1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
|
//===--------------------- InstructionInfoView.cpp --------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file implements the InstructionInfoView API.
///
//===----------------------------------------------------------------------===//
#include "Views/InstructionInfoView.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/JSON.h"
namespace llvm {
namespace mca {
void InstructionInfoView::printView(raw_ostream &OS) const {
std::string Buffer;
raw_string_ostream TempStream(Buffer);
ArrayRef<llvm::MCInst> Source = getSource();
if (!Source.size())
return;
IIVDVec IIVD(Source.size());
collectData(IIVD);
TempStream << "\n\nInstruction Info:\n";
TempStream << "[1]: #uOps\n[2]: Latency\n[3]: RThroughput\n"
<< "[4]: MayLoad\n[5]: MayStore\n[6]: HasSideEffects (U)\n";
if (PrintEncodings) {
TempStream << "[7]: Encoding Size\n";
TempStream << "\n[1] [2] [3] [4] [5] [6] [7] "
<< "Encodings: Instructions:\n";
} else {
TempStream << "\n[1] [2] [3] [4] [5] [6] Instructions:\n";
}
for (const auto &I : enumerate(zip(IIVD, Source))) {
const InstructionInfoViewData &IIVDEntry = std::get<0>(I.value());
TempStream << ' ' << IIVDEntry.NumMicroOpcodes << " ";
if (IIVDEntry.NumMicroOpcodes < 10)
TempStream << " ";
else if (IIVDEntry.NumMicroOpcodes < 100)
TempStream << ' ';
TempStream << IIVDEntry.Latency << " ";
if (IIVDEntry.Latency < 10)
TempStream << " ";
else if (IIVDEntry.Latency < 100)
TempStream << ' ';
if (IIVDEntry.RThroughput.hasValue()) {
double RT = IIVDEntry.RThroughput.getValue();
TempStream << format("%.2f", RT) << ' ';
if (RT < 10.0)
TempStream << " ";
else if (RT < 100.0)
TempStream << ' ';
} else {
TempStream << " - ";
}
TempStream << (IIVDEntry.mayLoad ? " * " : " ");
TempStream << (IIVDEntry.mayStore ? " * " : " ");
TempStream << (IIVDEntry.hasUnmodeledSideEffects ? " U " : " ");
if (PrintEncodings) {
StringRef Encoding(CE.getEncoding(I.index()));
unsigned EncodingSize = Encoding.size();
TempStream << " " << EncodingSize
<< (EncodingSize < 10 ? " " : " ");
TempStream.flush();
formatted_raw_ostream FOS(TempStream);
for (unsigned i = 0, e = Encoding.size(); i != e; ++i)
FOS << format("%02x ", (uint8_t)Encoding[i]);
FOS.PadToColumn(30);
FOS.flush();
}
const MCInst &Inst = std::get<1>(I.value());
TempStream << printInstructionString(Inst) << '\n';
}
TempStream.flush();
OS << Buffer;
}
void InstructionInfoView::collectData(
MutableArrayRef<InstructionInfoViewData> IIVD) const {
const llvm::MCSubtargetInfo &STI = getSubTargetInfo();
const MCSchedModel &SM = STI.getSchedModel();
for (const auto &I : zip(getSource(), IIVD)) {
const MCInst &Inst = std::get<0>(I);
InstructionInfoViewData &IIVDEntry = std::get<1>(I);
const MCInstrDesc &MCDesc = MCII.get(Inst.getOpcode());
// Obtain the scheduling class information from the instruction.
unsigned SchedClassID = MCDesc.getSchedClass();
unsigned CPUID = SM.getProcessorID();
// Try to solve variant scheduling classes.
while (SchedClassID && SM.getSchedClassDesc(SchedClassID)->isVariant())
SchedClassID =
STI.resolveVariantSchedClass(SchedClassID, &Inst, &MCII, CPUID);
const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);
IIVDEntry.NumMicroOpcodes = SCDesc.NumMicroOps;
IIVDEntry.Latency = MCSchedModel::computeInstrLatency(STI, SCDesc);
// Add extra latency due to delays in the forwarding data paths.
IIVDEntry.Latency += MCSchedModel::getForwardingDelayCycles(
STI.getReadAdvanceEntries(SCDesc));
IIVDEntry.RThroughput = MCSchedModel::getReciprocalThroughput(STI, SCDesc);
IIVDEntry.mayLoad = MCDesc.mayLoad();
IIVDEntry.mayStore = MCDesc.mayStore();
IIVDEntry.hasUnmodeledSideEffects = MCDesc.hasUnmodeledSideEffects();
}
}
// Construct a JSON object from a single InstructionInfoViewData object.
json::Object
InstructionInfoView::toJSON(const InstructionInfoViewData &IIVD) const {
json::Object JO({{"NumMicroOpcodes", IIVD.NumMicroOpcodes},
{"Latency", IIVD.Latency},
{"mayLoad", IIVD.mayLoad},
{"mayStore", IIVD.mayStore},
{"hasUnmodeledSideEffects", IIVD.hasUnmodeledSideEffects}});
JO.try_emplace("RThroughput", IIVD.RThroughput.getValueOr(0.0));
return JO;
}
json::Value InstructionInfoView::toJSON() const {
ArrayRef<llvm::MCInst> Source = getSource();
if (!Source.size())
return json::Value(0);
IIVDVec IIVD(Source.size());
collectData(IIVD);
json::Array InstInfo;
for (const auto &I : enumerate(IIVD)) {
const InstructionInfoViewData &IIVDEntry = I.value();
json::Object JO = toJSON(IIVDEntry);
JO.try_emplace("Instruction", (unsigned)I.index());
InstInfo.push_back(std::move(JO));
}
return json::Value(std::move(InstInfo));
}
} // namespace mca.
} // namespace llvm
|