1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
|
//===- CloneFunction.cpp - Clone a function into another function ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the CloneFunctionInto interface, which is used as the
// low-level function cloner. This is used by the CloneFunction and function
// inliner to do the dirty work of copying the body of a function around.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <map>
using namespace llvm;
#define DEBUG_TYPE "clone-function"
/// See comments in Cloning.h.
BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
const Twine &NameSuffix, Function *F,
ClonedCodeInfo *CodeInfo,
DebugInfoFinder *DIFinder) {
DenseMap<const MDNode *, MDNode *> Cache;
BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
if (BB->hasName())
NewBB->setName(BB->getName() + NameSuffix);
bool hasCalls = false, hasDynamicAllocas = false;
Module *TheModule = F ? F->getParent() : nullptr;
// Loop over all instructions, and copy them over.
for (const Instruction &I : *BB) {
if (DIFinder && TheModule)
DIFinder->processInstruction(*TheModule, I);
Instruction *NewInst = I.clone();
if (I.hasName())
NewInst->setName(I.getName() + NameSuffix);
NewBB->getInstList().push_back(NewInst);
VMap[&I] = NewInst; // Add instruction map to value.
hasCalls |= (isa<CallInst>(I) && !isa<DbgInfoIntrinsic>(I));
if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
if (!AI->isStaticAlloca()) {
hasDynamicAllocas = true;
}
}
}
if (CodeInfo) {
CodeInfo->ContainsCalls |= hasCalls;
CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
}
return NewBB;
}
// Clone OldFunc into NewFunc, transforming the old arguments into references to
// VMap values.
//
void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
ValueToValueMapTy &VMap,
bool ModuleLevelChanges,
SmallVectorImpl<ReturnInst*> &Returns,
const char *NameSuffix, ClonedCodeInfo *CodeInfo,
ValueMapTypeRemapper *TypeMapper,
ValueMaterializer *Materializer) {
assert(NameSuffix && "NameSuffix cannot be null!");
#ifndef NDEBUG
for (const Argument &I : OldFunc->args())
assert(VMap.count(&I) && "No mapping from source argument specified!");
#endif
// Copy all attributes other than those stored in the AttributeList. We need
// to remap the parameter indices of the AttributeList.
AttributeList NewAttrs = NewFunc->getAttributes();
NewFunc->copyAttributesFrom(OldFunc);
NewFunc->setAttributes(NewAttrs);
// Fix up the personality function that got copied over.
if (OldFunc->hasPersonalityFn())
NewFunc->setPersonalityFn(
MapValue(OldFunc->getPersonalityFn(), VMap,
ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
TypeMapper, Materializer));
SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
AttributeList OldAttrs = OldFunc->getAttributes();
// Clone any argument attributes that are present in the VMap.
for (const Argument &OldArg : OldFunc->args()) {
if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
NewArgAttrs[NewArg->getArgNo()] =
OldAttrs.getParamAttributes(OldArg.getArgNo());
}
}
NewFunc->setAttributes(
AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(),
OldAttrs.getRetAttributes(), NewArgAttrs));
bool MustCloneSP =
OldFunc->getParent() && OldFunc->getParent() == NewFunc->getParent();
DISubprogram *SP = OldFunc->getSubprogram();
if (SP) {
assert(!MustCloneSP || ModuleLevelChanges);
// Add mappings for some DebugInfo nodes that we don't want duplicated
// even if they're distinct.
auto &MD = VMap.MD();
MD[SP->getUnit()].reset(SP->getUnit());
MD[SP->getType()].reset(SP->getType());
MD[SP->getFile()].reset(SP->getFile());
// If we're not cloning into the same module, no need to clone the
// subprogram
if (!MustCloneSP)
MD[SP].reset(SP);
}
// Everything else beyond this point deals with function instructions,
// so if we are dealing with a function declaration, we're done.
if (OldFunc->isDeclaration())
return;
// When we remap instructions, we want to avoid duplicating inlined
// DISubprograms, so record all subprograms we find as we duplicate
// instructions and then freeze them in the MD map.
// We also record information about dbg.value and dbg.declare to avoid
// duplicating the types.
DebugInfoFinder DIFinder;
// Loop over all of the basic blocks in the function, cloning them as
// appropriate. Note that we save BE this way in order to handle cloning of
// recursive functions into themselves.
for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
BI != BE; ++BI) {
const BasicBlock &BB = *BI;
// Create a new basic block and copy instructions into it!
BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
ModuleLevelChanges ? &DIFinder : nullptr);
// Add basic block mapping.
VMap[&BB] = CBB;
// It is only legal to clone a function if a block address within that
// function is never referenced outside of the function. Given that, we
// want to map block addresses from the old function to block addresses in
// the clone. (This is different from the generic ValueMapper
// implementation, which generates an invalid blockaddress when
// cloning a function.)
if (BB.hasAddressTaken()) {
Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
const_cast<BasicBlock*>(&BB));
VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
}
// Note return instructions for the caller.
if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
Returns.push_back(RI);
}
for (DISubprogram *ISP : DIFinder.subprograms())
if (ISP != SP)
VMap.MD()[ISP].reset(ISP);
for (DICompileUnit *CU : DIFinder.compile_units())
VMap.MD()[CU].reset(CU);
for (DIType *Type : DIFinder.types())
VMap.MD()[Type].reset(Type);
// Duplicate the metadata that is attached to the cloned function.
// Subprograms/CUs/types that were already mapped to themselves won't be
// duplicated.
SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
OldFunc->getAllMetadata(MDs);
for (auto MD : MDs) {
NewFunc->addMetadata(
MD.first,
*MapMetadata(MD.second, VMap,
ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
TypeMapper, Materializer));
}
// Loop over all of the instructions in the function, fixing up operand
// references as we go. This uses VMap to do all the hard work.
for (Function::iterator BB =
cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
BE = NewFunc->end();
BB != BE; ++BB)
// Loop over all instructions, fixing each one as we find it...
for (Instruction &II : *BB)
RemapInstruction(&II, VMap,
ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
TypeMapper, Materializer);
// Register all DICompileUnits of the old parent module in the new parent module
auto* OldModule = OldFunc->getParent();
auto* NewModule = NewFunc->getParent();
if (OldModule && NewModule && OldModule != NewModule && DIFinder.compile_unit_count()) {
auto* NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu");
// Avoid multiple insertions of the same DICompileUnit to NMD.
SmallPtrSet<const void*, 8> Visited;
for (auto* Operand : NMD->operands())
Visited.insert(Operand);
for (auto* Unit : DIFinder.compile_units())
// VMap.MD()[Unit] == Unit
if (Visited.insert(Unit).second)
NMD->addOperand(Unit);
}
}
/// Return a copy of the specified function and add it to that function's
/// module. Also, any references specified in the VMap are changed to refer to
/// their mapped value instead of the original one. If any of the arguments to
/// the function are in the VMap, the arguments are deleted from the resultant
/// function. The VMap is updated to include mappings from all of the
/// instructions and basicblocks in the function from their old to new values.
///
Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
ClonedCodeInfo *CodeInfo) {
std::vector<Type*> ArgTypes;
// The user might be deleting arguments to the function by specifying them in
// the VMap. If so, we need to not add the arguments to the arg ty vector
//
for (const Argument &I : F->args())
if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
ArgTypes.push_back(I.getType());
// Create a new function type...
FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
ArgTypes, F->getFunctionType()->isVarArg());
// Create the new function...
Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
F->getName(), F->getParent());
// Loop over the arguments, copying the names of the mapped arguments over...
Function::arg_iterator DestI = NewF->arg_begin();
for (const Argument & I : F->args())
if (VMap.count(&I) == 0) { // Is this argument preserved?
DestI->setName(I.getName()); // Copy the name over...
VMap[&I] = &*DestI++; // Add mapping to VMap
}
SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned.
CloneFunctionInto(NewF, F, VMap, F->getSubprogram() != nullptr, Returns, "",
CodeInfo);
return NewF;
}
namespace {
/// This is a private class used to implement CloneAndPruneFunctionInto.
struct PruningFunctionCloner {
Function *NewFunc;
const Function *OldFunc;
ValueToValueMapTy &VMap;
bool ModuleLevelChanges;
const char *NameSuffix;
ClonedCodeInfo *CodeInfo;
public:
PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
ValueToValueMapTy &valueMap, bool moduleLevelChanges,
const char *nameSuffix, ClonedCodeInfo *codeInfo)
: NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
CodeInfo(codeInfo) {}
/// The specified block is found to be reachable, clone it and
/// anything that it can reach.
void CloneBlock(const BasicBlock *BB,
BasicBlock::const_iterator StartingInst,
std::vector<const BasicBlock*> &ToClone);
};
}
/// The specified block is found to be reachable, clone it and
/// anything that it can reach.
void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
BasicBlock::const_iterator StartingInst,
std::vector<const BasicBlock*> &ToClone){
WeakTrackingVH &BBEntry = VMap[BB];
// Have we already cloned this block?
if (BBEntry) return;
// Nope, clone it now.
BasicBlock *NewBB;
BBEntry = NewBB = BasicBlock::Create(BB->getContext());
if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
// It is only legal to clone a function if a block address within that
// function is never referenced outside of the function. Given that, we
// want to map block addresses from the old function to block addresses in
// the clone. (This is different from the generic ValueMapper
// implementation, which generates an invalid blockaddress when
// cloning a function.)
//
// Note that we don't need to fix the mapping for unreachable blocks;
// the default mapping there is safe.
if (BB->hasAddressTaken()) {
Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
const_cast<BasicBlock*>(BB));
VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
}
bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
// Loop over all instructions, and copy them over, DCE'ing as we go. This
// loop doesn't include the terminator.
for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
II != IE; ++II) {
Instruction *NewInst = II->clone();
// Eagerly remap operands to the newly cloned instruction, except for PHI
// nodes for which we defer processing until we update the CFG.
if (!isa<PHINode>(NewInst)) {
RemapInstruction(NewInst, VMap,
ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
// If we can simplify this instruction to some other value, simply add
// a mapping to that value rather than inserting a new instruction into
// the basic block.
if (Value *V =
SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
// On the off-chance that this simplifies to an instruction in the old
// function, map it back into the new function.
if (NewFunc != OldFunc)
if (Value *MappedV = VMap.lookup(V))
V = MappedV;
if (!NewInst->mayHaveSideEffects()) {
VMap[&*II] = V;
NewInst->deleteValue();
continue;
}
}
}
if (II->hasName())
NewInst->setName(II->getName()+NameSuffix);
VMap[&*II] = NewInst; // Add instruction map to value.
NewBB->getInstList().push_back(NewInst);
hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
if (CodeInfo)
if (auto *CB = dyn_cast<CallBase>(&*II))
if (CB->hasOperandBundles())
CodeInfo->OperandBundleCallSites.push_back(NewInst);
if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
if (isa<ConstantInt>(AI->getArraySize()))
hasStaticAllocas = true;
else
hasDynamicAllocas = true;
}
}
// Finally, clone over the terminator.
const Instruction *OldTI = BB->getTerminator();
bool TerminatorDone = false;
if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
if (BI->isConditional()) {
// If the condition was a known constant in the callee...
ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
// Or is a known constant in the caller...
if (!Cond) {
Value *V = VMap.lookup(BI->getCondition());
Cond = dyn_cast_or_null<ConstantInt>(V);
}
// Constant fold to uncond branch!
if (Cond) {
BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
VMap[OldTI] = BranchInst::Create(Dest, NewBB);
ToClone.push_back(Dest);
TerminatorDone = true;
}
}
} else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
// If switching on a value known constant in the caller.
ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
if (!Cond) { // Or known constant after constant prop in the callee...
Value *V = VMap.lookup(SI->getCondition());
Cond = dyn_cast_or_null<ConstantInt>(V);
}
if (Cond) { // Constant fold to uncond branch!
SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
VMap[OldTI] = BranchInst::Create(Dest, NewBB);
ToClone.push_back(Dest);
TerminatorDone = true;
}
}
if (!TerminatorDone) {
Instruction *NewInst = OldTI->clone();
if (OldTI->hasName())
NewInst->setName(OldTI->getName()+NameSuffix);
NewBB->getInstList().push_back(NewInst);
VMap[OldTI] = NewInst; // Add instruction map to value.
if (CodeInfo)
if (auto *CB = dyn_cast<CallBase>(OldTI))
if (CB->hasOperandBundles())
CodeInfo->OperandBundleCallSites.push_back(NewInst);
// Recursively clone any reachable successor blocks.
append_range(ToClone, successors(BB->getTerminator()));
}
if (CodeInfo) {
CodeInfo->ContainsCalls |= hasCalls;
CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
BB != &BB->getParent()->front();
}
}
/// This works like CloneAndPruneFunctionInto, except that it does not clone the
/// entire function. Instead it starts at an instruction provided by the caller
/// and copies (and prunes) only the code reachable from that instruction.
void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
const Instruction *StartingInst,
ValueToValueMapTy &VMap,
bool ModuleLevelChanges,
SmallVectorImpl<ReturnInst *> &Returns,
const char *NameSuffix,
ClonedCodeInfo *CodeInfo) {
assert(NameSuffix && "NameSuffix cannot be null!");
ValueMapTypeRemapper *TypeMapper = nullptr;
ValueMaterializer *Materializer = nullptr;
#ifndef NDEBUG
// If the cloning starts at the beginning of the function, verify that
// the function arguments are mapped.
if (!StartingInst)
for (const Argument &II : OldFunc->args())
assert(VMap.count(&II) && "No mapping from source argument specified!");
#endif
PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
NameSuffix, CodeInfo);
const BasicBlock *StartingBB;
if (StartingInst)
StartingBB = StartingInst->getParent();
else {
StartingBB = &OldFunc->getEntryBlock();
StartingInst = &StartingBB->front();
}
// Clone the entry block, and anything recursively reachable from it.
std::vector<const BasicBlock*> CloneWorklist;
PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
while (!CloneWorklist.empty()) {
const BasicBlock *BB = CloneWorklist.back();
CloneWorklist.pop_back();
PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
}
// Loop over all of the basic blocks in the old function. If the block was
// reachable, we have cloned it and the old block is now in the value map:
// insert it into the new function in the right order. If not, ignore it.
//
// Defer PHI resolution until rest of function is resolved.
SmallVector<const PHINode*, 16> PHIToResolve;
for (const BasicBlock &BI : *OldFunc) {
Value *V = VMap.lookup(&BI);
BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
if (!NewBB) continue; // Dead block.
// Add the new block to the new function.
NewFunc->getBasicBlockList().push_back(NewBB);
// Handle PHI nodes specially, as we have to remove references to dead
// blocks.
for (const PHINode &PN : BI.phis()) {
// PHI nodes may have been remapped to non-PHI nodes by the caller or
// during the cloning process.
if (isa<PHINode>(VMap[&PN]))
PHIToResolve.push_back(&PN);
else
break;
}
// Finally, remap the terminator instructions, as those can't be remapped
// until all BBs are mapped.
RemapInstruction(NewBB->getTerminator(), VMap,
ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
TypeMapper, Materializer);
}
// Defer PHI resolution until rest of function is resolved, PHI resolution
// requires the CFG to be up-to-date.
for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
const PHINode *OPN = PHIToResolve[phino];
unsigned NumPreds = OPN->getNumIncomingValues();
const BasicBlock *OldBB = OPN->getParent();
BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
// Map operands for blocks that are live and remove operands for blocks
// that are dead.
for (; phino != PHIToResolve.size() &&
PHIToResolve[phino]->getParent() == OldBB; ++phino) {
OPN = PHIToResolve[phino];
PHINode *PN = cast<PHINode>(VMap[OPN]);
for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
Value *V = VMap.lookup(PN->getIncomingBlock(pred));
if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
Value *InVal = MapValue(PN->getIncomingValue(pred),
VMap,
ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
assert(InVal && "Unknown input value?");
PN->setIncomingValue(pred, InVal);
PN->setIncomingBlock(pred, MappedBlock);
} else {
PN->removeIncomingValue(pred, false);
--pred; // Revisit the next entry.
--e;
}
}
}
// The loop above has removed PHI entries for those blocks that are dead
// and has updated others. However, if a block is live (i.e. copied over)
// but its terminator has been changed to not go to this block, then our
// phi nodes will have invalid entries. Update the PHI nodes in this
// case.
PHINode *PN = cast<PHINode>(NewBB->begin());
NumPreds = pred_size(NewBB);
if (NumPreds != PN->getNumIncomingValues()) {
assert(NumPreds < PN->getNumIncomingValues());
// Count how many times each predecessor comes to this block.
std::map<BasicBlock*, unsigned> PredCount;
for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
PI != E; ++PI)
--PredCount[*PI];
// Figure out how many entries to remove from each PHI.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
++PredCount[PN->getIncomingBlock(i)];
// At this point, the excess predecessor entries are positive in the
// map. Loop over all of the PHIs and remove excess predecessor
// entries.
BasicBlock::iterator I = NewBB->begin();
for (; (PN = dyn_cast<PHINode>(I)); ++I) {
for (const auto &PCI : PredCount) {
BasicBlock *Pred = PCI.first;
for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
PN->removeIncomingValue(Pred, false);
}
}
}
// If the loops above have made these phi nodes have 0 or 1 operand,
// replace them with undef or the input value. We must do this for
// correctness, because 0-operand phis are not valid.
PN = cast<PHINode>(NewBB->begin());
if (PN->getNumIncomingValues() == 0) {
BasicBlock::iterator I = NewBB->begin();
BasicBlock::const_iterator OldI = OldBB->begin();
while ((PN = dyn_cast<PHINode>(I++))) {
Value *NV = UndefValue::get(PN->getType());
PN->replaceAllUsesWith(NV);
assert(VMap[&*OldI] == PN && "VMap mismatch");
VMap[&*OldI] = NV;
PN->eraseFromParent();
++OldI;
}
}
}
// Make a second pass over the PHINodes now that all of them have been
// remapped into the new function, simplifying the PHINode and performing any
// recursive simplifications exposed. This will transparently update the
// WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
// two PHINodes, the iteration over the old PHIs remains valid, and the
// mapping will just map us to the new node (which may not even be a PHI
// node).
const DataLayout &DL = NewFunc->getParent()->getDataLayout();
SmallSetVector<const Value *, 8> Worklist;
for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
Worklist.insert(PHIToResolve[Idx]);
// Note that we must test the size on each iteration, the worklist can grow.
for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
const Value *OrigV = Worklist[Idx];
auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
if (!I)
continue;
// Skip over non-intrinsic callsites, we don't want to remove any nodes from
// the CGSCC.
CallBase *CB = dyn_cast<CallBase>(I);
if (CB && CB->getCalledFunction() &&
!CB->getCalledFunction()->isIntrinsic())
continue;
// See if this instruction simplifies.
Value *SimpleV = SimplifyInstruction(I, DL);
if (!SimpleV)
continue;
// Stash away all the uses of the old instruction so we can check them for
// recursive simplifications after a RAUW. This is cheaper than checking all
// uses of To on the recursive step in most cases.
for (const User *U : OrigV->users())
Worklist.insert(cast<Instruction>(U));
// Replace the instruction with its simplified value.
I->replaceAllUsesWith(SimpleV);
// If the original instruction had no side effects, remove it.
if (isInstructionTriviallyDead(I))
I->eraseFromParent();
else
VMap[OrigV] = I;
}
// Now that the inlined function body has been fully constructed, go through
// and zap unconditional fall-through branches. This happens all the time when
// specializing code: code specialization turns conditional branches into
// uncond branches, and this code folds them.
Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
Function::iterator I = Begin;
while (I != NewFunc->end()) {
// We need to simplify conditional branches and switches with a constant
// operand. We try to prune these out when cloning, but if the
// simplification required looking through PHI nodes, those are only
// available after forming the full basic block. That may leave some here,
// and we still want to prune the dead code as early as possible.
//
// Do the folding before we check if the block is dead since we want code
// like
// bb:
// br i1 undef, label %bb, label %bb
// to be simplified to
// bb:
// br label %bb
// before we call I->getSinglePredecessor().
ConstantFoldTerminator(&*I);
// Check if this block has become dead during inlining or other
// simplifications. Note that the first block will appear dead, as it has
// not yet been wired up properly.
if (I != Begin && (pred_empty(&*I) || I->getSinglePredecessor() == &*I)) {
BasicBlock *DeadBB = &*I++;
DeleteDeadBlock(DeadBB);
continue;
}
BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
if (!BI || BI->isConditional()) { ++I; continue; }
BasicBlock *Dest = BI->getSuccessor(0);
if (!Dest->getSinglePredecessor()) {
++I; continue;
}
// We shouldn't be able to get single-entry PHI nodes here, as instsimplify
// above should have zapped all of them..
assert(!isa<PHINode>(Dest->begin()));
// We know all single-entry PHI nodes in the inlined function have been
// removed, so we just need to splice the blocks.
BI->eraseFromParent();
// Make all PHI nodes that referred to Dest now refer to I as their source.
Dest->replaceAllUsesWith(&*I);
// Move all the instructions in the succ to the pred.
I->getInstList().splice(I->end(), Dest->getInstList());
// Remove the dest block.
Dest->eraseFromParent();
// Do not increment I, iteratively merge all things this block branches to.
}
// Make a final pass over the basic blocks from the old function to gather
// any return instructions which survived folding. We have to do this here
// because we can iteratively remove and merge returns above.
for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
E = NewFunc->end();
I != E; ++I)
if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
Returns.push_back(RI);
}
/// This works exactly like CloneFunctionInto,
/// except that it does some simple constant prop and DCE on the fly. The
/// effect of this is to copy significantly less code in cases where (for
/// example) a function call with constant arguments is inlined, and those
/// constant arguments cause a significant amount of code in the callee to be
/// dead. Since this doesn't produce an exact copy of the input, it can't be
/// used for things like CloneFunction or CloneModule.
void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
ValueToValueMapTy &VMap,
bool ModuleLevelChanges,
SmallVectorImpl<ReturnInst*> &Returns,
const char *NameSuffix,
ClonedCodeInfo *CodeInfo,
Instruction *TheCall) {
CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
}
/// Remaps instructions in \p Blocks using the mapping in \p VMap.
void llvm::remapInstructionsInBlocks(
const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
// Rewrite the code to refer to itself.
for (auto *BB : Blocks)
for (auto &Inst : *BB)
RemapInstruction(&Inst, VMap,
RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
}
/// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p
/// Blocks.
///
/// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
/// \p LoopDomBB. Insert the new blocks before block specified in \p Before.
Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
Loop *OrigLoop, ValueToValueMapTy &VMap,
const Twine &NameSuffix, LoopInfo *LI,
DominatorTree *DT,
SmallVectorImpl<BasicBlock *> &Blocks) {
Function *F = OrigLoop->getHeader()->getParent();
Loop *ParentLoop = OrigLoop->getParentLoop();
DenseMap<Loop *, Loop *> LMap;
Loop *NewLoop = LI->AllocateLoop();
LMap[OrigLoop] = NewLoop;
if (ParentLoop)
ParentLoop->addChildLoop(NewLoop);
else
LI->addTopLevelLoop(NewLoop);
BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
assert(OrigPH && "No preheader");
BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
// To rename the loop PHIs.
VMap[OrigPH] = NewPH;
Blocks.push_back(NewPH);
// Update LoopInfo.
if (ParentLoop)
ParentLoop->addBasicBlockToLoop(NewPH, *LI);
// Update DominatorTree.
DT->addNewBlock(NewPH, LoopDomBB);
for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) {
Loop *&NewLoop = LMap[CurLoop];
if (!NewLoop) {
NewLoop = LI->AllocateLoop();
// Establish the parent/child relationship.
Loop *OrigParent = CurLoop->getParentLoop();
assert(OrigParent && "Could not find the original parent loop");
Loop *NewParentLoop = LMap[OrigParent];
assert(NewParentLoop && "Could not find the new parent loop");
NewParentLoop->addChildLoop(NewLoop);
}
}
for (BasicBlock *BB : OrigLoop->getBlocks()) {
Loop *CurLoop = LI->getLoopFor(BB);
Loop *&NewLoop = LMap[CurLoop];
assert(NewLoop && "Expecting new loop to be allocated");
BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
VMap[BB] = NewBB;
// Update LoopInfo.
NewLoop->addBasicBlockToLoop(NewBB, *LI);
// Add DominatorTree node. After seeing all blocks, update to correct
// IDom.
DT->addNewBlock(NewBB, NewPH);
Blocks.push_back(NewBB);
}
for (BasicBlock *BB : OrigLoop->getBlocks()) {
// Update loop headers.
Loop *CurLoop = LI->getLoopFor(BB);
if (BB == CurLoop->getHeader())
LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB]));
// Update DominatorTree.
BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
cast<BasicBlock>(VMap[IDomBB]));
}
// Move them physically from the end of the block list.
F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
NewPH);
F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
NewLoop->getHeader()->getIterator(), F->end());
return NewLoop;
}
/// Duplicate non-Phi instructions from the beginning of block up to
/// StopAt instruction into a split block between BB and its predecessor.
BasicBlock *llvm::DuplicateInstructionsInSplitBetween(
BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) {
assert(count(successors(PredBB), BB) == 1 &&
"There must be a single edge between PredBB and BB!");
// We are going to have to map operands from the original BB block to the new
// copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
// account for entry from PredBB.
BasicBlock::iterator BI = BB->begin();
for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
BasicBlock *NewBB = SplitEdge(PredBB, BB);
NewBB->setName(PredBB->getName() + ".split");
Instruction *NewTerm = NewBB->getTerminator();
// FIXME: SplitEdge does not yet take a DTU, so we include the split edge
// in the update set here.
DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
{DominatorTree::Insert, PredBB, NewBB},
{DominatorTree::Insert, NewBB, BB}});
// Clone the non-phi instructions of BB into NewBB, keeping track of the
// mapping and using it to remap operands in the cloned instructions.
// Stop once we see the terminator too. This covers the case where BB's
// terminator gets replaced and StopAt == BB's terminator.
for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
Instruction *New = BI->clone();
New->setName(BI->getName());
New->insertBefore(NewTerm);
ValueMapping[&*BI] = New;
// Remap operands to patch up intra-block references.
for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
auto I = ValueMapping.find(Inst);
if (I != ValueMapping.end())
New->setOperand(i, I->second);
}
}
return NewBB;
}
void llvm::cloneNoAliasScopes(
ArrayRef<MDNode *> NoAliasDeclScopes,
DenseMap<MDNode *, MDNode *> &ClonedScopes,
StringRef Ext, LLVMContext &Context) {
MDBuilder MDB(Context);
for (auto *ScopeList : NoAliasDeclScopes) {
for (auto &MDOperand : ScopeList->operands()) {
if (MDNode *MD = dyn_cast<MDNode>(MDOperand)) {
AliasScopeNode SNANode(MD);
std::string Name;
auto ScopeName = SNANode.getName();
if (!ScopeName.empty())
Name = (Twine(ScopeName) + ":" + Ext).str();
else
Name = std::string(Ext);
MDNode *NewScope = MDB.createAnonymousAliasScope(
const_cast<MDNode *>(SNANode.getDomain()), Name);
ClonedScopes.insert(std::make_pair(MD, NewScope));
}
}
}
}
void llvm::adaptNoAliasScopes(
Instruction *I, const DenseMap<MDNode *, MDNode *> &ClonedScopes,
LLVMContext &Context) {
auto CloneScopeList = [&](const MDNode *ScopeList) -> MDNode * {
bool NeedsReplacement = false;
SmallVector<Metadata *, 8> NewScopeList;
for (auto &MDOp : ScopeList->operands()) {
if (MDNode *MD = dyn_cast<MDNode>(MDOp)) {
if (auto *NewMD = ClonedScopes.lookup(MD)) {
NewScopeList.push_back(NewMD);
NeedsReplacement = true;
continue;
}
NewScopeList.push_back(MD);
}
}
if (NeedsReplacement)
return MDNode::get(Context, NewScopeList);
return nullptr;
};
if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I))
if (auto *NewScopeList = CloneScopeList(Decl->getScopeList()))
Decl->setScopeList(NewScopeList);
auto replaceWhenNeeded = [&](unsigned MD_ID) {
if (const MDNode *CSNoAlias = I->getMetadata(MD_ID))
if (auto *NewScopeList = CloneScopeList(CSNoAlias))
I->setMetadata(MD_ID, NewScopeList);
};
replaceWhenNeeded(LLVMContext::MD_noalias);
replaceWhenNeeded(LLVMContext::MD_alias_scope);
}
void llvm::cloneAndAdaptNoAliasScopes(
ArrayRef<MDNode *> NoAliasDeclScopes,
ArrayRef<BasicBlock *> NewBlocks, LLVMContext &Context, StringRef Ext) {
if (NoAliasDeclScopes.empty())
return;
DenseMap<MDNode *, MDNode *> ClonedScopes;
LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
<< NoAliasDeclScopes.size() << " node(s)\n");
cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
// Identify instructions using metadata that needs adaptation
for (BasicBlock *NewBlock : NewBlocks)
for (Instruction &I : *NewBlock)
adaptNoAliasScopes(&I, ClonedScopes, Context);
}
void llvm::cloneAndAdaptNoAliasScopes(
ArrayRef<MDNode *> NoAliasDeclScopes, Instruction *IStart,
Instruction *IEnd, LLVMContext &Context, StringRef Ext) {
if (NoAliasDeclScopes.empty())
return;
DenseMap<MDNode *, MDNode *> ClonedScopes;
LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
<< NoAliasDeclScopes.size() << " node(s)\n");
cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
// Identify instructions using metadata that needs adaptation
assert(IStart->getParent() == IEnd->getParent() && "different basic block ?");
auto ItStart = IStart->getIterator();
auto ItEnd = IEnd->getIterator();
++ItEnd; // IEnd is included, increment ItEnd to get the end of the range
for (auto &I : llvm::make_range(ItStart, ItEnd))
adaptNoAliasScopes(&I, ClonedScopes, Context);
}
void llvm::identifyNoAliasScopesToClone(
ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
for (BasicBlock *BB : BBs)
for (Instruction &I : *BB)
if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
NoAliasDeclScopes.push_back(Decl->getScopeList());
}
void llvm::identifyNoAliasScopesToClone(
BasicBlock::iterator Start, BasicBlock::iterator End,
SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
for (Instruction &I : make_range(Start, End))
if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
NoAliasDeclScopes.push_back(Decl->getScopeList());
}
|