aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Transforms/Utils/InjectTLIMappings.cpp
blob: dbaf00eb6d0776da2b6e9f18abfda417627371d6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
//===- InjectTLIMAppings.cpp - TLI to VFABI attribute injection  ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Populates the VFABI attribute with the scalar-to-vector mappings
// from the TargetLibraryInfo.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/InjectTLIMappings.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/DemandedBits.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetLibraryInfo.h" 
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"

using namespace llvm;

#define DEBUG_TYPE "inject-tli-mappings"

STATISTIC(NumCallInjected,
          "Number of calls in which the mappings have been injected.");

STATISTIC(NumVFDeclAdded,
          "Number of function declarations that have been added.");
STATISTIC(NumCompUsedAdded,
          "Number of `@llvm.compiler.used` operands that have been added.");

/// A helper function that adds the vector function declaration that
/// vectorizes the CallInst CI with a vectorization factor of VF
/// lanes. The TLI assumes that all parameters and the return type of
/// CI (other than void) need to be widened to a VectorType of VF
/// lanes.
static void addVariantDeclaration(CallInst &CI, const unsigned VF,
                                  const StringRef VFName) {
  Module *M = CI.getModule();

  // Add function declaration.
  Type *RetTy = ToVectorTy(CI.getType(), VF);
  SmallVector<Type *, 4> Tys;
  for (Value *ArgOperand : CI.arg_operands())
    Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
  assert(!CI.getFunctionType()->isVarArg() &&
         "VarArg functions are not supported.");
  FunctionType *FTy = FunctionType::get(RetTy, Tys, /*isVarArg=*/false);
  Function *VectorF =
      Function::Create(FTy, Function::ExternalLinkage, VFName, M);
  VectorF->copyAttributesFrom(CI.getCalledFunction());
  ++NumVFDeclAdded;
  LLVM_DEBUG(dbgs() << DEBUG_TYPE << ": Added to the module: `" << VFName
                    << "` of type " << *(VectorF->getType()) << "\n");

  // Make function declaration (without a body) "sticky" in the IR by
  // listing it in the @llvm.compiler.used intrinsic.
  assert(!VectorF->size() && "VFABI attribute requires `@llvm.compiler.used` "
                             "only on declarations.");
  appendToCompilerUsed(*M, {VectorF});
  LLVM_DEBUG(dbgs() << DEBUG_TYPE << ": Adding `" << VFName
                    << "` to `@llvm.compiler.used`.\n");
  ++NumCompUsedAdded;
}

static void addMappingsFromTLI(const TargetLibraryInfo &TLI, CallInst &CI) {
  // This is needed to make sure we don't query the TLI for calls to
  // bitcast of function pointers, like `%call = call i32 (i32*, ...)
  // bitcast (i32 (...)* @goo to i32 (i32*, ...)*)(i32* nonnull %i)`,
  // as such calls make the `isFunctionVectorizable` raise an
  // exception.
  if (CI.isNoBuiltin() || !CI.getCalledFunction())
    return;

  StringRef ScalarName = CI.getCalledFunction()->getName(); 
 
  // Nothing to be done if the TLI thinks the function is not
  // vectorizable.
  if (!TLI.isFunctionVectorizable(ScalarName))
    return;
  SmallVector<std::string, 8> Mappings;
  VFABI::getVectorVariantNames(CI, Mappings);
  Module *M = CI.getModule();
  const SetVector<StringRef> OriginalSetOfMappings(Mappings.begin(),
                                                   Mappings.end());
  //  All VFs in the TLI are powers of 2.
  for (unsigned VF = 2, WidestVF = TLI.getWidestVF(ScalarName); VF <= WidestVF;
       VF *= 2) {
    const std::string TLIName =
        std::string(TLI.getVectorizedFunction(ScalarName, VF));
    if (!TLIName.empty()) {
      std::string MangledName = VFABI::mangleTLIVectorName(
          TLIName, ScalarName, CI.getNumArgOperands(), VF);
      if (!OriginalSetOfMappings.count(MangledName)) {
        Mappings.push_back(MangledName);
        ++NumCallInjected;
      }
      Function *VariantF = M->getFunction(TLIName);
      if (!VariantF)
        addVariantDeclaration(CI, VF, TLIName);
    }
  }

  VFABI::setVectorVariantNames(&CI, Mappings);
}

static bool runImpl(const TargetLibraryInfo &TLI, Function &F) {
  for (auto &I : instructions(F))
    if (auto CI = dyn_cast<CallInst>(&I))
      addMappingsFromTLI(TLI, *CI);
  // Even if the pass adds IR attributes, the analyses are preserved.
  return false;
}

////////////////////////////////////////////////////////////////////////////////
// New pass manager implementation.
////////////////////////////////////////////////////////////////////////////////
PreservedAnalyses InjectTLIMappings::run(Function &F,
                                         FunctionAnalysisManager &AM) {
  const TargetLibraryInfo &TLI = AM.getResult<TargetLibraryAnalysis>(F);
  runImpl(TLI, F);
  // Even if the pass adds IR attributes, the analyses are preserved.
  return PreservedAnalyses::all();
}

////////////////////////////////////////////////////////////////////////////////
// Legacy PM Implementation.
////////////////////////////////////////////////////////////////////////////////
bool InjectTLIMappingsLegacy::runOnFunction(Function &F) {
  const TargetLibraryInfo &TLI =
      getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
  return runImpl(TLI, F);
}

void InjectTLIMappingsLegacy::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<TargetLibraryInfoWrapperPass>();
  AU.addPreserved<TargetLibraryInfoWrapperPass>();
  AU.addPreserved<ScalarEvolutionWrapperPass>();
  AU.addPreserved<AAResultsWrapperPass>();
  AU.addPreserved<LoopAccessLegacyAnalysis>();
  AU.addPreserved<DemandedBitsWrapperPass>();
  AU.addPreserved<OptimizationRemarkEmitterWrapperPass>();
  AU.addPreserved<GlobalsAAWrapperPass>();
}

////////////////////////////////////////////////////////////////////////////////
// Legacy Pass manager initialization
////////////////////////////////////////////////////////////////////////////////
char InjectTLIMappingsLegacy::ID = 0;

INITIALIZE_PASS_BEGIN(InjectTLIMappingsLegacy, DEBUG_TYPE,
                      "Inject TLI Mappings", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(InjectTLIMappingsLegacy, DEBUG_TYPE, "Inject TLI Mappings",
                    false, false)

FunctionPass *llvm::createInjectTLIMappingsLegacyPass() {
  return new InjectTLIMappingsLegacy();
}