aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Transforms/Vectorize/VPlan.h
blob: 2cce127cd4ce0575ad58ae5289f7b9d8e4a9b3e8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
//===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file contains the declarations of the Vectorization Plan base classes:
/// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
///    VPBlockBase, together implementing a Hierarchical CFG;
/// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be
///    treated as proper graphs for generic algorithms;
/// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained
///    within VPBasicBlocks;
/// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned
///    instruction;
/// 5. The VPlan class holding a candidate for vectorization;
/// 6. The VPlanPrinter class providing a way to print a plan in dot format;
/// These are documented in docs/VectorizationPlan.rst.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H

#include "VPlanLoopInfo.h"
#include "VPlanValue.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/IRBuilder.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <map>
#include <string>

namespace llvm {

class BasicBlock;
class DominatorTree;
class InnerLoopVectorizer;
class LoopInfo;
class raw_ostream;
class RecurrenceDescriptor;
class Value;
class VPBasicBlock;
class VPRegionBlock;
class VPlan;
class VPlanSlp;

/// A range of powers-of-2 vectorization factors with fixed start and
/// adjustable end. The range includes start and excludes end, e.g.,:
/// [1, 9) = {1, 2, 4, 8}
struct VFRange {
  // A power of 2.
  const ElementCount Start;

  // Need not be a power of 2. If End <= Start range is empty.
  ElementCount End;

  bool isEmpty() const {
    return End.getKnownMinValue() <= Start.getKnownMinValue();
  }

  VFRange(const ElementCount &Start, const ElementCount &End)
      : Start(Start), End(End) {
    assert(Start.isScalable() == End.isScalable() &&
           "Both Start and End should have the same scalable flag");
    assert(isPowerOf2_32(Start.getKnownMinValue()) &&
           "Expected Start to be a power of 2");
  }
};

using VPlanPtr = std::unique_ptr<VPlan>;

/// In what follows, the term "input IR" refers to code that is fed into the
/// vectorizer whereas the term "output IR" refers to code that is generated by
/// the vectorizer.

/// VPIteration represents a single point in the iteration space of the output
/// (vectorized and/or unrolled) IR loop.
struct VPIteration {
  /// in [0..UF)
  unsigned Part;

  /// in [0..VF)
  unsigned Lane;
};

/// This is a helper struct for maintaining vectorization state. It's used for
/// mapping values from the original loop to their corresponding values in
/// the new loop. Two mappings are maintained: one for vectorized values and
/// one for scalarized values. Vectorized values are represented with UF
/// vector values in the new loop, and scalarized values are represented with
/// UF x VF scalar values in the new loop. UF and VF are the unroll and
/// vectorization factors, respectively.
///
/// Entries can be added to either map with setVectorValue and setScalarValue,
/// which assert that an entry was not already added before. If an entry is to
/// replace an existing one, call resetVectorValue and resetScalarValue. This is
/// currently needed to modify the mapped values during "fix-up" operations that
/// occur once the first phase of widening is complete. These operations include
/// type truncation and the second phase of recurrence widening.
///
/// Entries from either map can be retrieved using the getVectorValue and
/// getScalarValue functions, which assert that the desired value exists.
struct VectorizerValueMap {
  friend struct VPTransformState;

private:
  /// The unroll factor. Each entry in the vector map contains UF vector values.
  unsigned UF;

  /// The vectorization factor. Each entry in the scalar map contains UF x VF
  /// scalar values.
  ElementCount VF;

  /// The vector and scalar map storage. We use std::map and not DenseMap
  /// because insertions to DenseMap invalidate its iterators.
  using VectorParts = SmallVector<Value *, 2>;
  using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
  std::map<Value *, VectorParts> VectorMapStorage;
  std::map<Value *, ScalarParts> ScalarMapStorage;

public:
  /// Construct an empty map with the given unroll and vectorization factors.
  VectorizerValueMap(unsigned UF, ElementCount VF) : UF(UF), VF(VF) {}

  /// \return True if the map has any vector entry for \p Key.
  bool hasAnyVectorValue(Value *Key) const {
    return VectorMapStorage.count(Key);
  }

  /// \return True if the map has a vector entry for \p Key and \p Part.
  bool hasVectorValue(Value *Key, unsigned Part) const {
    assert(Part < UF && "Queried Vector Part is too large.");
    if (!hasAnyVectorValue(Key))
      return false;
    const VectorParts &Entry = VectorMapStorage.find(Key)->second;
    assert(Entry.size() == UF && "VectorParts has wrong dimensions.");
    return Entry[Part] != nullptr;
  }

  /// \return True if the map has any scalar entry for \p Key.
  bool hasAnyScalarValue(Value *Key) const {
    return ScalarMapStorage.count(Key);
  }

  /// \return True if the map has a scalar entry for \p Key and \p Instance.
  bool hasScalarValue(Value *Key, const VPIteration &Instance) const {
    assert(Instance.Part < UF && "Queried Scalar Part is too large.");
    assert(Instance.Lane < VF.getKnownMinValue() &&
           "Queried Scalar Lane is too large.");

    if (!hasAnyScalarValue(Key))
      return false;
    const ScalarParts &Entry = ScalarMapStorage.find(Key)->second;
    assert(Entry.size() == UF && "ScalarParts has wrong dimensions.");
    assert(Entry[Instance.Part].size() == VF.getKnownMinValue() &&
           "ScalarParts has wrong dimensions.");
    return Entry[Instance.Part][Instance.Lane] != nullptr;
  }

  /// Retrieve the existing vector value that corresponds to \p Key and
  /// \p Part.
  Value *getVectorValue(Value *Key, unsigned Part) {
    assert(hasVectorValue(Key, Part) && "Getting non-existent value.");
    return VectorMapStorage[Key][Part];
  }

  /// Retrieve the existing scalar value that corresponds to \p Key and
  /// \p Instance.
  Value *getScalarValue(Value *Key, const VPIteration &Instance) {
    assert(hasScalarValue(Key, Instance) && "Getting non-existent value.");
    return ScalarMapStorage[Key][Instance.Part][Instance.Lane];
  }

  /// Set a vector value associated with \p Key and \p Part. Assumes such a
  /// value is not already set. If it is, use resetVectorValue() instead.
  void setVectorValue(Value *Key, unsigned Part, Value *Vector) {
    assert(!hasVectorValue(Key, Part) && "Vector value already set for part");
    if (!VectorMapStorage.count(Key)) {
      VectorParts Entry(UF);
      VectorMapStorage[Key] = Entry;
    }
    VectorMapStorage[Key][Part] = Vector;
  }

  /// Set a scalar value associated with \p Key and \p Instance. Assumes such a
  /// value is not already set.
  void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) {
    assert(!hasScalarValue(Key, Instance) && "Scalar value already set");
    if (!ScalarMapStorage.count(Key)) {
      ScalarParts Entry(UF);
      // TODO: Consider storing uniform values only per-part, as they occupy
      //       lane 0 only, keeping the other VF-1 redundant entries null.
      for (unsigned Part = 0; Part < UF; ++Part)
        Entry[Part].resize(VF.getKnownMinValue(), nullptr);
      ScalarMapStorage[Key] = Entry;
    }
    ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
  }

  /// Reset the vector value associated with \p Key for the given \p Part.
  /// This function can be used to update values that have already been
  /// vectorized. This is the case for "fix-up" operations including type
  /// truncation and the second phase of recurrence vectorization.
  void resetVectorValue(Value *Key, unsigned Part, Value *Vector) {
    assert(hasVectorValue(Key, Part) && "Vector value not set for part");
    VectorMapStorage[Key][Part] = Vector;
  }

  /// Reset the scalar value associated with \p Key for \p Part and \p Lane.
  /// This function can be used to update values that have already been
  /// scalarized. This is the case for "fix-up" operations including scalar phi
  /// nodes for scalarized and predicated instructions.
  void resetScalarValue(Value *Key, const VPIteration &Instance,
                        Value *Scalar) {
    assert(hasScalarValue(Key, Instance) &&
           "Scalar value not set for part and lane");
    ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
  }
};

/// This class is used to enable the VPlan to invoke a method of ILV. This is
/// needed until the method is refactored out of ILV and becomes reusable.
struct VPCallback {
  virtual ~VPCallback() {}
  virtual Value *getOrCreateVectorValues(Value *V, unsigned Part) = 0;
  virtual Value *getOrCreateScalarValue(Value *V,
                                        const VPIteration &Instance) = 0;
};

/// VPTransformState holds information passed down when "executing" a VPlan,
/// needed for generating the output IR.
struct VPTransformState {
  VPTransformState(ElementCount VF, unsigned UF, Loop *OrigLoop, LoopInfo *LI,
                   DominatorTree *DT, IRBuilder<> &Builder,
                   VectorizerValueMap &ValueMap, InnerLoopVectorizer *ILV,
                   VPCallback &Callback)
      : VF(VF), UF(UF), Instance(), OrigLoop(OrigLoop), LI(LI), DT(DT),
        Builder(Builder), ValueMap(ValueMap), ILV(ILV), Callback(Callback) {}

  /// The chosen Vectorization and Unroll Factors of the loop being vectorized.
  ElementCount VF;
  unsigned UF;

  /// Hold the indices to generate specific scalar instructions. Null indicates
  /// that all instances are to be generated, using either scalar or vector
  /// instructions.
  Optional<VPIteration> Instance;

  struct DataState {
    /// A type for vectorized values in the new loop. Each value from the
    /// original loop, when vectorized, is represented by UF vector values in
    /// the new unrolled loop, where UF is the unroll factor.
    typedef SmallVector<Value *, 2> PerPartValuesTy;

    DenseMap<VPValue *, PerPartValuesTy> PerPartOutput;

    using ScalarsPerPartValuesTy = SmallVector<SmallVector<Value *, 4>, 2>;
    DenseMap<VPValue *, ScalarsPerPartValuesTy> PerPartScalars;
  } Data;

  /// Get the generated Value for a given VPValue and a given Part. Note that
  /// as some Defs are still created by ILV and managed in its ValueMap, this
  /// method will delegate the call to ILV in such cases in order to provide
  /// callers a consistent API.
  /// \see set.
  Value *get(VPValue *Def, unsigned Part) {
    // If Values have been set for this Def return the one relevant for \p Part.
    if (Data.PerPartOutput.count(Def))
      return Data.PerPartOutput[Def][Part];
    // Def is managed by ILV: bring the Values from ValueMap.
    return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part);
  }

  /// Get the generated Value for a given VPValue and given Part and Lane.
  Value *get(VPValue *Def, const VPIteration &Instance);

  bool hasVectorValue(VPValue *Def, unsigned Part) {
    auto I = Data.PerPartOutput.find(Def);
    return I != Data.PerPartOutput.end() && Part < I->second.size() &&
           I->second[Part];
  }

  bool hasScalarValue(VPValue *Def, VPIteration Instance) {
    auto I = Data.PerPartScalars.find(Def);
    if (I == Data.PerPartScalars.end())
      return false;
    return Instance.Part < I->second.size() &&
           Instance.Lane < I->second[Instance.Part].size() &&
           I->second[Instance.Part][Instance.Lane];
  }

  /// Set the generated Value for a given VPValue and a given Part.
  void set(VPValue *Def, Value *V, unsigned Part) {
    if (!Data.PerPartOutput.count(Def)) {
      DataState::PerPartValuesTy Entry(UF);
      Data.PerPartOutput[Def] = Entry;
    }
    Data.PerPartOutput[Def][Part] = V;
  }
  void set(VPValue *Def, Value *IRDef, Value *V, unsigned Part);

  void set(VPValue *Def, Value *V, const VPIteration &Instance) {
    auto Iter = Data.PerPartScalars.insert({Def, {}});
    auto &PerPartVec = Iter.first->second;
    while (PerPartVec.size() <= Instance.Part)
      PerPartVec.emplace_back();
    auto &Scalars = PerPartVec[Instance.Part];
    while (Scalars.size() <= Instance.Lane)
      Scalars.push_back(nullptr);
    Scalars[Instance.Lane] = V;
  }

  /// Hold state information used when constructing the CFG of the output IR,
  /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
  struct CFGState {
    /// The previous VPBasicBlock visited. Initially set to null.
    VPBasicBlock *PrevVPBB = nullptr;

    /// The previous IR BasicBlock created or used. Initially set to the new
    /// header BasicBlock.
    BasicBlock *PrevBB = nullptr;

    /// The last IR BasicBlock in the output IR. Set to the new latch
    /// BasicBlock, used for placing the newly created BasicBlocks.
    BasicBlock *LastBB = nullptr;

    /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
    /// of replication, maps the BasicBlock of the last replica created.
    SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;

    /// Vector of VPBasicBlocks whose terminator instruction needs to be fixed
    /// up at the end of vector code generation.
    SmallVector<VPBasicBlock *, 8> VPBBsToFix;

    CFGState() = default;
  } CFG;

  /// Hold a pointer to the original loop.
  Loop *OrigLoop;

  /// Hold a pointer to LoopInfo to register new basic blocks in the loop.
  LoopInfo *LI;

  /// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
  DominatorTree *DT;

  /// Hold a reference to the IRBuilder used to generate output IR code.
  IRBuilder<> &Builder;

  /// Hold a reference to the Value state information used when generating the
  /// Values of the output IR.
  VectorizerValueMap &ValueMap;

  /// Hold a reference to a mapping between VPValues in VPlan and original
  /// Values they correspond to.
  VPValue2ValueTy VPValue2Value;

  /// Hold the canonical scalar IV of the vector loop (start=0, step=VF*UF).
  Value *CanonicalIV = nullptr;

  /// Hold the trip count of the scalar loop.
  Value *TripCount = nullptr;

  /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
  InnerLoopVectorizer *ILV;

  VPCallback &Callback;
};

/// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
/// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
class VPBlockBase {
  friend class VPBlockUtils;

  const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).

  /// An optional name for the block.
  std::string Name;

  /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
  /// it is a topmost VPBlockBase.
  VPRegionBlock *Parent = nullptr;

  /// List of predecessor blocks.
  SmallVector<VPBlockBase *, 1> Predecessors;

  /// List of successor blocks.
  SmallVector<VPBlockBase *, 1> Successors;

  /// Successor selector, null for zero or single successor blocks.
  VPValue *CondBit = nullptr;

  /// Current block predicate - null if the block does not need a predicate.
  VPValue *Predicate = nullptr;

  /// VPlan containing the block. Can only be set on the entry block of the
  /// plan.
  VPlan *Plan = nullptr;

  /// Add \p Successor as the last successor to this block.
  void appendSuccessor(VPBlockBase *Successor) {
    assert(Successor && "Cannot add nullptr successor!");
    Successors.push_back(Successor);
  }

  /// Add \p Predecessor as the last predecessor to this block.
  void appendPredecessor(VPBlockBase *Predecessor) {
    assert(Predecessor && "Cannot add nullptr predecessor!");
    Predecessors.push_back(Predecessor);
  }

  /// Remove \p Predecessor from the predecessors of this block.
  void removePredecessor(VPBlockBase *Predecessor) {
    auto Pos = find(Predecessors, Predecessor);
    assert(Pos && "Predecessor does not exist");
    Predecessors.erase(Pos);
  }

  /// Remove \p Successor from the successors of this block.
  void removeSuccessor(VPBlockBase *Successor) {
    auto Pos = find(Successors, Successor);
    assert(Pos && "Successor does not exist");
    Successors.erase(Pos);
  }

protected:
  VPBlockBase(const unsigned char SC, const std::string &N)
      : SubclassID(SC), Name(N) {}

public:
  /// An enumeration for keeping track of the concrete subclass of VPBlockBase
  /// that are actually instantiated. Values of this enumeration are kept in the
  /// SubclassID field of the VPBlockBase objects. They are used for concrete
  /// type identification.
  using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC };

  using VPBlocksTy = SmallVectorImpl<VPBlockBase *>;

  virtual ~VPBlockBase() = default;

  const std::string &getName() const { return Name; }

  void setName(const Twine &newName) { Name = newName.str(); }

  /// \return an ID for the concrete type of this object.
  /// This is used to implement the classof checks. This should not be used
  /// for any other purpose, as the values may change as LLVM evolves.
  unsigned getVPBlockID() const { return SubclassID; }

  VPRegionBlock *getParent() { return Parent; }
  const VPRegionBlock *getParent() const { return Parent; }

  /// \return A pointer to the plan containing the current block.
  VPlan *getPlan();
  const VPlan *getPlan() const;

  /// Sets the pointer of the plan containing the block. The block must be the
  /// entry block into the VPlan.
  void setPlan(VPlan *ParentPlan);

  void setParent(VPRegionBlock *P) { Parent = P; }

  /// \return the VPBasicBlock that is the entry of this VPBlockBase,
  /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
  /// VPBlockBase is a VPBasicBlock, it is returned.
  const VPBasicBlock *getEntryBasicBlock() const;
  VPBasicBlock *getEntryBasicBlock();

  /// \return the VPBasicBlock that is the exit of this VPBlockBase,
  /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
  /// VPBlockBase is a VPBasicBlock, it is returned.
  const VPBasicBlock *getExitBasicBlock() const;
  VPBasicBlock *getExitBasicBlock();

  const VPBlocksTy &getSuccessors() const { return Successors; }
  VPBlocksTy &getSuccessors() { return Successors; }

  const VPBlocksTy &getPredecessors() const { return Predecessors; }
  VPBlocksTy &getPredecessors() { return Predecessors; }

  /// \return the successor of this VPBlockBase if it has a single successor.
  /// Otherwise return a null pointer.
  VPBlockBase *getSingleSuccessor() const {
    return (Successors.size() == 1 ? *Successors.begin() : nullptr);
  }

  /// \return the predecessor of this VPBlockBase if it has a single
  /// predecessor. Otherwise return a null pointer.
  VPBlockBase *getSinglePredecessor() const {
    return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
  }

  size_t getNumSuccessors() const { return Successors.size(); }
  size_t getNumPredecessors() const { return Predecessors.size(); }

  /// An Enclosing Block of a block B is any block containing B, including B
  /// itself. \return the closest enclosing block starting from "this", which
  /// has successors. \return the root enclosing block if all enclosing blocks
  /// have no successors.
  VPBlockBase *getEnclosingBlockWithSuccessors();

  /// \return the closest enclosing block starting from "this", which has
  /// predecessors. \return the root enclosing block if all enclosing blocks
  /// have no predecessors.
  VPBlockBase *getEnclosingBlockWithPredecessors();

  /// \return the successors either attached directly to this VPBlockBase or, if
  /// this VPBlockBase is the exit block of a VPRegionBlock and has no
  /// successors of its own, search recursively for the first enclosing
  /// VPRegionBlock that has successors and return them. If no such
  /// VPRegionBlock exists, return the (empty) successors of the topmost
  /// VPBlockBase reached.
  const VPBlocksTy &getHierarchicalSuccessors() {
    return getEnclosingBlockWithSuccessors()->getSuccessors();
  }

  /// \return the hierarchical successor of this VPBlockBase if it has a single
  /// hierarchical successor. Otherwise return a null pointer.
  VPBlockBase *getSingleHierarchicalSuccessor() {
    return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
  }

  /// \return the predecessors either attached directly to this VPBlockBase or,
  /// if this VPBlockBase is the entry block of a VPRegionBlock and has no
  /// predecessors of its own, search recursively for the first enclosing
  /// VPRegionBlock that has predecessors and return them. If no such
  /// VPRegionBlock exists, return the (empty) predecessors of the topmost
  /// VPBlockBase reached.
  const VPBlocksTy &getHierarchicalPredecessors() {
    return getEnclosingBlockWithPredecessors()->getPredecessors();
  }

  /// \return the hierarchical predecessor of this VPBlockBase if it has a
  /// single hierarchical predecessor. Otherwise return a null pointer.
  VPBlockBase *getSingleHierarchicalPredecessor() {
    return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
  }

  /// \return the condition bit selecting the successor.
  VPValue *getCondBit() { return CondBit; }

  const VPValue *getCondBit() const { return CondBit; }

  void setCondBit(VPValue *CV) { CondBit = CV; }

  VPValue *getPredicate() { return Predicate; }

  const VPValue *getPredicate() const { return Predicate; }

  void setPredicate(VPValue *Pred) { Predicate = Pred; }

  /// Set a given VPBlockBase \p Successor as the single successor of this
  /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor.
  /// This VPBlockBase must have no successors.
  void setOneSuccessor(VPBlockBase *Successor) {
    assert(Successors.empty() && "Setting one successor when others exist.");
    appendSuccessor(Successor);
  }

  /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two
  /// successors of this VPBlockBase. \p Condition is set as the successor
  /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p
  /// IfFalse. This VPBlockBase must have no successors.
  void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
                        VPValue *Condition) {
    assert(Successors.empty() && "Setting two successors when others exist.");
    assert(Condition && "Setting two successors without condition!");
    CondBit = Condition;
    appendSuccessor(IfTrue);
    appendSuccessor(IfFalse);
  }

  /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase.
  /// This VPBlockBase must have no predecessors. This VPBlockBase is not added
  /// as successor of any VPBasicBlock in \p NewPreds.
  void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) {
    assert(Predecessors.empty() && "Block predecessors already set.");
    for (auto *Pred : NewPreds)
      appendPredecessor(Pred);
  }

  /// Remove all the predecessor of this block.
  void clearPredecessors() { Predecessors.clear(); }

  /// Remove all the successors of this block and set to null its condition bit
  void clearSuccessors() {
    Successors.clear();
    CondBit = nullptr;
  }

  /// The method which generates the output IR that correspond to this
  /// VPBlockBase, thereby "executing" the VPlan.
  virtual void execute(struct VPTransformState *State) = 0;

  /// Delete all blocks reachable from a given VPBlockBase, inclusive.
  static void deleteCFG(VPBlockBase *Entry);

  void printAsOperand(raw_ostream &OS, bool PrintType) const {
    OS << getName();
  }

  void print(raw_ostream &OS) const {
    // TODO: Only printing VPBB name for now since we only have dot printing
    // support for VPInstructions/Recipes.
    printAsOperand(OS, false);
  }

  /// Return true if it is legal to hoist instructions into this block.
  bool isLegalToHoistInto() {
    // There are currently no constraints that prevent an instruction to be
    // hoisted into a VPBlockBase.
    return true;
  }

  /// Replace all operands of VPUsers in the block with \p NewValue and also
  /// replaces all uses of VPValues defined in the block with NewValue.
  virtual void dropAllReferences(VPValue *NewValue) = 0;
};

/// VPRecipeBase is a base class modeling a sequence of one or more output IR
/// instructions. VPRecipeBase owns the the VPValues it defines through VPDef
/// and is responsible for deleting its defined values. Single-value
/// VPRecipeBases that also inherit from VPValue must make sure to inherit from
/// VPRecipeBase before VPValue.
class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock>,
                     public VPDef {
  friend VPBasicBlock;
  friend class VPBlockUtils;


  /// Each VPRecipe belongs to a single VPBasicBlock.
  VPBasicBlock *Parent = nullptr;

public:
  VPRecipeBase(const unsigned char SC) : VPDef(SC) {}
  virtual ~VPRecipeBase() = default;

  /// \return the VPBasicBlock which this VPRecipe belongs to.
  VPBasicBlock *getParent() { return Parent; }
  const VPBasicBlock *getParent() const { return Parent; }

  /// The method which generates the output IR instructions that correspond to
  /// this VPRecipe, thereby "executing" the VPlan.
  virtual void execute(struct VPTransformState &State) = 0;

  /// Insert an unlinked recipe into a basic block immediately before
  /// the specified recipe.
  void insertBefore(VPRecipeBase *InsertPos);

  /// Insert an unlinked Recipe into a basic block immediately after
  /// the specified Recipe.
  void insertAfter(VPRecipeBase *InsertPos);

  /// Unlink this recipe from its current VPBasicBlock and insert it into
  /// the VPBasicBlock that MovePos lives in, right after MovePos.
  void moveAfter(VPRecipeBase *MovePos);

  /// Unlink this recipe and insert into BB before I.
  ///
  /// \pre I is a valid iterator into BB.
  void moveBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator I);

  /// This method unlinks 'this' from the containing basic block, but does not
  /// delete it.
  void removeFromParent();

  /// This method unlinks 'this' from the containing basic block and deletes it.
  ///
  /// \returns an iterator pointing to the element after the erased one
  iplist<VPRecipeBase>::iterator eraseFromParent();

  /// Returns a pointer to a VPUser, if the recipe inherits from VPUser or
  /// nullptr otherwise.
  VPUser *toVPUser();

  /// Returns the underlying instruction, if the recipe is a VPValue or nullptr
  /// otherwise.
  Instruction *getUnderlyingInstr() {
    return cast<Instruction>(getVPValue()->getUnderlyingValue());
  }
  const Instruction *getUnderlyingInstr() const {
    return cast<Instruction>(getVPValue()->getUnderlyingValue());
  }

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPDef *D) {
    // All VPDefs are also VPRecipeBases.
    return true;
  }
};

inline bool VPUser::classof(const VPDef *Def) {
  return Def->getVPDefID() == VPRecipeBase::VPInstructionSC ||
         Def->getVPDefID() == VPRecipeBase::VPWidenSC ||
         Def->getVPDefID() == VPRecipeBase::VPWidenCallSC ||
         Def->getVPDefID() == VPRecipeBase::VPWidenSelectSC ||
         Def->getVPDefID() == VPRecipeBase::VPWidenGEPSC ||
         Def->getVPDefID() == VPRecipeBase::VPBlendSC ||
         Def->getVPDefID() == VPRecipeBase::VPInterleaveSC ||
         Def->getVPDefID() == VPRecipeBase::VPReplicateSC ||
         Def->getVPDefID() == VPRecipeBase::VPReductionSC ||
         Def->getVPDefID() == VPRecipeBase::VPBranchOnMaskSC ||
         Def->getVPDefID() == VPRecipeBase::VPWidenMemoryInstructionSC;
}

/// This is a concrete Recipe that models a single VPlan-level instruction.
/// While as any Recipe it may generate a sequence of IR instructions when
/// executed, these instructions would always form a single-def expression as
/// the VPInstruction is also a single def-use vertex.
class VPInstruction : public VPRecipeBase, public VPUser, public VPValue {
  friend class VPlanSlp;

public:
  /// VPlan opcodes, extending LLVM IR with idiomatics instructions.
  enum {
    Not = Instruction::OtherOpsEnd + 1,
    ICmpULE,
    SLPLoad,
    SLPStore,
    ActiveLaneMask,
  };

private:
  typedef unsigned char OpcodeTy;
  OpcodeTy Opcode;

  /// Utility method serving execute(): generates a single instance of the
  /// modeled instruction.
  void generateInstruction(VPTransformState &State, unsigned Part);

protected:
  void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); }

public:
  VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands)
      : VPRecipeBase(VPRecipeBase::VPInstructionSC), VPUser(Operands),
        VPValue(VPValue::VPVInstructionSC, nullptr, this), Opcode(Opcode) {}

  VPInstruction(unsigned Opcode, ArrayRef<VPInstruction *> Operands)
      : VPRecipeBase(VPRecipeBase::VPInstructionSC), VPUser({}),
        VPValue(VPValue::VPVInstructionSC, nullptr, this), Opcode(Opcode) {
    for (auto *I : Operands)
      addOperand(I->getVPValue());
  }

  VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands)
      : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {}

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPValue *V) {
    return V->getVPValueID() == VPValue::VPVInstructionSC;
  }

  VPInstruction *clone() const {
    SmallVector<VPValue *, 2> Operands(operands());
    return new VPInstruction(Opcode, Operands);
  }

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPDef *R) {
    return R->getVPDefID() == VPRecipeBase::VPInstructionSC;
  }

  unsigned getOpcode() const { return Opcode; }

  /// Generate the instruction.
  /// TODO: We currently execute only per-part unless a specific instance is
  /// provided.
  void execute(VPTransformState &State) override;

  /// Print the VPInstruction to \p O.
  void print(raw_ostream &O, const Twine &Indent,
             VPSlotTracker &SlotTracker) const override;

  /// Print the VPInstruction to dbgs() (for debugging).
  void dump() const;

  /// Return true if this instruction may modify memory.
  bool mayWriteToMemory() const {
    // TODO: we can use attributes of the called function to rule out memory
    //       modifications.
    return Opcode == Instruction::Store || Opcode == Instruction::Call ||
           Opcode == Instruction::Invoke || Opcode == SLPStore;
  }

  bool hasResult() const {
    // CallInst may or may not have a result, depending on the called function.
    // Conservatively return calls have results for now.
    switch (getOpcode()) {
    case Instruction::Ret:
    case Instruction::Br:
    case Instruction::Store:
    case Instruction::Switch:
    case Instruction::IndirectBr:
    case Instruction::Resume:
    case Instruction::CatchRet:
    case Instruction::Unreachable:
    case Instruction::Fence:
    case Instruction::AtomicRMW:
      return false;
    default:
      return true;
    }
  }
};

/// VPWidenRecipe is a recipe for producing a copy of vector type its
/// ingredient. This recipe covers most of the traditional vectorization cases
/// where each ingredient transforms into a vectorized version of itself.
class VPWidenRecipe : public VPRecipeBase, public VPValue, public VPUser {
public:
  template <typename IterT>
  VPWidenRecipe(Instruction &I, iterator_range<IterT> Operands)
      : VPRecipeBase(VPRecipeBase::VPWidenSC),
        VPValue(VPValue::VPVWidenSC, &I, this), VPUser(Operands) {}

  ~VPWidenRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPDef *D) {
    return D->getVPDefID() == VPRecipeBase::VPWidenSC;
  }
  static inline bool classof(const VPValue *V) {
    return V->getVPValueID() == VPValue::VPVWidenSC;
  }

  /// Produce widened copies of all Ingredients.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent,
             VPSlotTracker &SlotTracker) const override;
};

/// A recipe for widening Call instructions.
class VPWidenCallRecipe : public VPRecipeBase, public VPUser, public VPValue {

public:
  template <typename IterT>
  VPWidenCallRecipe(CallInst &I, iterator_range<IterT> CallArguments)
      : VPRecipeBase(VPRecipeBase::VPWidenCallSC), VPUser(CallArguments),
        VPValue(VPValue::VPVWidenCallSC, &I, this) {}

  ~VPWidenCallRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPDef *D) {
    return D->getVPDefID() == VPRecipeBase::VPWidenCallSC;
  }

  /// Produce a widened version of the call instruction.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent,
             VPSlotTracker &SlotTracker) const override;
};

/// A recipe for widening select instructions.
class VPWidenSelectRecipe : public VPRecipeBase, public VPUser, public VPValue {

  /// Is the condition of the select loop invariant?
  bool InvariantCond;

public:
  template <typename IterT>
  VPWidenSelectRecipe(SelectInst &I, iterator_range<IterT> Operands,
                      bool InvariantCond)
      : VPRecipeBase(VPRecipeBase::VPWidenSelectSC), VPUser(Operands),
        VPValue(VPValue::VPVWidenSelectSC, &I, this),
        InvariantCond(InvariantCond) {}

  ~VPWidenSelectRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPDef *D) {
    return D->getVPDefID() == VPRecipeBase::VPWidenSelectSC;
  }

  /// Produce a widened version of the select instruction.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent,
             VPSlotTracker &SlotTracker) const override;
};

/// A recipe for handling GEP instructions.
class VPWidenGEPRecipe : public VPRecipeBase,
                         public VPUser,
                         public VPValue {
  bool IsPtrLoopInvariant;
  SmallBitVector IsIndexLoopInvariant;

public:
  template <typename IterT>
  VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands)
      : VPRecipeBase(VPRecipeBase::VPWidenGEPSC), VPUser(Operands),
        VPValue(VPWidenGEPSC, GEP, this),
        IsIndexLoopInvariant(GEP->getNumIndices(), false) {}

  template <typename IterT>
  VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands,
                   Loop *OrigLoop)
      : VPRecipeBase(VPRecipeBase::VPWidenGEPSC), VPUser(Operands),
        VPValue(VPValue::VPVWidenGEPSC, GEP, this),
        IsIndexLoopInvariant(GEP->getNumIndices(), false) {
    IsPtrLoopInvariant = OrigLoop->isLoopInvariant(GEP->getPointerOperand());
    for (auto Index : enumerate(GEP->indices()))
      IsIndexLoopInvariant[Index.index()] =
          OrigLoop->isLoopInvariant(Index.value().get());
  }
  ~VPWidenGEPRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPDef *D) {
    return D->getVPDefID() == VPRecipeBase::VPWidenGEPSC;
  }

  /// Generate the gep nodes.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent,
             VPSlotTracker &SlotTracker) const override;
};

/// A recipe for handling phi nodes of integer and floating-point inductions,
/// producing their vector and scalar values.
class VPWidenIntOrFpInductionRecipe : public VPRecipeBase, public VPUser {
  PHINode *IV;
  TruncInst *Trunc;

public:
  VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start,
                                TruncInst *Trunc = nullptr)
      : VPRecipeBase(VPWidenIntOrFpInductionSC), VPUser({Start}), IV(IV),
        Trunc(Trunc) {
    if (Trunc)
      new VPValue(Trunc, this);
    else
      new VPValue(IV, this);
  }
  ~VPWidenIntOrFpInductionRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPDef *D) {
    return D->getVPDefID() == VPRecipeBase::VPWidenIntOrFpInductionSC;
  }

  /// Generate the vectorized and scalarized versions of the phi node as
  /// needed by their users.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent,
             VPSlotTracker &SlotTracker) const override;

  /// Returns the start value of the induction.
  VPValue *getStartValue() { return getOperand(0); }
};

/// A recipe for handling all phi nodes except for integer and FP inductions.
/// For reduction PHIs, RdxDesc must point to the corresponding recurrence
/// descriptor and the start value is the first operand of the recipe.
class VPWidenPHIRecipe : public VPRecipeBase, public VPUser {
  PHINode *Phi;

  /// Descriptor for a reduction PHI.
  RecurrenceDescriptor *RdxDesc = nullptr;

public:
  /// Create a new VPWidenPHIRecipe for the reduction \p Phi described by \p
  /// RdxDesc.
  VPWidenPHIRecipe(PHINode *Phi, RecurrenceDescriptor &RdxDesc, VPValue &Start)
      : VPWidenPHIRecipe(Phi) {
    this->RdxDesc = &RdxDesc;
    addOperand(&Start);
  }

  /// Create a VPWidenPHIRecipe for \p Phi
  VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {
    new VPValue(Phi, this);
  }
  ~VPWidenPHIRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPDef *D) {
    return D->getVPDefID() == VPRecipeBase::VPWidenPHISC;
  }

  /// Generate the phi/select nodes.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent,
             VPSlotTracker &SlotTracker) const override;

  /// Returns the start value of the phi, if it is a reduction.
  VPValue *getStartValue() {
    return getNumOperands() == 0 ? nullptr : getOperand(0);
  }
};

/// A recipe for vectorizing a phi-node as a sequence of mask-based select
/// instructions.
class VPBlendRecipe : public VPRecipeBase, public VPUser {
  PHINode *Phi;

public:
  /// The blend operation is a User of the incoming values and of their
  /// respective masks, ordered [I0, M0, I1, M1, ...]. Note that a single value
  /// might be incoming with a full mask for which there is no VPValue.
  VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Operands)
      : VPRecipeBase(VPBlendSC), VPUser(Operands), Phi(Phi) {
    new VPValue(Phi, this);
    assert(Operands.size() > 0 &&
           ((Operands.size() == 1) || (Operands.size() % 2 == 0)) &&
           "Expected either a single incoming value or a positive even number "
           "of operands");
  }

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPDef *D) {
    return D->getVPDefID() == VPRecipeBase::VPBlendSC;
  }

  /// Return the number of incoming values, taking into account that a single
  /// incoming value has no mask.
  unsigned getNumIncomingValues() const { return (getNumOperands() + 1) / 2; }

  /// Return incoming value number \p Idx.
  VPValue *getIncomingValue(unsigned Idx) const { return getOperand(Idx * 2); }

  /// Return mask number \p Idx.
  VPValue *getMask(unsigned Idx) const { return getOperand(Idx * 2 + 1); }

  /// Generate the phi/select nodes.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent,
             VPSlotTracker &SlotTracker) const override;
};

/// VPInterleaveRecipe is a recipe for transforming an interleave group of load
/// or stores into one wide load/store and shuffles. The first operand of a
/// VPInterleave recipe is the address, followed by the stored values, followed
/// by an optional mask.
class VPInterleaveRecipe : public VPRecipeBase, public VPUser {
  const InterleaveGroup<Instruction> *IG;

  bool HasMask = false;

public:
  VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Addr,
                     ArrayRef<VPValue *> StoredValues, VPValue *Mask)
      : VPRecipeBase(VPInterleaveSC), VPUser(Addr), IG(IG) {
    for (unsigned i = 0; i < IG->getFactor(); ++i)
      if (Instruction *I = IG->getMember(i)) {
        if (I->getType()->isVoidTy())
          continue;
        new VPValue(I, this);
      }

    for (auto *SV : StoredValues)
      addOperand(SV);
    if (Mask) {
      HasMask = true;
      addOperand(Mask);
    }
  }
  ~VPInterleaveRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPDef *D) {
    return D->getVPDefID() == VPRecipeBase::VPInterleaveSC;
  }

  /// Return the address accessed by this recipe.
  VPValue *getAddr() const {
    return getOperand(0); // Address is the 1st, mandatory operand.
  }

  /// Return the mask used by this recipe. Note that a full mask is represented
  /// by a nullptr.
  VPValue *getMask() const {
    // Mask is optional and therefore the last, currently 2nd operand.
    return HasMask ? getOperand(getNumOperands() - 1) : nullptr;
  }

  /// Return the VPValues stored by this interleave group. If it is a load
  /// interleave group, return an empty ArrayRef.
  ArrayRef<VPValue *> getStoredValues() const {
    // The first operand is the address, followed by the stored values, followed
    // by an optional mask.
    return ArrayRef<VPValue *>(op_begin(), getNumOperands())
        .slice(1, getNumOperands() - (HasMask ? 2 : 1));
  }

  /// Generate the wide load or store, and shuffles.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent,
             VPSlotTracker &SlotTracker) const override;

  const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; }
};

/// A recipe to represent inloop reduction operations, performing a reduction on
/// a vector operand into a scalar value, and adding the result to a chain.
/// The Operands are {ChainOp, VecOp, [Condition]}.
class VPReductionRecipe : public VPRecipeBase, public VPUser, public VPValue {
  /// The recurrence decriptor for the reduction in question.
  RecurrenceDescriptor *RdxDesc;
  /// Fast math flags to use for the resulting reduction operation.
  bool NoNaN;
  /// Pointer to the TTI, needed to create the target reduction
  const TargetTransformInfo *TTI;

public:
  VPReductionRecipe(RecurrenceDescriptor *R, Instruction *I, VPValue *ChainOp,
                    VPValue *VecOp, VPValue *CondOp, bool NoNaN,
                    const TargetTransformInfo *TTI)
      : VPRecipeBase(VPRecipeBase::VPReductionSC), VPUser({ChainOp, VecOp}),
        VPValue(VPValue::VPVReductionSC, I, this), RdxDesc(R), NoNaN(NoNaN),
        TTI(TTI) {
    if (CondOp)
      addOperand(CondOp);
  }

  ~VPReductionRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPValue *V) {
    return V->getVPValueID() == VPValue::VPVReductionSC;
  }

  static inline bool classof(const VPDef *D) {
    return D->getVPDefID() == VPRecipeBase::VPReductionSC;
  }

  /// Generate the reduction in the loop
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent,
             VPSlotTracker &SlotTracker) const override;

  /// The VPValue of the scalar Chain being accumulated.
  VPValue *getChainOp() const { return getOperand(0); }
  /// The VPValue of the vector value to be reduced.
  VPValue *getVecOp() const { return getOperand(1); }
  /// The VPValue of the condition for the block.
  VPValue *getCondOp() const {
    return getNumOperands() > 2 ? getOperand(2) : nullptr;
  }
};

/// VPReplicateRecipe replicates a given instruction producing multiple scalar
/// copies of the original scalar type, one per lane, instead of producing a
/// single copy of widened type for all lanes. If the instruction is known to be
/// uniform only one copy, per lane zero, will be generated.
class VPReplicateRecipe : public VPRecipeBase, public VPUser, public VPValue {
  /// Indicator if only a single replica per lane is needed.
  bool IsUniform;

  /// Indicator if the replicas are also predicated.
  bool IsPredicated;

  /// Indicator if the scalar values should also be packed into a vector.
  bool AlsoPack;

public:
  template <typename IterT>
  VPReplicateRecipe(Instruction *I, iterator_range<IterT> Operands,
                    bool IsUniform, bool IsPredicated = false)
      : VPRecipeBase(VPReplicateSC), VPUser(Operands),
        VPValue(VPVReplicateSC, I, this), IsUniform(IsUniform),
        IsPredicated(IsPredicated) {
    // Retain the previous behavior of predicateInstructions(), where an
    // insert-element of a predicated instruction got hoisted into the
    // predicated basic block iff it was its only user. This is achieved by
    // having predicated instructions also pack their values into a vector by
    // default unless they have a replicated user which uses their scalar value.
    AlsoPack = IsPredicated && !I->use_empty();
  }

  ~VPReplicateRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPDef *D) {
    return D->getVPDefID() == VPRecipeBase::VPReplicateSC;
  }

  static inline bool classof(const VPValue *V) {
    return V->getVPValueID() == VPValue::VPVReplicateSC;
  }

  /// Generate replicas of the desired Ingredient. Replicas will be generated
  /// for all parts and lanes unless a specific part and lane are specified in
  /// the \p State.
  void execute(VPTransformState &State) override;

  void setAlsoPack(bool Pack) { AlsoPack = Pack; }

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent,
             VPSlotTracker &SlotTracker) const override;

  bool isUniform() const { return IsUniform; }
};

/// A recipe for generating conditional branches on the bits of a mask.
class VPBranchOnMaskRecipe : public VPRecipeBase, public VPUser {
public:
  VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) {
    if (BlockInMask) // nullptr means all-one mask.
      addOperand(BlockInMask);
  }

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPDef *D) {
    return D->getVPDefID() == VPRecipeBase::VPBranchOnMaskSC;
  }

  /// Generate the extraction of the appropriate bit from the block mask and the
  /// conditional branch.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent,
             VPSlotTracker &SlotTracker) const override {
    O << " +\n" << Indent << "\"BRANCH-ON-MASK ";
    if (VPValue *Mask = getMask())
      Mask->printAsOperand(O, SlotTracker);
    else
      O << " All-One";
    O << "\\l\"";
  }

  /// Return the mask used by this recipe. Note that a full mask is represented
  /// by a nullptr.
  VPValue *getMask() const {
    assert(getNumOperands() <= 1 && "should have either 0 or 1 operands");
    // Mask is optional.
    return getNumOperands() == 1 ? getOperand(0) : nullptr;
  }
};

/// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when
/// control converges back from a Branch-on-Mask. The phi nodes are needed in
/// order to merge values that are set under such a branch and feed their uses.
/// The phi nodes can be scalar or vector depending on the users of the value.
/// This recipe works in concert with VPBranchOnMaskRecipe.
class VPPredInstPHIRecipe : public VPRecipeBase, public VPUser {

public:
  /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi
  /// nodes after merging back from a Branch-on-Mask.
  VPPredInstPHIRecipe(VPValue *PredV)
      : VPRecipeBase(VPPredInstPHISC), VPUser(PredV) {
    new VPValue(PredV->getUnderlyingValue(), this);
  }
  ~VPPredInstPHIRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPDef *D) {
    return D->getVPDefID() == VPRecipeBase::VPPredInstPHISC;
  }

  /// Generates phi nodes for live-outs as needed to retain SSA form.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent,
             VPSlotTracker &SlotTracker) const override;
};

/// A Recipe for widening load/store operations.
/// The recipe uses the following VPValues:
/// - For load: Address, optional mask
/// - For store: Address, stored value, optional mask
/// TODO: We currently execute only per-part unless a specific instance is
/// provided.
class VPWidenMemoryInstructionRecipe : public VPRecipeBase,
                                       public VPUser {
  Instruction &Ingredient;

  void setMask(VPValue *Mask) {
    if (!Mask)
      return;
    addOperand(Mask);
  }

  bool isMasked() const {
    return isStore() ? getNumOperands() == 3 : getNumOperands() == 2;
  }

public:
  VPWidenMemoryInstructionRecipe(LoadInst &Load, VPValue *Addr, VPValue *Mask)
      : VPRecipeBase(VPWidenMemoryInstructionSC), VPUser({Addr}),
        Ingredient(Load) {
    new VPValue(VPValue::VPVMemoryInstructionSC, &Load, this);
    setMask(Mask);
  }

  VPWidenMemoryInstructionRecipe(StoreInst &Store, VPValue *Addr,
                                 VPValue *StoredValue, VPValue *Mask)
      : VPRecipeBase(VPWidenMemoryInstructionSC), VPUser({Addr, StoredValue}),
        Ingredient(Store) {
    setMask(Mask);
  }

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPDef *D) {
    return D->getVPDefID() == VPRecipeBase::VPWidenMemoryInstructionSC;
  }

  /// Return the address accessed by this recipe.
  VPValue *getAddr() const {
    return getOperand(0); // Address is the 1st, mandatory operand.
  }

  /// Return the mask used by this recipe. Note that a full mask is represented
  /// by a nullptr.
  VPValue *getMask() const {
    // Mask is optional and therefore the last operand.
    return isMasked() ? getOperand(getNumOperands() - 1) : nullptr;
  }

  /// Returns true if this recipe is a store.
  bool isStore() const { return isa<StoreInst>(Ingredient); }

  /// Return the address accessed by this recipe.
  VPValue *getStoredValue() const {
    assert(isStore() && "Stored value only available for store instructions");
    return getOperand(1); // Stored value is the 2nd, mandatory operand.
  }

  /// Generate the wide load/store.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent,
             VPSlotTracker &SlotTracker) const override;
};

/// A Recipe for widening the canonical induction variable of the vector loop.
class VPWidenCanonicalIVRecipe : public VPRecipeBase {
public:
  VPWidenCanonicalIVRecipe() : VPRecipeBase(VPWidenCanonicalIVSC) {
    new VPValue(nullptr, this);
  }

  ~VPWidenCanonicalIVRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPDef *D) {
    return D->getVPDefID() == VPRecipeBase::VPWidenCanonicalIVSC;
  }

  /// Generate a canonical vector induction variable of the vector loop, with
  /// start = {<Part*VF, Part*VF+1, ..., Part*VF+VF-1> for 0 <= Part < UF}, and
  /// step = <VF*UF, VF*UF, ..., VF*UF>.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent,
             VPSlotTracker &SlotTracker) const override;
};

/// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
/// holds a sequence of zero or more VPRecipe's each representing a sequence of
/// output IR instructions.
class VPBasicBlock : public VPBlockBase {
public:
  using RecipeListTy = iplist<VPRecipeBase>;

private:
  /// The VPRecipes held in the order of output instructions to generate.
  RecipeListTy Recipes;

public:
  VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
      : VPBlockBase(VPBasicBlockSC, Name.str()) {
    if (Recipe)
      appendRecipe(Recipe);
  }

  ~VPBasicBlock() override { Recipes.clear(); }

  /// Instruction iterators...
  using iterator = RecipeListTy::iterator;
  using const_iterator = RecipeListTy::const_iterator;
  using reverse_iterator = RecipeListTy::reverse_iterator;
  using const_reverse_iterator = RecipeListTy::const_reverse_iterator;

  //===--------------------------------------------------------------------===//
  /// Recipe iterator methods
  ///
  inline iterator begin() { return Recipes.begin(); }
  inline const_iterator begin() const { return Recipes.begin(); }
  inline iterator end() { return Recipes.end(); }
  inline const_iterator end() const { return Recipes.end(); }

  inline reverse_iterator rbegin() { return Recipes.rbegin(); }
  inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
  inline reverse_iterator rend() { return Recipes.rend(); }
  inline const_reverse_iterator rend() const { return Recipes.rend(); }

  inline size_t size() const { return Recipes.size(); }
  inline bool empty() const { return Recipes.empty(); }
  inline const VPRecipeBase &front() const { return Recipes.front(); }
  inline VPRecipeBase &front() { return Recipes.front(); }
  inline const VPRecipeBase &back() const { return Recipes.back(); }
  inline VPRecipeBase &back() { return Recipes.back(); }

  /// Returns a reference to the list of recipes.
  RecipeListTy &getRecipeList() { return Recipes; }

  /// Returns a pointer to a member of the recipe list.
  static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
    return &VPBasicBlock::Recipes;
  }

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPBlockBase *V) {
    return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
  }

  void insert(VPRecipeBase *Recipe, iterator InsertPt) {
    assert(Recipe && "No recipe to append.");
    assert(!Recipe->Parent && "Recipe already in VPlan");
    Recipe->Parent = this;
    Recipes.insert(InsertPt, Recipe);
  }

  /// Augment the existing recipes of a VPBasicBlock with an additional
  /// \p Recipe as the last recipe.
  void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); }

  /// The method which generates the output IR instructions that correspond to
  /// this VPBasicBlock, thereby "executing" the VPlan.
  void execute(struct VPTransformState *State) override;

  /// Return the position of the first non-phi node recipe in the block.
  iterator getFirstNonPhi();

  void dropAllReferences(VPValue *NewValue) override;

private:
  /// Create an IR BasicBlock to hold the output instructions generated by this
  /// VPBasicBlock, and return it. Update the CFGState accordingly.
  BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
};

/// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
/// which form a Single-Entry-Single-Exit subgraph of the output IR CFG.
/// A VPRegionBlock may indicate that its contents are to be replicated several
/// times. This is designed to support predicated scalarization, in which a
/// scalar if-then code structure needs to be generated VF * UF times. Having
/// this replication indicator helps to keep a single model for multiple
/// candidate VF's. The actual replication takes place only once the desired VF
/// and UF have been determined.
class VPRegionBlock : public VPBlockBase {
  /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
  VPBlockBase *Entry;

  /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock.
  VPBlockBase *Exit;

  /// An indicator whether this region is to generate multiple replicated
  /// instances of output IR corresponding to its VPBlockBases.
  bool IsReplicator;

public:
  VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit,
                const std::string &Name = "", bool IsReplicator = false)
      : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit),
        IsReplicator(IsReplicator) {
    assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
    assert(Exit->getSuccessors().empty() && "Exit block has successors.");
    Entry->setParent(this);
    Exit->setParent(this);
  }
  VPRegionBlock(const std::string &Name = "", bool IsReplicator = false)
      : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr),
        IsReplicator(IsReplicator) {}

  ~VPRegionBlock() override {
    if (Entry) {
      VPValue DummyValue;
      Entry->dropAllReferences(&DummyValue);
      deleteCFG(Entry);
    }
  }

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPBlockBase *V) {
    return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
  }

  const VPBlockBase *getEntry() const { return Entry; }
  VPBlockBase *getEntry() { return Entry; }

  /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p
  /// EntryBlock must have no predecessors.
  void setEntry(VPBlockBase *EntryBlock) {
    assert(EntryBlock->getPredecessors().empty() &&
           "Entry block cannot have predecessors.");
    Entry = EntryBlock;
    EntryBlock->setParent(this);
  }

  // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a
  // specific interface of llvm::Function, instead of using
  // GraphTraints::getEntryNode. We should add a new template parameter to
  // DominatorTreeBase representing the Graph type.
  VPBlockBase &front() const { return *Entry; }

  const VPBlockBase *getExit() const { return Exit; }
  VPBlockBase *getExit() { return Exit; }

  /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p
  /// ExitBlock must have no successors.
  void setExit(VPBlockBase *ExitBlock) {
    assert(ExitBlock->getSuccessors().empty() &&
           "Exit block cannot have successors.");
    Exit = ExitBlock;
    ExitBlock->setParent(this);
  }

  /// An indicator whether this region is to generate multiple replicated
  /// instances of output IR corresponding to its VPBlockBases.
  bool isReplicator() const { return IsReplicator; }

  /// The method which generates the output IR instructions that correspond to
  /// this VPRegionBlock, thereby "executing" the VPlan.
  void execute(struct VPTransformState *State) override;

  void dropAllReferences(VPValue *NewValue) override;
};

//===----------------------------------------------------------------------===//
// GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs     //
//===----------------------------------------------------------------------===//

// The following set of template specializations implement GraphTraits to treat
// any VPBlockBase as a node in a graph of VPBlockBases. It's important to note
// that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the
// VPBlockBase is a VPRegionBlock, this specialization provides access to its
// successors/predecessors but not to the blocks inside the region.

template <> struct GraphTraits<VPBlockBase *> {
  using NodeRef = VPBlockBase *;
  using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;

  static NodeRef getEntryNode(NodeRef N) { return N; }

  static inline ChildIteratorType child_begin(NodeRef N) {
    return N->getSuccessors().begin();
  }

  static inline ChildIteratorType child_end(NodeRef N) {
    return N->getSuccessors().end();
  }
};

template <> struct GraphTraits<const VPBlockBase *> {
  using NodeRef = const VPBlockBase *;
  using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator;

  static NodeRef getEntryNode(NodeRef N) { return N; }

  static inline ChildIteratorType child_begin(NodeRef N) {
    return N->getSuccessors().begin();
  }

  static inline ChildIteratorType child_end(NodeRef N) {
    return N->getSuccessors().end();
  }
};

// Inverse order specialization for VPBasicBlocks. Predecessors are used instead
// of successors for the inverse traversal.
template <> struct GraphTraits<Inverse<VPBlockBase *>> {
  using NodeRef = VPBlockBase *;
  using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;

  static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; }

  static inline ChildIteratorType child_begin(NodeRef N) {
    return N->getPredecessors().begin();
  }

  static inline ChildIteratorType child_end(NodeRef N) {
    return N->getPredecessors().end();
  }
};

// The following set of template specializations implement GraphTraits to
// treat VPRegionBlock as a graph and recurse inside its nodes. It's important
// to note that the blocks inside the VPRegionBlock are treated as VPBlockBases
// (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so
// there won't be automatic recursion into other VPBlockBases that turn to be
// VPRegionBlocks.

template <>
struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> {
  using GraphRef = VPRegionBlock *;
  using nodes_iterator = df_iterator<NodeRef>;

  static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }

  static nodes_iterator nodes_begin(GraphRef N) {
    return nodes_iterator::begin(N->getEntry());
  }

  static nodes_iterator nodes_end(GraphRef N) {
    // df_iterator::end() returns an empty iterator so the node used doesn't
    // matter.
    return nodes_iterator::end(N);
  }
};

template <>
struct GraphTraits<const VPRegionBlock *>
    : public GraphTraits<const VPBlockBase *> {
  using GraphRef = const VPRegionBlock *;
  using nodes_iterator = df_iterator<NodeRef>;

  static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }

  static nodes_iterator nodes_begin(GraphRef N) {
    return nodes_iterator::begin(N->getEntry());
  }

  static nodes_iterator nodes_end(GraphRef N) {
    // df_iterator::end() returns an empty iterator so the node used doesn't
    // matter.
    return nodes_iterator::end(N);
  }
};

template <>
struct GraphTraits<Inverse<VPRegionBlock *>>
    : public GraphTraits<Inverse<VPBlockBase *>> {
  using GraphRef = VPRegionBlock *;
  using nodes_iterator = df_iterator<NodeRef>;

  static NodeRef getEntryNode(Inverse<GraphRef> N) {
    return N.Graph->getExit();
  }

  static nodes_iterator nodes_begin(GraphRef N) {
    return nodes_iterator::begin(N->getExit());
  }

  static nodes_iterator nodes_end(GraphRef N) {
    // df_iterator::end() returns an empty iterator so the node used doesn't
    // matter.
    return nodes_iterator::end(N);
  }
};

/// VPlan models a candidate for vectorization, encoding various decisions take
/// to produce efficient output IR, including which branches, basic-blocks and
/// output IR instructions to generate, and their cost. VPlan holds a
/// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
/// VPBlock.
class VPlan {
  friend class VPlanPrinter;
  friend class VPSlotTracker;

  /// Hold the single entry to the Hierarchical CFG of the VPlan.
  VPBlockBase *Entry;

  /// Holds the VFs applicable to this VPlan.
  SmallSetVector<ElementCount, 2> VFs;

  /// Holds the name of the VPlan, for printing.
  std::string Name;

  /// Holds all the external definitions created for this VPlan.
  // TODO: Introduce a specific representation for external definitions in
  // VPlan. External definitions must be immutable and hold a pointer to its
  // underlying IR that will be used to implement its structural comparison
  // (operators '==' and '<').
  SmallPtrSet<VPValue *, 16> VPExternalDefs;

  /// Represents the backedge taken count of the original loop, for folding
  /// the tail.
  VPValue *BackedgeTakenCount = nullptr;

  /// Holds a mapping between Values and their corresponding VPValue inside
  /// VPlan.
  Value2VPValueTy Value2VPValue;

  /// Contains all VPValues that been allocated by addVPValue directly and need
  /// to be free when the plan's destructor is called.
  SmallVector<VPValue *, 16> VPValuesToFree;

  /// Holds the VPLoopInfo analysis for this VPlan.
  VPLoopInfo VPLInfo;

  /// Holds the condition bit values built during VPInstruction to VPRecipe transformation.
  SmallVector<VPValue *, 4> VPCBVs;

public:
  VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {
    if (Entry)
      Entry->setPlan(this);
  }

  ~VPlan() {
    if (Entry) {
      VPValue DummyValue;
      for (VPBlockBase *Block : depth_first(Entry))
        Block->dropAllReferences(&DummyValue);

      VPBlockBase::deleteCFG(Entry);
    }
    for (VPValue *VPV : VPValuesToFree)
      delete VPV;
    if (BackedgeTakenCount)
      delete BackedgeTakenCount;
    for (VPValue *Def : VPExternalDefs)
      delete Def;
    for (VPValue *CBV : VPCBVs)
      delete CBV;
  }

  /// Generate the IR code for this VPlan.
  void execute(struct VPTransformState *State);

  VPBlockBase *getEntry() { return Entry; }
  const VPBlockBase *getEntry() const { return Entry; }

  VPBlockBase *setEntry(VPBlockBase *Block) {
    Entry = Block;
    Block->setPlan(this);
    return Entry;
  }

  /// The backedge taken count of the original loop.
  VPValue *getOrCreateBackedgeTakenCount() {
    if (!BackedgeTakenCount)
      BackedgeTakenCount = new VPValue();
    return BackedgeTakenCount;
  }

  void addVF(ElementCount VF) { VFs.insert(VF); }

  bool hasVF(ElementCount VF) { return VFs.count(VF); }

  const std::string &getName() const { return Name; }

  void setName(const Twine &newName) { Name = newName.str(); }

  /// Add \p VPVal to the pool of external definitions if it's not already
  /// in the pool.
  void addExternalDef(VPValue *VPVal) {
    VPExternalDefs.insert(VPVal);
  }

  /// Add \p CBV to the vector of condition bit values.
  void addCBV(VPValue *CBV) {
    VPCBVs.push_back(CBV);
  }

  void addVPValue(Value *V) {
    assert(V && "Trying to add a null Value to VPlan");
    assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
    VPValue *VPV = new VPValue(V);
    Value2VPValue[V] = VPV;
    VPValuesToFree.push_back(VPV);
  }

  void addVPValue(Value *V, VPValue *VPV) {
    assert(V && "Trying to add a null Value to VPlan");
    assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
    Value2VPValue[V] = VPV;
  }

  VPValue *getVPValue(Value *V) {
    assert(V && "Trying to get the VPValue of a null Value");
    assert(Value2VPValue.count(V) && "Value does not exist in VPlan");
    return Value2VPValue[V];
  }

  VPValue *getOrAddVPValue(Value *V) {
    assert(V && "Trying to get or add the VPValue of a null Value");
    if (!Value2VPValue.count(V))
      addVPValue(V);
    return getVPValue(V);
  }

  void removeVPValueFor(Value *V) { Value2VPValue.erase(V); }

  /// Return the VPLoopInfo analysis for this VPlan.
  VPLoopInfo &getVPLoopInfo() { return VPLInfo; }
  const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; }

  /// Dump the plan to stderr (for debugging).
  void dump() const;

  /// Returns a range mapping the values the range \p Operands to their
  /// corresponding VPValues.
  iterator_range<mapped_iterator<Use *, std::function<VPValue *(Value *)>>>
  mapToVPValues(User::op_range Operands) {
    std::function<VPValue *(Value *)> Fn = [this](Value *Op) {
      return getOrAddVPValue(Op);
    };
    return map_range(Operands, Fn);
  }

private:
  /// Add to the given dominator tree the header block and every new basic block
  /// that was created between it and the latch block, inclusive.
  static void updateDominatorTree(DominatorTree *DT, BasicBlock *LoopLatchBB,
                                  BasicBlock *LoopPreHeaderBB,
                                  BasicBlock *LoopExitBB);
};

/// VPlanPrinter prints a given VPlan to a given output stream. The printing is
/// indented and follows the dot format.
class VPlanPrinter {
  friend inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan);
  friend inline raw_ostream &operator<<(raw_ostream &OS,
                                        const struct VPlanIngredient &I);

private:
  raw_ostream &OS;
  const VPlan &Plan;
  unsigned Depth = 0;
  unsigned TabWidth = 2;
  std::string Indent;
  unsigned BID = 0;
  SmallDenseMap<const VPBlockBase *, unsigned> BlockID;

  VPSlotTracker SlotTracker;

  VPlanPrinter(raw_ostream &O, const VPlan &P)
      : OS(O), Plan(P), SlotTracker(&P) {}

  /// Handle indentation.
  void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }

  /// Print a given \p Block of the Plan.
  void dumpBlock(const VPBlockBase *Block);

  /// Print the information related to the CFG edges going out of a given
  /// \p Block, followed by printing the successor blocks themselves.
  void dumpEdges(const VPBlockBase *Block);

  /// Print a given \p BasicBlock, including its VPRecipes, followed by printing
  /// its successor blocks.
  void dumpBasicBlock(const VPBasicBlock *BasicBlock);

  /// Print a given \p Region of the Plan.
  void dumpRegion(const VPRegionBlock *Region);

  unsigned getOrCreateBID(const VPBlockBase *Block) {
    return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
  }

  const Twine getOrCreateName(const VPBlockBase *Block);

  const Twine getUID(const VPBlockBase *Block);

  /// Print the information related to a CFG edge between two VPBlockBases.
  void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
                const Twine &Label);

  void dump();

  static void printAsIngredient(raw_ostream &O, const Value *V);
};

struct VPlanIngredient {
  const Value *V;

  VPlanIngredient(const Value *V) : V(V) {}
};

inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
  VPlanPrinter::printAsIngredient(OS, I.V);
  return OS;
}

inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan) {
  VPlanPrinter Printer(OS, Plan);
  Printer.dump();
  return OS;
}

//===----------------------------------------------------------------------===//
// VPlan Utilities
//===----------------------------------------------------------------------===//

/// Class that provides utilities for VPBlockBases in VPlan.
class VPBlockUtils {
public:
  VPBlockUtils() = delete;

  /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p
  /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p
  /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr
  /// has more than one successor, its conditional bit is propagated to \p
  /// NewBlock. \p NewBlock must have neither successors nor predecessors.
  static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) {
    assert(NewBlock->getSuccessors().empty() &&
           "Can't insert new block with successors.");
    // TODO: move successors from BlockPtr to NewBlock when this functionality
    // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr
    // already has successors.
    BlockPtr->setOneSuccessor(NewBlock);
    NewBlock->setPredecessors({BlockPtr});
    NewBlock->setParent(BlockPtr->getParent());
  }

  /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p
  /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p
  /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr
  /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor
  /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse
  /// must have neither successors nor predecessors.
  static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
                                   VPValue *Condition, VPBlockBase *BlockPtr) {
    assert(IfTrue->getSuccessors().empty() &&
           "Can't insert IfTrue with successors.");
    assert(IfFalse->getSuccessors().empty() &&
           "Can't insert IfFalse with successors.");
    BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition);
    IfTrue->setPredecessors({BlockPtr});
    IfFalse->setPredecessors({BlockPtr});
    IfTrue->setParent(BlockPtr->getParent());
    IfFalse->setParent(BlockPtr->getParent());
  }

  /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to
  /// the successors of \p From and \p From to the predecessors of \p To. Both
  /// VPBlockBases must have the same parent, which can be null. Both
  /// VPBlockBases can be already connected to other VPBlockBases.
  static void connectBlocks(VPBlockBase *From, VPBlockBase *To) {
    assert((From->getParent() == To->getParent()) &&
           "Can't connect two block with different parents");
    assert(From->getNumSuccessors() < 2 &&
           "Blocks can't have more than two successors.");
    From->appendSuccessor(To);
    To->appendPredecessor(From);
  }

  /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To
  /// from the successors of \p From and \p From from the predecessors of \p To.
  static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) {
    assert(To && "Successor to disconnect is null.");
    From->removeSuccessor(To);
    To->removePredecessor(From);
  }

  /// Returns true if the edge \p FromBlock -> \p ToBlock is a back-edge.
  static bool isBackEdge(const VPBlockBase *FromBlock,
                         const VPBlockBase *ToBlock, const VPLoopInfo *VPLI) {
    assert(FromBlock->getParent() == ToBlock->getParent() &&
           FromBlock->getParent() && "Must be in same region");
    const VPLoop *FromLoop = VPLI->getLoopFor(FromBlock);
    const VPLoop *ToLoop = VPLI->getLoopFor(ToBlock);
    if (!FromLoop || !ToLoop || FromLoop != ToLoop)
      return false;

    // A back-edge is a branch from the loop latch to its header.
    return ToLoop->isLoopLatch(FromBlock) && ToBlock == ToLoop->getHeader();
  }

  /// Returns true if \p Block is a loop latch
  static bool blockIsLoopLatch(const VPBlockBase *Block,
                               const VPLoopInfo *VPLInfo) {
    if (const VPLoop *ParentVPL = VPLInfo->getLoopFor(Block))
      return ParentVPL->isLoopLatch(Block);

    return false;
  }

  /// Count and return the number of succesors of \p PredBlock excluding any
  /// backedges.
  static unsigned countSuccessorsNoBE(VPBlockBase *PredBlock,
                                      VPLoopInfo *VPLI) {
    unsigned Count = 0;
    for (VPBlockBase *SuccBlock : PredBlock->getSuccessors()) {
      if (!VPBlockUtils::isBackEdge(PredBlock, SuccBlock, VPLI))
        Count++;
    }
    return Count;
  }
};

class VPInterleavedAccessInfo {
  DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *>
      InterleaveGroupMap;

  /// Type for mapping of instruction based interleave groups to VPInstruction
  /// interleave groups
  using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *,
                             InterleaveGroup<VPInstruction> *>;

  /// Recursively \p Region and populate VPlan based interleave groups based on
  /// \p IAI.
  void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New,
                   InterleavedAccessInfo &IAI);
  /// Recursively traverse \p Block and populate VPlan based interleave groups
  /// based on \p IAI.
  void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
                  InterleavedAccessInfo &IAI);

public:
  VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI);

  ~VPInterleavedAccessInfo() {
    SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet;
    // Avoid releasing a pointer twice.
    for (auto &I : InterleaveGroupMap)
      DelSet.insert(I.second);
    for (auto *Ptr : DelSet)
      delete Ptr;
  }

  /// Get the interleave group that \p Instr belongs to.
  ///
  /// \returns nullptr if doesn't have such group.
  InterleaveGroup<VPInstruction> *
  getInterleaveGroup(VPInstruction *Instr) const {
    return InterleaveGroupMap.lookup(Instr);
  }
};

/// Class that maps (parts of) an existing VPlan to trees of combined
/// VPInstructions.
class VPlanSlp {
  enum class OpMode { Failed, Load, Opcode };

  /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as
  /// DenseMap keys.
  struct BundleDenseMapInfo {
    static SmallVector<VPValue *, 4> getEmptyKey() {
      return {reinterpret_cast<VPValue *>(-1)};
    }

    static SmallVector<VPValue *, 4> getTombstoneKey() {
      return {reinterpret_cast<VPValue *>(-2)};
    }

    static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) {
      return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
    }

    static bool isEqual(const SmallVector<VPValue *, 4> &LHS,
                        const SmallVector<VPValue *, 4> &RHS) {
      return LHS == RHS;
    }
  };

  /// Mapping of values in the original VPlan to a combined VPInstruction.
  DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo>
      BundleToCombined;

  VPInterleavedAccessInfo &IAI;

  /// Basic block to operate on. For now, only instructions in a single BB are
  /// considered.
  const VPBasicBlock &BB;

  /// Indicates whether we managed to combine all visited instructions or not.
  bool CompletelySLP = true;

  /// Width of the widest combined bundle in bits.
  unsigned WidestBundleBits = 0;

  using MultiNodeOpTy =
      typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>;

  // Input operand bundles for the current multi node. Each multi node operand
  // bundle contains values not matching the multi node's opcode. They will
  // be reordered in reorderMultiNodeOps, once we completed building a
  // multi node.
  SmallVector<MultiNodeOpTy, 4> MultiNodeOps;

  /// Indicates whether we are building a multi node currently.
  bool MultiNodeActive = false;

  /// Check if we can vectorize Operands together.
  bool areVectorizable(ArrayRef<VPValue *> Operands) const;

  /// Add combined instruction \p New for the bundle \p Operands.
  void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New);

  /// Indicate we hit a bundle we failed to combine. Returns nullptr for now.
  VPInstruction *markFailed();

  /// Reorder operands in the multi node to maximize sequential memory access
  /// and commutative operations.
  SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps();

  /// Choose the best candidate to use for the lane after \p Last. The set of
  /// candidates to choose from are values with an opcode matching \p Last's
  /// or loads consecutive to \p Last.
  std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last,
                                       SmallPtrSetImpl<VPValue *> &Candidates,
                                       VPInterleavedAccessInfo &IAI);

  /// Print bundle \p Values to dbgs().
  void dumpBundle(ArrayRef<VPValue *> Values);

public:
  VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {}

  ~VPlanSlp() = default;

  /// Tries to build an SLP tree rooted at \p Operands and returns a
  /// VPInstruction combining \p Operands, if they can be combined.
  VPInstruction *buildGraph(ArrayRef<VPValue *> Operands);

  /// Return the width of the widest combined bundle in bits.
  unsigned getWidestBundleBits() const { return WidestBundleBits; }

  /// Return true if all visited instruction can be combined.
  bool isCompletelySLP() const { return CompletelySLP; }
};
} // end namespace llvm

#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H