aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/tools/llvm-cfi-verify/lib/GraphBuilder.cpp
blob: 97cf840737739627772a2ef86bf186ee4f07cc3a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
//===- GraphBuilder.cpp -----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "GraphBuilder.h"

#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/COFF.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"


using Instr = llvm::cfi_verify::FileAnalysis::Instr;

namespace llvm {
namespace cfi_verify {

uint64_t SearchLengthForUndef;
uint64_t SearchLengthForConditionalBranch;

static cl::opt<uint64_t, true> SearchLengthForUndefArg(
    "search-length-undef",
    cl::desc("Specify the maximum amount of instructions "
             "to inspect when searching for an undefined "
             "instruction from a conditional branch."),
    cl::location(SearchLengthForUndef), cl::init(2));

static cl::opt<uint64_t, true> SearchLengthForConditionalBranchArg(
    "search-length-cb",
    cl::desc("Specify the maximum amount of instructions "
             "to inspect when searching for a conditional "
             "branch from an indirect control flow."),
    cl::location(SearchLengthForConditionalBranch), cl::init(20));

std::vector<uint64_t> GraphResult::flattenAddress(uint64_t Address) const {
  std::vector<uint64_t> Addresses;

  auto It = IntermediateNodes.find(Address);
  Addresses.push_back(Address);

  while (It != IntermediateNodes.end()) {
    Addresses.push_back(It->second);
    It = IntermediateNodes.find(It->second);
  }
  return Addresses;
}

void printPairToDOT(const FileAnalysis &Analysis, raw_ostream &OS,
                          uint64_t From, uint64_t To) {
  OS << "  \"" << format_hex(From, 2) << ": ";
  Analysis.printInstruction(Analysis.getInstructionOrDie(From), OS);
  OS << "\" -> \"" << format_hex(To, 2) << ": ";
  Analysis.printInstruction(Analysis.getInstructionOrDie(To), OS);
  OS << "\"\n";
}

void GraphResult::printToDOT(const FileAnalysis &Analysis,
                             raw_ostream &OS) const {
  std::map<uint64_t, uint64_t> SortedIntermediateNodes(
      IntermediateNodes.begin(), IntermediateNodes.end());
  OS << "digraph graph_" << format_hex(BaseAddress, 2) << " {\n";
  for (const auto &KV : SortedIntermediateNodes)
    printPairToDOT(Analysis, OS, KV.first, KV.second);

  for (auto &BranchNode : ConditionalBranchNodes) {
    for (auto &V : {BranchNode.Target, BranchNode.Fallthrough})
      printPairToDOT(Analysis, OS, BranchNode.Address, V);
  }
  OS << "}\n";
}

GraphResult GraphBuilder::buildFlowGraph(const FileAnalysis &Analysis,
                                         object::SectionedAddress Address) {
  GraphResult Result;
  Result.BaseAddress = Address.Address;
  DenseSet<uint64_t> OpenedNodes;

  const auto &IndirectInstructions = Analysis.getIndirectInstructions();

  // check that IndirectInstructions contains specified Address
  if (IndirectInstructions.find(Address) == IndirectInstructions.end()) {
    return Result;
  }

  buildFlowGraphImpl(Analysis, OpenedNodes, Result, Address.Address, 0);
  return Result;
}

void GraphBuilder::buildFlowsToUndefined(const FileAnalysis &Analysis,
                                         GraphResult &Result,
                                         ConditionalBranchNode &BranchNode,
                                         const Instr &BranchInstrMeta) {
  assert(SearchLengthForUndef > 0 &&
         "Search length for undefined flow must be greater than zero.");

  // Start setting up the next node in the block.
  uint64_t NextAddress = 0;
  const Instr *NextMetaPtr;

  // Find out the next instruction in the block and add it to the new
  // node.
  if (BranchNode.Target && !BranchNode.Fallthrough) {
    // We know the target of the branch, find the fallthrough.
    NextMetaPtr = Analysis.getNextInstructionSequential(BranchInstrMeta);
    if (!NextMetaPtr) {
      errs() << "Failed to get next instruction from "
             << format_hex(BranchNode.Address, 2) << ".\n";
      return;
    }

    NextAddress = NextMetaPtr->VMAddress;
    BranchNode.Fallthrough =
        NextMetaPtr->VMAddress; // Add the new node to the branch head.
  } else if (BranchNode.Fallthrough && !BranchNode.Target) {
    // We already know the fallthrough, evaluate the target.
    uint64_t Target;
    if (!Analysis.getMCInstrAnalysis()->evaluateBranch(
            BranchInstrMeta.Instruction, BranchInstrMeta.VMAddress,
            BranchInstrMeta.InstructionSize, Target)) {
      errs() << "Failed to get branch target for conditional branch at address "
             << format_hex(BranchInstrMeta.VMAddress, 2) << ".\n";
      return;
    }

    // Resolve the meta pointer for the target of this branch.
    NextMetaPtr = Analysis.getInstruction(Target);
    if (!NextMetaPtr) {
      errs() << "Failed to find instruction at address "
             << format_hex(Target, 2) << ".\n";
      return;
    }

    NextAddress = Target;
    BranchNode.Target =
        NextMetaPtr->VMAddress; // Add the new node to the branch head.
  } else {
    errs() << "ControlBranchNode supplied to buildFlowsToUndefined should "
              "provide Target xor Fallthrough.\n";
    return;
  }

  uint64_t CurrentAddress = NextAddress;
  const Instr *CurrentMetaPtr = NextMetaPtr;

  // Now the branch head has been set properly, complete the rest of the block.
  for (uint64_t i = 1; i < SearchLengthForUndef; ++i) {
    // Check to see whether the block should die.
    if (Analysis.isCFITrap(*CurrentMetaPtr)) {
      BranchNode.CFIProtection = true;
      return;
    }

    // Find the metadata of the next instruction.
    NextMetaPtr = Analysis.getDefiniteNextInstruction(*CurrentMetaPtr);
    if (!NextMetaPtr)
      return;

    // Setup the next node.
    NextAddress = NextMetaPtr->VMAddress;

    // Add this as an intermediate.
    Result.IntermediateNodes[CurrentAddress] = NextAddress;

    // Move the 'current' pointers to the new tail of the block.
    CurrentMetaPtr = NextMetaPtr;
    CurrentAddress = NextAddress;
  }

  // Final check of the last thing we added to the block.
  if (Analysis.isCFITrap(*CurrentMetaPtr))
    BranchNode.CFIProtection = true;
}

void GraphBuilder::buildFlowGraphImpl(const FileAnalysis &Analysis,
                                      DenseSet<uint64_t> &OpenedNodes,
                                      GraphResult &Result, uint64_t Address,
                                      uint64_t Depth) {
  // If we've exceeded the flow length, terminate.
  if (Depth >= SearchLengthForConditionalBranch) {
    Result.OrphanedNodes.push_back(Address);
    return;
  }

  // Ensure this flow is acyclic.
  if (OpenedNodes.count(Address))
    Result.OrphanedNodes.push_back(Address);

  // If this flow is already explored, stop here.
  if (Result.IntermediateNodes.count(Address))
    return;

  // Get the metadata for the node instruction.
  const auto &InstrMetaPtr = Analysis.getInstruction(Address);
  if (!InstrMetaPtr) {
    errs() << "Failed to build flow graph for instruction at address "
           << format_hex(Address, 2) << ".\n";
    Result.OrphanedNodes.push_back(Address);
    return;
  }
  const auto &ChildMeta = *InstrMetaPtr;

  OpenedNodes.insert(Address);
  std::set<const Instr *> CFCrossRefs =
      Analysis.getDirectControlFlowXRefs(ChildMeta);

  bool HasValidCrossRef = false;

  for (const auto *ParentMetaPtr : CFCrossRefs) {
    assert(ParentMetaPtr && "CFCrossRefs returned nullptr.");
    const auto &ParentMeta = *ParentMetaPtr;
    const auto &ParentDesc =
        Analysis.getMCInstrInfo()->get(ParentMeta.Instruction.getOpcode());

    if (!ParentDesc.mayAffectControlFlow(ParentMeta.Instruction,
                                         *Analysis.getRegisterInfo())) {
      // If this cross reference doesn't affect CF, continue the graph.
      buildFlowGraphImpl(Analysis, OpenedNodes, Result, ParentMeta.VMAddress,
                         Depth + 1);
      Result.IntermediateNodes[ParentMeta.VMAddress] = Address;
      HasValidCrossRef = true;
      continue;
    }

    // Call instructions are not valid in the upwards traversal.
    if (ParentDesc.isCall()) {
      Result.IntermediateNodes[ParentMeta.VMAddress] = Address;
      Result.OrphanedNodes.push_back(ParentMeta.VMAddress);
      continue;
    }

    // Evaluate the branch target to ascertain whether this XRef is the result
    // of a fallthrough or the target of a branch.
    uint64_t BranchTarget;
    if (!Analysis.getMCInstrAnalysis()->evaluateBranch(
            ParentMeta.Instruction, ParentMeta.VMAddress,
            ParentMeta.InstructionSize, BranchTarget)) {
      errs() << "Failed to evaluate branch target for instruction at address "
             << format_hex(ParentMeta.VMAddress, 2) << ".\n";
      Result.IntermediateNodes[ParentMeta.VMAddress] = Address;
      Result.OrphanedNodes.push_back(ParentMeta.VMAddress);
      continue;
    }

    // Allow unconditional branches to be part of the upwards traversal.
    if (ParentDesc.isUnconditionalBranch()) {
      // Ensures that the unconditional branch is actually an XRef to the child.
      if (BranchTarget != Address) {
        errs() << "Control flow to " << format_hex(Address, 2)
               << ", but target resolution of "
               << format_hex(ParentMeta.VMAddress, 2)
               << " is not this address?\n";
        Result.IntermediateNodes[ParentMeta.VMAddress] = Address;
        Result.OrphanedNodes.push_back(ParentMeta.VMAddress);
        continue;
      }

      buildFlowGraphImpl(Analysis, OpenedNodes, Result, ParentMeta.VMAddress,
                         Depth + 1);
      Result.IntermediateNodes[ParentMeta.VMAddress] = Address;
      HasValidCrossRef = true;
      continue;
    }

    // Ensure that any unknown CFs are caught.
    if (!ParentDesc.isConditionalBranch()) {
      errs() << "Unknown control flow encountered when building graph at "
             << format_hex(Address, 2) << "\n.";
      Result.IntermediateNodes[ParentMeta.VMAddress] = Address;
      Result.OrphanedNodes.push_back(ParentMeta.VMAddress);
      continue;
    }

    // Only direct conditional branches should be present at this point. Setup
    // a conditional branch node and build flows to the ud2.
    ConditionalBranchNode BranchNode;
    BranchNode.Address = ParentMeta.VMAddress;
    BranchNode.Target = 0;
    BranchNode.Fallthrough = 0;
    BranchNode.CFIProtection = false;
    BranchNode.IndirectCFIsOnTargetPath = (BranchTarget == Address);

    if (BranchTarget == Address)
      BranchNode.Target = Address;
    else
      BranchNode.Fallthrough = Address;

    HasValidCrossRef = true;
    buildFlowsToUndefined(Analysis, Result, BranchNode, ParentMeta);
    Result.ConditionalBranchNodes.push_back(BranchNode);
  }

  // When using cross-DSO, some indirect calls are not guarded by a branch to a
  // trap but instead follow a call to __cfi_slowpath.  For example:
  // if (!InlinedFastCheck(f))
  //    call *f
  //  else {
  //    __cfi_slowpath(CallSiteTypeId, f);
  //    call *f
  //  }
  // To mark the second call as protected, we recognize indirect calls that
  // directly follow calls to functions that will trap on CFI violations.
  if (CFCrossRefs.empty()) {
    const Instr *PrevInstr = Analysis.getPrevInstructionSequential(ChildMeta);
    if (PrevInstr && Analysis.willTrapOnCFIViolation(*PrevInstr)) {
      Result.IntermediateNodes[PrevInstr->VMAddress] = Address;
      HasValidCrossRef = true;
    }
  }

  if (!HasValidCrossRef)
    Result.OrphanedNodes.push_back(Address);

  OpenedNodes.erase(Address);
}

} // namespace cfi_verify
} // namespace llvm