aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/tools/llvm-exegesis/lib/SnippetGenerator.h
blob: 5f67b396ad959c42ae12275a2f8ef0209042bd9f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
//===-- SnippetGenerator.h --------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Defines the abstract SnippetGenerator class for generating code that allows
/// measuring a certain property of instructions (e.g. latency).
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_TOOLS_LLVM_EXEGESIS_SNIPPETGENERATOR_H
#define LLVM_TOOLS_LLVM_EXEGESIS_SNIPPETGENERATOR_H

#include "Assembler.h"
#include "BenchmarkCode.h"
#include "CodeTemplate.h"
#include "LlvmState.h"
#include "MCInstrDescView.h"
#include "RegisterAliasing.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/Error.h"
#include <cstdlib>
#include <memory>
#include <vector>

namespace llvm {
namespace exegesis {

std::vector<CodeTemplate> getSingleton(CodeTemplate &&CT);

// Generates code templates that has a self-dependency.
Expected<std::vector<CodeTemplate>>
generateSelfAliasingCodeTemplates(InstructionTemplate Variant);

// Generates code templates without assignment constraints.
Expected<std::vector<CodeTemplate>>
generateUnconstrainedCodeTemplates(const InstructionTemplate &Variant,
                                   StringRef Msg);

// A class representing failures that happened during Benchmark, they are used
// to report informations to the user.
class SnippetGeneratorFailure : public StringError {
public:
  SnippetGeneratorFailure(const Twine &S);
};

// Common code for all benchmark modes.
class SnippetGenerator {
public:
  struct Options {
    unsigned MaxConfigsPerOpcode = 1;
  };

  explicit SnippetGenerator(const LLVMState &State, const Options &Opts);

  virtual ~SnippetGenerator();

  // Calls generateCodeTemplate and expands it into one or more BenchmarkCode.
  Error generateConfigurations(const InstructionTemplate &Variant,
                               std::vector<BenchmarkCode> &Benchmarks,
                               const BitVector &ExtraForbiddenRegs) const;

  // Given a snippet, computes which registers the setup code needs to define.
  std::vector<RegisterValue> computeRegisterInitialValues(
      const std::vector<InstructionTemplate> &Snippet) const;

protected:
  const LLVMState &State;
  const Options Opts;

private:
  // API to be implemented by subclasses.
  virtual Expected<std::vector<CodeTemplate>>
  generateCodeTemplates(InstructionTemplate Variant,
                        const BitVector &ForbiddenRegisters) const = 0;
};

// A global Random Number Generator to randomize configurations.
// FIXME: Move random number generation into an object and make it seedable for
// unit tests.
std::mt19937 &randomGenerator();

// Picks a random unsigned integer from 0 to Max (inclusive).
size_t randomIndex(size_t Max);

// Picks a random bit among the bits set in Vector and returns its index.
// Precondition: Vector must have at least one bit set.
size_t randomBit(const BitVector &Vector);

// Picks a random configuration, then selects a random def and a random use from
// it and finally set the selected values in the provided InstructionInstances.
void setRandomAliasing(const AliasingConfigurations &AliasingConfigurations,
                       InstructionTemplate &DefIB, InstructionTemplate &UseIB);

// Assigns a Random Value to all Variables in IT that are still Invalid.
// Do not use any of the registers in `ForbiddenRegs`.
Error randomizeUnsetVariables(const LLVMState &State,
                              const BitVector &ForbiddenRegs,
                              InstructionTemplate &IT);

// Combination generator.
//
// Example: given input {{0, 1}, {2}, {3, 4}} it will produce the following
// combinations: {0, 2, 3}, {0, 2, 4}, {1, 2, 3}, {1, 2, 4}.
//
// It is important to think of input as vector-of-vectors, where the
// outer vector is the variable space, and inner vector is choice space.
// The number of choices for each variable can be different.
//
// As for implementation, it is useful to think of this as a weird number,
// where each digit (==variable) may have different base (==number of choices).
// Thus modelling of 'produce next combination' is exactly analogous to the
// incrementing of an number - increment lowest digit (pick next choice for the
// variable), and if it wrapped to the beginning then increment next digit.
template <typename choice_type, typename choices_storage_type,
          int variable_smallsize>
class CombinationGenerator {
  template <typename T> struct WrappingIterator {
    using value_type = T;

    const ArrayRef<value_type> Range;
    typename decltype(Range)::const_iterator Position;

    // Rewind the tape, placing the position to again point at the beginning.
    void rewind() { Position = Range.begin(); }

    // Advance position forward, possibly wrapping to the beginning.
    // Returns whether the wrap happened.
    bool operator++() {
      ++Position;
      bool Wrapped = Position == Range.end();
      if (Wrapped)
        rewind();
      return Wrapped;
    }

    // Get the value at which we are currently pointing.
    operator const value_type &() const { return *Position; }

    WrappingIterator(ArrayRef<value_type> Range_) : Range(Range_) {
      assert(!Range.empty() && "The range must not be empty.");
      rewind();
    }
  };

  const ArrayRef<choices_storage_type> VariablesChoices;

  void performGeneration(
      const function_ref<bool(ArrayRef<choice_type>)> Callback) const {
    SmallVector<WrappingIterator<choice_type>, variable_smallsize>
        VariablesState;

    // 'increment' of the the whole VariablesState is defined identically to the
    // increment of a number: starting from the least significant element,
    // increment it, and if it wrapped, then propagate that carry by also
    // incrementing next (more significant) element.
    auto IncrementState =
        [](MutableArrayRef<WrappingIterator<choice_type>> VariablesState)
        -> bool {
      for (WrappingIterator<choice_type> &Variable :
           llvm::reverse(VariablesState)) {
        bool Wrapped = ++Variable;
        if (!Wrapped)
          return false; // There you go, next combination is ready.
        // We have carry - increment more significant variable next..
      }
      return true; // MSB variable wrapped, no more unique combinations.
    };

    // Initialize the per-variable state to refer to the possible choices for
    // that variable.
    VariablesState.reserve(VariablesChoices.size());
    for (ArrayRef<choice_type> VC : VariablesChoices)
      VariablesState.emplace_back(VC);

    // Temporary buffer to store each combination before performing Callback.
    SmallVector<choice_type, variable_smallsize> CurrentCombination;
    CurrentCombination.resize(VariablesState.size());

    while (true) {
      // Gather the currently-selected variable choices into a vector.
      for (auto I : llvm::zip(VariablesState, CurrentCombination))
        std::get<1>(I) = std::get<0>(I);
      // And pass the new combination into callback, as intended.
      if (/*Abort=*/Callback(CurrentCombination))
        return;
      // And tick the state to next combination, which will be unique.
      if (IncrementState(VariablesState))
        return; // All combinations produced.
    }
  };

public:
  CombinationGenerator(ArrayRef<choices_storage_type> VariablesChoices_)
      : VariablesChoices(VariablesChoices_) {
#ifndef NDEBUG
    assert(!VariablesChoices.empty() && "There should be some variables.");
    llvm::for_each(VariablesChoices, [](ArrayRef<choice_type> VariableChoices) {
      assert(!VariableChoices.empty() &&
             "There must always be some choice, at least a placeholder one.");
    });
#endif
  }

  // How many combinations can we produce, max?
  // This is at most how many times the callback will be called.
  size_t numCombinations() const {
    size_t NumVariants = 1;
    for (ArrayRef<choice_type> VariableChoices : VariablesChoices)
      NumVariants *= VariableChoices.size();
    assert(NumVariants >= 1 &&
           "We should always end up producing at least one combination");
    return NumVariants;
  }

  // Actually perform exhaustive combination generation.
  // Each result will be passed into the callback.
  void generate(const function_ref<bool(ArrayRef<choice_type>)> Callback) {
    performGeneration(Callback);
  }
};

} // namespace exegesis
} // namespace llvm

#endif // LLVM_TOOLS_LLVM_EXEGESIS_SNIPPETGENERATOR_H