],
LHS, RHS);
isl_ast_expr_free(Expr);
return Res;
}
Value *IslExprBuilder::createOpBoolean(__isl_take isl_ast_expr *Expr) {
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
"Expected an isl_ast_expr_op expression");
Value *LHS, *RHS, *Res;
isl_ast_op_type OpType;
OpType = isl_ast_expr_get_op_type(Expr);
assert((OpType == isl_ast_op_and || OpType == isl_ast_op_or) &&
"Unsupported isl_ast_op_type");
LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
// Even though the isl pretty printer prints the expressions as 'exp && exp'
// or 'exp || exp', we actually code generate the bitwise expressions
// 'exp & exp' or 'exp | exp'. This forces the evaluation of both branches,
// but it is, due to the use of i1 types, otherwise equivalent. The reason
// to go for bitwise operations is, that we assume the reduced control flow
// will outweigh the overhead introduced by evaluating unneeded expressions.
// The isl code generation currently does not take advantage of the fact that
// the expression after an '||' or '&&' is in some cases not evaluated.
// Evaluating it anyways does not cause any undefined behaviour.
//
// TODO: Document in isl itself, that the unconditionally evaluating the
// second part of '||' or '&&' expressions is safe.
if (!LHS->getType()->isIntegerTy(1))
LHS = Builder.CreateIsNotNull(LHS);
if (!RHS->getType()->isIntegerTy(1))
RHS = Builder.CreateIsNotNull(RHS);
switch (OpType) {
default:
llvm_unreachable("Unsupported boolean expression");
case isl_ast_op_and:
Res = Builder.CreateAnd(LHS, RHS);
break;
case isl_ast_op_or:
Res = Builder.CreateOr(LHS, RHS);
break;
}
isl_ast_expr_free(Expr);
return Res;
}
Value *
IslExprBuilder::createOpBooleanConditional(__isl_take isl_ast_expr *Expr) {
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
"Expected an isl_ast_expr_op expression");
Value *LHS, *RHS;
isl_ast_op_type OpType;
Function *F = Builder.GetInsertBlock()->getParent();
LLVMContext &Context = F->getContext();
OpType = isl_ast_expr_get_op_type(Expr);
assert((OpType == isl_ast_op_and_then || OpType == isl_ast_op_or_else) &&
"Unsupported isl_ast_op_type");
auto InsertBB = Builder.GetInsertBlock();
auto InsertPoint = Builder.GetInsertPoint();
auto NextBB = SplitBlock(InsertBB, &*InsertPoint, &DT, &LI);
BasicBlock *CondBB = BasicBlock::Create(Context, "polly.cond", F);
LI.changeLoopFor(CondBB, LI.getLoopFor(InsertBB));
DT.addNewBlock(CondBB, InsertBB);
InsertBB->getTerminator()->eraseFromParent();
Builder.SetInsertPoint(InsertBB);
auto BR = Builder.CreateCondBr(Builder.getTrue(), NextBB, CondBB);
Builder.SetInsertPoint(CondBB);
Builder.CreateBr(NextBB);
Builder.SetInsertPoint(InsertBB->getTerminator());
LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
if (!LHS->getType()->isIntegerTy(1))
LHS = Builder.CreateIsNotNull(LHS);
auto LeftBB = Builder.GetInsertBlock();
if (OpType == isl_ast_op_and || OpType == isl_ast_op_and_then)
BR->setCondition(Builder.CreateNeg(LHS));
else
BR->setCondition(LHS);
Builder.SetInsertPoint(CondBB->getTerminator());
RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
if (!RHS->getType()->isIntegerTy(1))
RHS = Builder.CreateIsNotNull(RHS);
auto RightBB = Builder.GetInsertBlock();
Builder.SetInsertPoint(NextBB->getTerminator());
auto PHI = Builder.CreatePHI(Builder.getInt1Ty(), 2);
PHI->addIncoming(OpType == isl_ast_op_and_then ? Builder.getFalse()
: Builder.getTrue(),
LeftBB);
PHI->addIncoming(RHS, RightBB);
isl_ast_expr_free(Expr);
return PHI;
}
Value *IslExprBuilder::createOp(__isl_take isl_ast_expr *Expr) {
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
"Expression not of type isl_ast_expr_op");
switch (isl_ast_expr_get_op_type(Expr)) {
case isl_ast_op_error:
case isl_ast_op_cond:
case isl_ast_op_call:
case isl_ast_op_member:
llvm_unreachable("Unsupported isl ast expression");
case isl_ast_op_access:
return createOpAccess(Expr);
case isl_ast_op_max:
case isl_ast_op_min:
return createOpNAry(Expr);
case isl_ast_op_add:
case isl_ast_op_sub:
case isl_ast_op_mul:
case isl_ast_op_div:
case isl_ast_op_fdiv_q: // Round towards -infty
case isl_ast_op_pdiv_q: // Dividend is non-negative
case isl_ast_op_pdiv_r: // Dividend is non-negative
case isl_ast_op_zdiv_r: // Result only compared against zero
return createOpBin(Expr);
case isl_ast_op_minus:
return createOpUnary(Expr);
case isl_ast_op_select:
return createOpSelect(Expr);
case isl_ast_op_and:
case isl_ast_op_or:
return createOpBoolean(Expr);
case isl_ast_op_and_then:
case isl_ast_op_or_else:
return createOpBooleanConditional(Expr);
case isl_ast_op_eq:
case isl_ast_op_le:
case isl_ast_op_lt:
case isl_ast_op_ge:
case isl_ast_op_gt:
return createOpICmp(Expr);
case isl_ast_op_address_of:
return createOpAddressOf(Expr);
}
llvm_unreachable("Unsupported isl_ast_expr_op kind.");
}
Value *IslExprBuilder::createOpAddressOf(__isl_take isl_ast_expr *Expr) {
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
"Expected an isl_ast_expr_op expression.");
assert(isl_ast_expr_get_op_n_arg(Expr) == 1 && "Address of should be unary.");
isl_ast_expr *Op = isl_ast_expr_get_op_arg(Expr, 0);
assert(isl_ast_expr_get_type(Op) == isl_ast_expr_op &&
"Expected address of operator to be an isl_ast_expr_op expression.");
assert(isl_ast_expr_get_op_type(Op) == isl_ast_op_access &&
"Expected address of operator to be an access expression.");
Value *V = createAccessAddress(Op);
isl_ast_expr_free(Expr);
return V;
}
Value *IslExprBuilder::createId(__isl_take isl_ast_expr *Expr) {
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_id &&
"Expression not of type isl_ast_expr_ident");
isl_id *Id;
Value *V;
Id = isl_ast_expr_get_id(Expr);
assert(IDToValue.count(Id) && "Identifier not found");
V = IDToValue[Id];
if (!V)
V = UndefValue::get(getType(Expr));
if (V->getType()->isPointerTy())
V = Builder.CreatePtrToInt(V, Builder.getIntNTy(DL.getPointerSizeInBits()));
assert(V && "Unknown parameter id found");
isl_id_free(Id);
isl_ast_expr_free(Expr);
return V;
}
IntegerType *IslExprBuilder::getType(__isl_keep isl_ast_expr *Expr) {
// XXX: We assume i64 is large enough. This is often true, but in general
// incorrect. Also, on 32bit architectures, it would be beneficial to
// use a smaller type. We can and should directly derive this information
// during code generation.
return IntegerType::get(Builder.getContext(), 64);
}
Value *IslExprBuilder::createInt(__isl_take isl_ast_expr *Expr) {
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_int &&
"Expression not of type isl_ast_expr_int");
isl_val *Val;
Value *V;
APInt APValue;
IntegerType *T;
Val = isl_ast_expr_get_val(Expr);
APValue = APIntFromVal(Val);
auto BitWidth = APValue.getBitWidth();
if (BitWidth <= 64)
T = getType(Expr);
else
T = Builder.getIntNTy(BitWidth);
APValue = APValue.sextOrSelf(T->getBitWidth());
V = ConstantInt::get(T, APValue);
isl_ast_expr_free(Expr);
return V;
}
Value *IslExprBuilder::create(__isl_take isl_ast_expr *Expr) {
switch (isl_ast_expr_get_type(Expr)) {
case isl_ast_expr_error:
llvm_unreachable("Code generation error");
case isl_ast_expr_op:
return createOp(Expr);
case isl_ast_expr_id:
return createId(Expr);
case isl_ast_expr_int:
return createInt(Expr);
}
llvm_unreachable("Unexpected enum value");
}
|