1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
|
//===- DependenceInfo.cpp - Calculate dependency information for a Scop. --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Calculate the data dependency relations for a Scop using ISL.
//
// The integer set library (ISL) from Sven, has a integrated dependency analysis
// to calculate data dependences. This pass takes advantage of this and
// calculate those dependences a Scop.
//
// The dependences in this pass are exact in terms that for a specific read
// statement instance only the last write statement instance is returned. In
// case of may writes a set of possible write instances is returned. This
// analysis will never produce redundant dependences.
//
//===----------------------------------------------------------------------===//
//
#include "polly/DependenceInfo.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/ISLTools.h"
#include "llvm/Support/Debug.h"
#include "isl/aff.h"
#include "isl/ctx.h"
#include "isl/flow.h"
#include "isl/map.h"
#include "isl/schedule.h"
#include "isl/set.h"
#include "isl/union_map.h"
#include "isl/union_set.h"
using namespace polly;
using namespace llvm;
#define DEBUG_TYPE "polly-dependence"
static cl::opt<int> OptComputeOut(
"polly-dependences-computeout",
cl::desc("Bound the dependence analysis by a maximal amount of "
"computational steps (0 means no bound)"),
cl::Hidden, cl::init(500000), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool> LegalityCheckDisabled(
"disable-polly-legality", cl::desc("Disable polly legality check"),
cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool>
UseReductions("polly-dependences-use-reductions",
cl::desc("Exploit reductions in dependence analysis"),
cl::Hidden, cl::init(true), cl::ZeroOrMore,
cl::cat(PollyCategory));
enum AnalysisType { VALUE_BASED_ANALYSIS, MEMORY_BASED_ANALYSIS };
static cl::opt<enum AnalysisType> OptAnalysisType(
"polly-dependences-analysis-type",
cl::desc("The kind of dependence analysis to use"),
cl::values(clEnumValN(VALUE_BASED_ANALYSIS, "value-based",
"Exact dependences without transitive dependences"),
clEnumValN(MEMORY_BASED_ANALYSIS, "memory-based",
"Overapproximation of dependences")),
cl::Hidden, cl::init(VALUE_BASED_ANALYSIS), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<Dependences::AnalysisLevel> OptAnalysisLevel(
"polly-dependences-analysis-level",
cl::desc("The level of dependence analysis"),
cl::values(clEnumValN(Dependences::AL_Statement, "statement-wise",
"Statement-level analysis"),
clEnumValN(Dependences::AL_Reference, "reference-wise",
"Memory reference level analysis that distinguish"
" accessed references in the same statement"),
clEnumValN(Dependences::AL_Access, "access-wise",
"Memory reference level analysis that distinguish"
" access instructions in the same statement")),
cl::Hidden, cl::init(Dependences::AL_Statement), cl::ZeroOrMore,
cl::cat(PollyCategory));
//===----------------------------------------------------------------------===//
/// Tag the @p Relation domain with @p TagId
static __isl_give isl_map *tag(__isl_take isl_map *Relation,
__isl_take isl_id *TagId) {
isl_space *Space = isl_map_get_space(Relation);
Space = isl_space_drop_dims(Space, isl_dim_out, 0,
isl_map_dim(Relation, isl_dim_out));
Space = isl_space_set_tuple_id(Space, isl_dim_out, TagId);
isl_multi_aff *Tag = isl_multi_aff_domain_map(Space);
Relation = isl_map_preimage_domain_multi_aff(Relation, Tag);
return Relation;
}
/// Tag the @p Relation domain with either MA->getArrayId() or
/// MA->getId() based on @p TagLevel
static __isl_give isl_map *tag(__isl_take isl_map *Relation, MemoryAccess *MA,
Dependences::AnalysisLevel TagLevel) {
if (TagLevel == Dependences::AL_Reference)
return tag(Relation, MA->getArrayId().release());
if (TagLevel == Dependences::AL_Access)
return tag(Relation, MA->getId().release());
// No need to tag at the statement level.
return Relation;
}
/// Collect information about the SCoP @p S.
static void collectInfo(Scop &S, isl_union_map *&Read,
isl_union_map *&MustWrite, isl_union_map *&MayWrite,
isl_union_map *&ReductionTagMap,
isl_union_set *&TaggedStmtDomain,
Dependences::AnalysisLevel Level) {
isl_space *Space = S.getParamSpace().release();
Read = isl_union_map_empty(isl_space_copy(Space));
MustWrite = isl_union_map_empty(isl_space_copy(Space));
MayWrite = isl_union_map_empty(isl_space_copy(Space));
ReductionTagMap = isl_union_map_empty(isl_space_copy(Space));
isl_union_map *StmtSchedule = isl_union_map_empty(Space);
SmallPtrSet<const ScopArrayInfo *, 8> ReductionArrays;
if (UseReductions)
for (ScopStmt &Stmt : S)
for (MemoryAccess *MA : Stmt)
if (MA->isReductionLike())
ReductionArrays.insert(MA->getScopArrayInfo());
for (ScopStmt &Stmt : S) {
for (MemoryAccess *MA : Stmt) {
isl_set *domcp = Stmt.getDomain().release();
isl_map *accdom = MA->getAccessRelation().release();
accdom = isl_map_intersect_domain(accdom, domcp);
if (ReductionArrays.count(MA->getScopArrayInfo())) {
// Wrap the access domain and adjust the schedule accordingly.
//
// An access domain like
// Stmt[i0, i1] -> MemAcc_A[i0 + i1]
// will be transformed into
// [Stmt[i0, i1] -> MemAcc_A[i0 + i1]] -> MemAcc_A[i0 + i1]
//
// We collect all the access domains in the ReductionTagMap.
// This is used in Dependences::calculateDependences to create
// a tagged Schedule tree.
ReductionTagMap =
isl_union_map_add_map(ReductionTagMap, isl_map_copy(accdom));
accdom = isl_map_range_map(accdom);
} else {
accdom = tag(accdom, MA, Level);
if (Level > Dependences::AL_Statement) {
isl_map *StmtScheduleMap = Stmt.getSchedule().release();
assert(StmtScheduleMap &&
"Schedules that contain extension nodes require special "
"handling.");
isl_map *Schedule = tag(StmtScheduleMap, MA, Level);
StmtSchedule = isl_union_map_add_map(StmtSchedule, Schedule);
}
}
if (MA->isRead())
Read = isl_union_map_add_map(Read, accdom);
else if (MA->isMayWrite())
MayWrite = isl_union_map_add_map(MayWrite, accdom);
else
MustWrite = isl_union_map_add_map(MustWrite, accdom);
}
if (!ReductionArrays.empty() && Level == Dependences::AL_Statement)
StmtSchedule =
isl_union_map_add_map(StmtSchedule, Stmt.getSchedule().release());
}
StmtSchedule = isl_union_map_intersect_params(
StmtSchedule, S.getAssumedContext().release());
TaggedStmtDomain = isl_union_map_domain(StmtSchedule);
ReductionTagMap = isl_union_map_coalesce(ReductionTagMap);
Read = isl_union_map_coalesce(Read);
MustWrite = isl_union_map_coalesce(MustWrite);
MayWrite = isl_union_map_coalesce(MayWrite);
}
/// Fix all dimension of @p Zero to 0 and add it to @p user
static void fixSetToZero(isl::set Zero, isl::union_set *User) {
for (unsigned i = 0; i < Zero.dim(isl::dim::set); i++)
Zero = Zero.fix_si(isl::dim::set, i, 0);
*User = User->add_set(Zero);
}
/// Compute the privatization dependences for a given dependency @p Map
///
/// Privatization dependences are widened original dependences which originate
/// or end in a reduction access. To compute them we apply the transitive close
/// of the reduction dependences (which maps each iteration of a reduction
/// statement to all following ones) on the RAW/WAR/WAW dependences. The
/// dependences which start or end at a reduction statement will be extended to
/// depend on all following reduction statement iterations as well.
/// Note: "Following" here means according to the reduction dependences.
///
/// For the input:
///
/// S0: *sum = 0;
/// for (int i = 0; i < 1024; i++)
/// S1: *sum += i;
/// S2: *sum = *sum * 3;
///
/// we have the following dependences before we add privatization dependences:
///
/// RAW:
/// { S0[] -> S1[0]; S1[1023] -> S2[] }
/// WAR:
/// { }
/// WAW:
/// { S0[] -> S1[0]; S1[1024] -> S2[] }
/// RED:
/// { S1[i0] -> S1[1 + i0] : i0 >= 0 and i0 <= 1022 }
///
/// and afterwards:
///
/// RAW:
/// { S0[] -> S1[i0] : i0 >= 0 and i0 <= 1023;
/// S1[i0] -> S2[] : i0 >= 0 and i0 <= 1023}
/// WAR:
/// { }
/// WAW:
/// { S0[] -> S1[i0] : i0 >= 0 and i0 <= 1023;
/// S1[i0] -> S2[] : i0 >= 0 and i0 <= 1023}
/// RED:
/// { S1[i0] -> S1[1 + i0] : i0 >= 0 and i0 <= 1022 }
///
/// Note: This function also computes the (reverse) transitive closure of the
/// reduction dependences.
void Dependences::addPrivatizationDependences() {
isl_union_map *PrivRAW, *PrivWAW, *PrivWAR;
// The transitive closure might be over approximated, thus could lead to
// dependency cycles in the privatization dependences. To make sure this
// will not happen we remove all negative dependences after we computed
// the transitive closure.
TC_RED = isl_union_map_transitive_closure(isl_union_map_copy(RED), nullptr);
// FIXME: Apply the current schedule instead of assuming the identity schedule
// here. The current approach is only valid as long as we compute the
// dependences only with the initial (identity schedule). Any other
// schedule could change "the direction of the backward dependences" we
// want to eliminate here.
isl_union_set *UDeltas = isl_union_map_deltas(isl_union_map_copy(TC_RED));
isl_union_set *Universe = isl_union_set_universe(isl_union_set_copy(UDeltas));
isl::union_set Zero =
isl::manage(isl_union_set_empty(isl_union_set_get_space(Universe)));
for (isl::set Set : isl::manage_copy(Universe).get_set_list())
fixSetToZero(Set, &Zero);
isl_union_map *NonPositive =
isl_union_set_lex_le_union_set(UDeltas, Zero.release());
TC_RED = isl_union_map_subtract(TC_RED, NonPositive);
TC_RED = isl_union_map_union(
TC_RED, isl_union_map_reverse(isl_union_map_copy(TC_RED)));
TC_RED = isl_union_map_coalesce(TC_RED);
isl_union_map **Maps[] = {&RAW, &WAW, &WAR};
isl_union_map **PrivMaps[] = {&PrivRAW, &PrivWAW, &PrivWAR};
for (unsigned u = 0; u < 3; u++) {
isl_union_map **Map = Maps[u], **PrivMap = PrivMaps[u];
*PrivMap = isl_union_map_apply_range(isl_union_map_copy(*Map),
isl_union_map_copy(TC_RED));
*PrivMap = isl_union_map_union(
*PrivMap, isl_union_map_apply_range(isl_union_map_copy(TC_RED),
isl_union_map_copy(*Map)));
*Map = isl_union_map_union(*Map, *PrivMap);
}
isl_union_set_free(Universe);
}
static __isl_give isl_union_flow *buildFlow(__isl_keep isl_union_map *Snk,
__isl_keep isl_union_map *Src,
__isl_keep isl_union_map *MaySrc,
__isl_keep isl_union_map *Kill,
__isl_keep isl_schedule *Schedule) {
isl_union_access_info *AI;
AI = isl_union_access_info_from_sink(isl_union_map_copy(Snk));
if (MaySrc)
AI = isl_union_access_info_set_may_source(AI, isl_union_map_copy(MaySrc));
if (Src)
AI = isl_union_access_info_set_must_source(AI, isl_union_map_copy(Src));
if (Kill)
AI = isl_union_access_info_set_kill(AI, isl_union_map_copy(Kill));
AI = isl_union_access_info_set_schedule(AI, isl_schedule_copy(Schedule));
auto Flow = isl_union_access_info_compute_flow(AI);
LLVM_DEBUG(if (!Flow) dbgs()
<< "last error: "
<< isl_ctx_last_error(isl_schedule_get_ctx(Schedule))
<< '\n';);
return Flow;
}
void Dependences::calculateDependences(Scop &S) {
isl_union_map *Read, *MustWrite, *MayWrite, *ReductionTagMap;
isl_schedule *Schedule;
isl_union_set *TaggedStmtDomain;
LLVM_DEBUG(dbgs() << "Scop: \n" << S << "\n");
collectInfo(S, Read, MustWrite, MayWrite, ReductionTagMap, TaggedStmtDomain,
Level);
bool HasReductions = !isl_union_map_is_empty(ReductionTagMap);
LLVM_DEBUG(dbgs() << "Read: " << Read << '\n';
dbgs() << "MustWrite: " << MustWrite << '\n';
dbgs() << "MayWrite: " << MayWrite << '\n';
dbgs() << "ReductionTagMap: " << ReductionTagMap << '\n';
dbgs() << "TaggedStmtDomain: " << TaggedStmtDomain << '\n';);
Schedule = S.getScheduleTree().release();
if (!HasReductions) {
isl_union_map_free(ReductionTagMap);
// Tag the schedule tree if we want fine-grain dependence info
if (Level > AL_Statement) {
auto TaggedMap =
isl_union_set_unwrap(isl_union_set_copy(TaggedStmtDomain));
auto Tags = isl_union_map_domain_map_union_pw_multi_aff(TaggedMap);
Schedule = isl_schedule_pullback_union_pw_multi_aff(Schedule, Tags);
}
} else {
isl_union_map *IdentityMap;
isl_union_pw_multi_aff *ReductionTags, *IdentityTags, *Tags;
// Extract Reduction tags from the combined access domains in the given
// SCoP. The result is a map that maps each tagged element in the domain to
// the memory location it accesses. ReductionTags = {[Stmt[i] ->
// Array[f(i)]] -> Stmt[i] }
ReductionTags =
isl_union_map_domain_map_union_pw_multi_aff(ReductionTagMap);
// Compute an identity map from each statement in domain to itself.
// IdentityTags = { [Stmt[i] -> Stmt[i] }
IdentityMap = isl_union_set_identity(isl_union_set_copy(TaggedStmtDomain));
IdentityTags = isl_union_pw_multi_aff_from_union_map(IdentityMap);
Tags = isl_union_pw_multi_aff_union_add(ReductionTags, IdentityTags);
// By pulling back Tags from Schedule, we have a schedule tree that can
// be used to compute normal dependences, as well as 'tagged' reduction
// dependences.
Schedule = isl_schedule_pullback_union_pw_multi_aff(Schedule, Tags);
}
LLVM_DEBUG(dbgs() << "Read: " << Read << "\n";
dbgs() << "MustWrite: " << MustWrite << "\n";
dbgs() << "MayWrite: " << MayWrite << "\n";
dbgs() << "Schedule: " << Schedule << "\n");
isl_union_map *StrictWAW = nullptr;
{
IslMaxOperationsGuard MaxOpGuard(IslCtx.get(), OptComputeOut);
RAW = WAW = WAR = RED = nullptr;
isl_union_map *Write = isl_union_map_union(isl_union_map_copy(MustWrite),
isl_union_map_copy(MayWrite));
// We are interested in detecting reductions that do not have intermediate
// computations that are captured by other statements.
//
// Example:
// void f(int *A, int *B) {
// for(int i = 0; i <= 100; i++) {
//
// *-WAR (S0[i] -> S0[i + 1] 0 <= i <= 100)------------*
// | |
// *-WAW (S0[i] -> S0[i + 1] 0 <= i <= 100)------------*
// | |
// v |
// S0: *A += i; >------------------*-----------------------*
// |
// if (i >= 98) { WAR (S0[i] -> S1[i]) 98 <= i <= 100
// |
// S1: *B = *A; <--------------*
// }
// }
// }
//
// S0[0 <= i <= 100] has a reduction. However, the values in
// S0[98 <= i <= 100] is captured in S1[98 <= i <= 100].
// Since we allow free reordering on our reduction dependences, we need to
// remove all instances of a reduction statement that have data dependences
// originating from them.
// In the case of the example, we need to remove S0[98 <= i <= 100] from
// our reduction dependences.
//
// When we build up the WAW dependences that are used to detect reductions,
// we consider only **Writes that have no intermediate Reads**.
//
// `isl_union_flow_get_must_dependence` gives us dependences of the form:
// (sink <- must_source).
//
// It *will not give* dependences of the form:
// 1. (sink <- ... <- may_source <- ... <- must_source)
// 2. (sink <- ... <- must_source <- ... <- must_source)
//
// For a detailed reference on ISL's flow analysis, see:
// "Presburger Formulas and Polyhedral Compilation" - Approximate Dataflow
// Analysis.
//
// Since we set "Write" as a must-source, "Read" as a may-source, and ask
// for must dependences, we get all Writes to Writes that **do not flow
// through a Read**.
//
// ScopInfo::checkForReductions makes sure that if something captures
// the reduction variable in the same basic block, then it is rejected
// before it is even handed here. This makes sure that there is exactly
// one read and one write to a reduction variable in a Statement.
// Example:
// void f(int *sum, int A[N], int B[N]) {
// for (int i = 0; i < N; i++) {
// *sum += A[i]; < the store and the load is not tagged as a
// B[i] = *sum; < reduction-like access due to the overlap.
// }
// }
isl_union_flow *Flow = buildFlow(Write, Write, Read, nullptr, Schedule);
StrictWAW = isl_union_flow_get_must_dependence(Flow);
isl_union_flow_free(Flow);
if (OptAnalysisType == VALUE_BASED_ANALYSIS) {
Flow = buildFlow(Read, MustWrite, MayWrite, nullptr, Schedule);
RAW = isl_union_flow_get_may_dependence(Flow);
isl_union_flow_free(Flow);
Flow = buildFlow(Write, MustWrite, MayWrite, nullptr, Schedule);
WAW = isl_union_flow_get_may_dependence(Flow);
isl_union_flow_free(Flow);
// ISL now supports "kills" in approximate dataflow analysis, we can
// specify the MustWrite as kills, Read as source and Write as sink.
Flow = buildFlow(Write, nullptr, Read, MustWrite, Schedule);
WAR = isl_union_flow_get_may_dependence(Flow);
isl_union_flow_free(Flow);
} else {
Flow = buildFlow(Read, nullptr, Write, nullptr, Schedule);
RAW = isl_union_flow_get_may_dependence(Flow);
isl_union_flow_free(Flow);
Flow = buildFlow(Write, nullptr, Read, nullptr, Schedule);
WAR = isl_union_flow_get_may_dependence(Flow);
isl_union_flow_free(Flow);
Flow = buildFlow(Write, nullptr, Write, nullptr, Schedule);
WAW = isl_union_flow_get_may_dependence(Flow);
isl_union_flow_free(Flow);
}
isl_union_map_free(Write);
isl_union_map_free(MustWrite);
isl_union_map_free(MayWrite);
isl_union_map_free(Read);
isl_schedule_free(Schedule);
RAW = isl_union_map_coalesce(RAW);
WAW = isl_union_map_coalesce(WAW);
WAR = isl_union_map_coalesce(WAR);
// End of max_operations scope.
}
if (isl_ctx_last_error(IslCtx.get()) == isl_error_quota) {
isl_union_map_free(RAW);
isl_union_map_free(WAW);
isl_union_map_free(WAR);
isl_union_map_free(StrictWAW);
RAW = WAW = WAR = StrictWAW = nullptr;
isl_ctx_reset_error(IslCtx.get());
}
// Drop out early, as the remaining computations are only needed for
// reduction dependences or dependences that are finer than statement
// level dependences.
if (!HasReductions && Level == AL_Statement) {
RED = isl_union_map_empty(isl_union_map_get_space(RAW));
TC_RED = isl_union_map_empty(isl_union_set_get_space(TaggedStmtDomain));
isl_union_set_free(TaggedStmtDomain);
isl_union_map_free(StrictWAW);
return;
}
isl_union_map *STMT_RAW, *STMT_WAW, *STMT_WAR;
STMT_RAW = isl_union_map_intersect_domain(
isl_union_map_copy(RAW), isl_union_set_copy(TaggedStmtDomain));
STMT_WAW = isl_union_map_intersect_domain(
isl_union_map_copy(WAW), isl_union_set_copy(TaggedStmtDomain));
STMT_WAR =
isl_union_map_intersect_domain(isl_union_map_copy(WAR), TaggedStmtDomain);
LLVM_DEBUG({
dbgs() << "Wrapped Dependences:\n";
dump();
dbgs() << "\n";
});
// To handle reduction dependences we proceed as follows:
// 1) Aggregate all possible reduction dependences, namely all self
// dependences on reduction like statements.
// 2) Intersect them with the actual RAW & WAW dependences to the get the
// actual reduction dependences. This will ensure the load/store memory
// addresses were __identical__ in the two iterations of the statement.
// 3) Relax the original RAW, WAW and WAR dependences by subtracting the
// actual reduction dependences. Binary reductions (sum += A[i]) cause
// the same, RAW, WAW and WAR dependences.
// 4) Add the privatization dependences which are widened versions of
// already present dependences. They model the effect of manual
// privatization at the outermost possible place (namely after the last
// write and before the first access to a reduction location).
// Step 1)
RED = isl_union_map_empty(isl_union_map_get_space(RAW));
for (ScopStmt &Stmt : S) {
for (MemoryAccess *MA : Stmt) {
if (!MA->isReductionLike())
continue;
isl_set *AccDomW = isl_map_wrap(MA->getAccessRelation().release());
isl_map *Identity =
isl_map_from_domain_and_range(isl_set_copy(AccDomW), AccDomW);
RED = isl_union_map_add_map(RED, Identity);
}
}
// Step 2)
RED = isl_union_map_intersect(RED, isl_union_map_copy(RAW));
RED = isl_union_map_intersect(RED, StrictWAW);
if (!isl_union_map_is_empty(RED)) {
// Step 3)
RAW = isl_union_map_subtract(RAW, isl_union_map_copy(RED));
WAW = isl_union_map_subtract(WAW, isl_union_map_copy(RED));
WAR = isl_union_map_subtract(WAR, isl_union_map_copy(RED));
// Step 4)
addPrivatizationDependences();
} else
TC_RED = isl_union_map_empty(isl_union_map_get_space(RED));
LLVM_DEBUG({
dbgs() << "Final Wrapped Dependences:\n";
dump();
dbgs() << "\n";
});
// RED_SIN is used to collect all reduction dependences again after we
// split them according to the causing memory accesses. The current assumption
// is that our method of splitting will not have any leftovers. In the end
// we validate this assumption until we have more confidence in this method.
isl_union_map *RED_SIN = isl_union_map_empty(isl_union_map_get_space(RAW));
// For each reduction like memory access, check if there are reduction
// dependences with the access relation of the memory access as a domain
// (wrapped space!). If so these dependences are caused by this memory access.
// We then move this portion of reduction dependences back to the statement ->
// statement space and add a mapping from the memory access to these
// dependences.
for (ScopStmt &Stmt : S) {
for (MemoryAccess *MA : Stmt) {
if (!MA->isReductionLike())
continue;
isl_set *AccDomW = isl_map_wrap(MA->getAccessRelation().release());
isl_union_map *AccRedDepU = isl_union_map_intersect_domain(
isl_union_map_copy(TC_RED), isl_union_set_from_set(AccDomW));
if (isl_union_map_is_empty(AccRedDepU)) {
isl_union_map_free(AccRedDepU);
continue;
}
isl_map *AccRedDep = isl_map_from_union_map(AccRedDepU);
RED_SIN = isl_union_map_add_map(RED_SIN, isl_map_copy(AccRedDep));
AccRedDep = isl_map_zip(AccRedDep);
AccRedDep = isl_set_unwrap(isl_map_domain(AccRedDep));
setReductionDependences(MA, AccRedDep);
}
}
assert(isl_union_map_is_equal(RED_SIN, TC_RED) &&
"Intersecting the reduction dependence domain with the wrapped access "
"relation is not enough, we need to loosen the access relation also");
isl_union_map_free(RED_SIN);
RAW = isl_union_map_zip(RAW);
WAW = isl_union_map_zip(WAW);
WAR = isl_union_map_zip(WAR);
RED = isl_union_map_zip(RED);
TC_RED = isl_union_map_zip(TC_RED);
LLVM_DEBUG({
dbgs() << "Zipped Dependences:\n";
dump();
dbgs() << "\n";
});
RAW = isl_union_set_unwrap(isl_union_map_domain(RAW));
WAW = isl_union_set_unwrap(isl_union_map_domain(WAW));
WAR = isl_union_set_unwrap(isl_union_map_domain(WAR));
RED = isl_union_set_unwrap(isl_union_map_domain(RED));
TC_RED = isl_union_set_unwrap(isl_union_map_domain(TC_RED));
LLVM_DEBUG({
dbgs() << "Unwrapped Dependences:\n";
dump();
dbgs() << "\n";
});
RAW = isl_union_map_union(RAW, STMT_RAW);
WAW = isl_union_map_union(WAW, STMT_WAW);
WAR = isl_union_map_union(WAR, STMT_WAR);
RAW = isl_union_map_coalesce(RAW);
WAW = isl_union_map_coalesce(WAW);
WAR = isl_union_map_coalesce(WAR);
RED = isl_union_map_coalesce(RED);
TC_RED = isl_union_map_coalesce(TC_RED);
LLVM_DEBUG(dump());
}
bool Dependences::isValidSchedule(
Scop &S, const StatementToIslMapTy &NewSchedule) const {
if (LegalityCheckDisabled)
return true;
isl::union_map Dependences = getDependences(TYPE_RAW | TYPE_WAW | TYPE_WAR);
isl::space Space = S.getParamSpace();
isl::union_map Schedule = isl::union_map::empty(Space);
isl::space ScheduleSpace;
for (ScopStmt &Stmt : S) {
isl::map StmtScat;
auto Lookup = NewSchedule.find(&Stmt);
if (Lookup == NewSchedule.end())
StmtScat = Stmt.getSchedule();
else
StmtScat = Lookup->second;
assert(!StmtScat.is_null() &&
"Schedules that contain extension nodes require special handling.");
if (!ScheduleSpace)
ScheduleSpace = StmtScat.get_space().range();
Schedule = Schedule.add_map(StmtScat);
}
Dependences = Dependences.apply_domain(Schedule);
Dependences = Dependences.apply_range(Schedule);
isl::set Zero = isl::set::universe(ScheduleSpace);
for (unsigned i = 0; i < Zero.dim(isl::dim::set); i++)
Zero = Zero.fix_si(isl::dim::set, i, 0);
isl::union_set UDeltas = Dependences.deltas();
isl::set Deltas = singleton(UDeltas, ScheduleSpace);
isl::map NonPositive = Deltas.lex_le_set(Zero);
return NonPositive.is_empty();
}
// Check if the current scheduling dimension is parallel.
//
// We check for parallelism by verifying that the loop does not carry any
// dependences.
//
// Parallelism test: if the distance is zero in all outer dimensions, then it
// has to be zero in the current dimension as well.
//
// Implementation: first, translate dependences into time space, then force
// outer dimensions to be equal. If the distance is zero in the current
// dimension, then the loop is parallel. The distance is zero in the current
// dimension if it is a subset of a map with equal values for the current
// dimension.
bool Dependences::isParallel(isl_union_map *Schedule, isl_union_map *Deps,
isl_pw_aff **MinDistancePtr) const {
isl_set *Deltas, *Distance;
isl_map *ScheduleDeps;
unsigned Dimension;
bool IsParallel;
Deps = isl_union_map_apply_range(Deps, isl_union_map_copy(Schedule));
Deps = isl_union_map_apply_domain(Deps, isl_union_map_copy(Schedule));
if (isl_union_map_is_empty(Deps)) {
isl_union_map_free(Deps);
return true;
}
ScheduleDeps = isl_map_from_union_map(Deps);
Dimension = isl_map_dim(ScheduleDeps, isl_dim_out) - 1;
for (unsigned i = 0; i < Dimension; i++)
ScheduleDeps = isl_map_equate(ScheduleDeps, isl_dim_out, i, isl_dim_in, i);
Deltas = isl_map_deltas(ScheduleDeps);
Distance = isl_set_universe(isl_set_get_space(Deltas));
// [0, ..., 0, +] - All zeros and last dimension larger than zero
for (unsigned i = 0; i < Dimension; i++)
Distance = isl_set_fix_si(Distance, isl_dim_set, i, 0);
Distance = isl_set_lower_bound_si(Distance, isl_dim_set, Dimension, 1);
Distance = isl_set_intersect(Distance, Deltas);
IsParallel = isl_set_is_empty(Distance);
if (IsParallel || !MinDistancePtr) {
isl_set_free(Distance);
return IsParallel;
}
Distance = isl_set_project_out(Distance, isl_dim_set, 0, Dimension);
Distance = isl_set_coalesce(Distance);
// This last step will compute a expression for the minimal value in the
// distance polyhedron Distance with regards to the first (outer most)
// dimension.
*MinDistancePtr = isl_pw_aff_coalesce(isl_set_dim_min(Distance, 0));
return false;
}
static void printDependencyMap(raw_ostream &OS, __isl_keep isl_union_map *DM) {
if (DM)
OS << DM << "\n";
else
OS << "n/a\n";
}
void Dependences::print(raw_ostream &OS) const {
OS << "\tRAW dependences:\n\t\t";
printDependencyMap(OS, RAW);
OS << "\tWAR dependences:\n\t\t";
printDependencyMap(OS, WAR);
OS << "\tWAW dependences:\n\t\t";
printDependencyMap(OS, WAW);
OS << "\tReduction dependences:\n\t\t";
printDependencyMap(OS, RED);
OS << "\tTransitive closure of reduction dependences:\n\t\t";
printDependencyMap(OS, TC_RED);
}
void Dependences::dump() const { print(dbgs()); }
void Dependences::releaseMemory() {
isl_union_map_free(RAW);
isl_union_map_free(WAR);
isl_union_map_free(WAW);
isl_union_map_free(RED);
isl_union_map_free(TC_RED);
RED = RAW = WAR = WAW = TC_RED = nullptr;
for (auto &ReductionDeps : ReductionDependences)
isl_map_free(ReductionDeps.second);
ReductionDependences.clear();
}
isl::union_map Dependences::getDependences(int Kinds) const {
assert(hasValidDependences() && "No valid dependences available");
isl::space Space = isl::manage_copy(RAW).get_space();
isl::union_map Deps = Deps.empty(Space);
if (Kinds & TYPE_RAW)
Deps = Deps.unite(isl::manage_copy(RAW));
if (Kinds & TYPE_WAR)
Deps = Deps.unite(isl::manage_copy(WAR));
if (Kinds & TYPE_WAW)
Deps = Deps.unite(isl::manage_copy(WAW));
if (Kinds & TYPE_RED)
Deps = Deps.unite(isl::manage_copy(RED));
if (Kinds & TYPE_TC_RED)
Deps = Deps.unite(isl::manage_copy(TC_RED));
Deps = Deps.coalesce();
Deps = Deps.detect_equalities();
return Deps;
}
bool Dependences::hasValidDependences() const {
return (RAW != nullptr) && (WAR != nullptr) && (WAW != nullptr);
}
__isl_give isl_map *
Dependences::getReductionDependences(MemoryAccess *MA) const {
return isl_map_copy(ReductionDependences.lookup(MA));
}
void Dependences::setReductionDependences(MemoryAccess *MA, isl_map *D) {
assert(ReductionDependences.count(MA) == 0 &&
"Reduction dependences set twice!");
ReductionDependences[MA] = D;
}
const Dependences &
DependenceAnalysis::Result::getDependences(Dependences::AnalysisLevel Level) {
if (Dependences *d = D[Level].get())
return *d;
return recomputeDependences(Level);
}
const Dependences &DependenceAnalysis::Result::recomputeDependences(
Dependences::AnalysisLevel Level) {
D[Level].reset(new Dependences(S.getSharedIslCtx(), Level));
D[Level]->calculateDependences(S);
return *D[Level];
}
DependenceAnalysis::Result
DependenceAnalysis::run(Scop &S, ScopAnalysisManager &SAM,
ScopStandardAnalysisResults &SAR) {
return {S, {}};
}
AnalysisKey DependenceAnalysis::Key;
PreservedAnalyses
DependenceInfoPrinterPass::run(Scop &S, ScopAnalysisManager &SAM,
ScopStandardAnalysisResults &SAR,
SPMUpdater &U) {
auto &DI = SAM.getResult<DependenceAnalysis>(S, SAR);
if (auto d = DI.D[OptAnalysisLevel].get()) {
d->print(OS);
return PreservedAnalyses::all();
}
// Otherwise create the dependences on-the-fly and print them
Dependences D(S.getSharedIslCtx(), OptAnalysisLevel);
D.calculateDependences(S);
D.print(OS);
return PreservedAnalyses::all();
}
const Dependences &
DependenceInfo::getDependences(Dependences::AnalysisLevel Level) {
if (Dependences *d = D[Level].get())
return *d;
return recomputeDependences(Level);
}
const Dependences &
DependenceInfo::recomputeDependences(Dependences::AnalysisLevel Level) {
D[Level].reset(new Dependences(S->getSharedIslCtx(), Level));
D[Level]->calculateDependences(*S);
return *D[Level];
}
bool DependenceInfo::runOnScop(Scop &ScopVar) {
S = &ScopVar;
return false;
}
/// Print the dependences for the given SCoP to @p OS.
void polly::DependenceInfo::printScop(raw_ostream &OS, Scop &S) const {
if (auto d = D[OptAnalysisLevel].get()) {
d->print(OS);
return;
}
// Otherwise create the dependences on-the-fly and print it
Dependences D(S.getSharedIslCtx(), OptAnalysisLevel);
D.calculateDependences(S);
D.print(OS);
}
void DependenceInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredTransitive<ScopInfoRegionPass>();
AU.setPreservesAll();
}
char DependenceInfo::ID = 0;
Pass *polly::createDependenceInfoPass() { return new DependenceInfo(); }
INITIALIZE_PASS_BEGIN(DependenceInfo, "polly-dependences",
"Polly - Calculate dependences", false, false);
INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass);
INITIALIZE_PASS_END(DependenceInfo, "polly-dependences",
"Polly - Calculate dependences", false, false)
//===----------------------------------------------------------------------===//
const Dependences &
DependenceInfoWrapperPass::getDependences(Scop *S,
Dependences::AnalysisLevel Level) {
auto It = ScopToDepsMap.find(S);
if (It != ScopToDepsMap.end())
if (It->second) {
if (It->second->getDependenceLevel() == Level)
return *It->second.get();
}
return recomputeDependences(S, Level);
}
const Dependences &DependenceInfoWrapperPass::recomputeDependences(
Scop *S, Dependences::AnalysisLevel Level) {
std::unique_ptr<Dependences> D(new Dependences(S->getSharedIslCtx(), Level));
D->calculateDependences(*S);
auto Inserted = ScopToDepsMap.insert(std::make_pair(S, std::move(D)));
return *Inserted.first->second;
}
bool DependenceInfoWrapperPass::runOnFunction(Function &F) {
auto &SI = *getAnalysis<ScopInfoWrapperPass>().getSI();
for (auto &It : SI) {
assert(It.second && "Invalid SCoP object!");
recomputeDependences(It.second.get(), Dependences::AL_Access);
}
return false;
}
void DependenceInfoWrapperPass::print(raw_ostream &OS, const Module *M) const {
for (auto &It : ScopToDepsMap) {
assert((It.first && It.second) && "Invalid Scop or Dependence object!\n");
It.second->print(OS);
}
}
void DependenceInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredTransitive<ScopInfoWrapperPass>();
AU.setPreservesAll();
}
char DependenceInfoWrapperPass::ID = 0;
Pass *polly::createDependenceInfoWrapperPassPass() {
return new DependenceInfoWrapperPass();
}
INITIALIZE_PASS_BEGIN(
DependenceInfoWrapperPass, "polly-function-dependences",
"Polly - Calculate dependences for all the SCoPs of a function", false,
false)
INITIALIZE_PASS_DEPENDENCY(ScopInfoWrapperPass);
INITIALIZE_PASS_END(
DependenceInfoWrapperPass, "polly-function-dependences",
"Polly - Calculate dependences for all the SCoPs of a function", false,
false)
|