aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Transforms/Scalar/LoopSimplifyCFG.cpp
blob: cc6d11220807951645bcbe291a7f18370739e607 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
//===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Loop SimplifyCFG Pass. This pass is responsible for
// basic loop CFG cleanup, primarily to assist other loop passes. If you
// encounter a noncanonical CFG construct that causes another loop pass to
// perform suboptimally, this is the place to fix it up.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
using namespace llvm;

#define DEBUG_TYPE "loop-simplifycfg"

static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding",
                                       cl::init(true));

STATISTIC(NumTerminatorsFolded,
          "Number of terminators folded to unconditional branches");
STATISTIC(NumLoopBlocksDeleted,
          "Number of loop blocks deleted");
STATISTIC(NumLoopExitsDeleted,
          "Number of loop exiting edges deleted");

/// If \p BB is a switch or a conditional branch, but only one of its successors
/// can be reached from this block in runtime, return this successor. Otherwise,
/// return nullptr.
static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) {
  Instruction *TI = BB->getTerminator();
  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    if (BI->isUnconditional())
      return nullptr;
    if (BI->getSuccessor(0) == BI->getSuccessor(1))
      return BI->getSuccessor(0);
    ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
    if (!Cond)
      return nullptr;
    return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0);
  }

  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
    if (!CI)
      return nullptr;
    for (auto Case : SI->cases())
      if (Case.getCaseValue() == CI)
        return Case.getCaseSuccessor();
    return SI->getDefaultDest();
  }

  return nullptr;
}

/// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain.
static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop,
                                 Loop *LastLoop = nullptr) {
  assert((!LastLoop || LastLoop->contains(FirstLoop->getHeader())) &&
         "First loop is supposed to be inside of last loop!");
  assert(FirstLoop->contains(BB) && "Must be a loop block!");
  for (Loop *Current = FirstLoop; Current != LastLoop;
       Current = Current->getParentLoop())
    Current->removeBlockFromLoop(BB);
}

/// Find innermost loop that contains at least one block from \p BBs and
/// contains the header of loop \p L.
static Loop *getInnermostLoopFor(SmallPtrSetImpl<BasicBlock *> &BBs,
                                 Loop &L, LoopInfo &LI) {
  Loop *Innermost = nullptr;
  for (BasicBlock *BB : BBs) {
    Loop *BBL = LI.getLoopFor(BB);
    while (BBL && !BBL->contains(L.getHeader()))
      BBL = BBL->getParentLoop();
    if (BBL == &L)
      BBL = BBL->getParentLoop();
    if (!BBL)
      continue;
    if (!Innermost || BBL->getLoopDepth() > Innermost->getLoopDepth())
      Innermost = BBL;
  }
  return Innermost;
}

namespace {
/// Helper class that can turn branches and switches with constant conditions
/// into unconditional branches.
class ConstantTerminatorFoldingImpl {
private:
  Loop &L;
  LoopInfo &LI;
  DominatorTree &DT;
  ScalarEvolution &SE;
  MemorySSAUpdater *MSSAU;
  LoopBlocksDFS DFS;
  DomTreeUpdater DTU;
  SmallVector<DominatorTree::UpdateType, 16> DTUpdates;

  // Whether or not the current loop has irreducible CFG.
  bool HasIrreducibleCFG = false;
  // Whether or not the current loop will still exist after terminator constant
  // folding will be done. In theory, there are two ways how it can happen:
  // 1. Loop's latch(es) become unreachable from loop header;
  // 2. Loop's header becomes unreachable from method entry.
  // In practice, the second situation is impossible because we only modify the
  // current loop and its preheader and do not affect preheader's reachibility
  // from any other block. So this variable set to true means that loop's latch
  // has become unreachable from loop header.
  bool DeleteCurrentLoop = false;

  // The blocks of the original loop that will still be reachable from entry
  // after the constant folding.
  SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks;
  // The blocks of the original loop that will become unreachable from entry
  // after the constant folding.
  SmallVector<BasicBlock *, 8> DeadLoopBlocks;
  // The exits of the original loop that will still be reachable from entry
  // after the constant folding.
  SmallPtrSet<BasicBlock *, 8> LiveExitBlocks;
  // The exits of the original loop that will become unreachable from entry
  // after the constant folding.
  SmallVector<BasicBlock *, 8> DeadExitBlocks;
  // The blocks that will still be a part of the current loop after folding.
  SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding;
  // The blocks that have terminators with constant condition that can be
  // folded. Note: fold candidates should be in L but not in any of its
  // subloops to avoid complex LI updates.
  SmallVector<BasicBlock *, 8> FoldCandidates;

  void dump() const {
    dbgs() << "Constant terminator folding for loop " << L << "\n";
    dbgs() << "After terminator constant-folding, the loop will";
    if (!DeleteCurrentLoop)
      dbgs() << " not";
    dbgs() << " be destroyed\n";
    auto PrintOutVector = [&](const char *Message,
                           const SmallVectorImpl<BasicBlock *> &S) {
      dbgs() << Message << "\n";
      for (const BasicBlock *BB : S)
        dbgs() << "\t" << BB->getName() << "\n";
    };
    auto PrintOutSet = [&](const char *Message,
                           const SmallPtrSetImpl<BasicBlock *> &S) {
      dbgs() << Message << "\n";
      for (const BasicBlock *BB : S)
        dbgs() << "\t" << BB->getName() << "\n";
    };
    PrintOutVector("Blocks in which we can constant-fold terminator:",
                   FoldCandidates);
    PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks);
    PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks);
    PrintOutSet("Live exit blocks:", LiveExitBlocks);
    PrintOutVector("Dead exit blocks:", DeadExitBlocks);
    if (!DeleteCurrentLoop)
      PrintOutSet("The following blocks will still be part of the loop:",
                  BlocksInLoopAfterFolding);
  }

  /// Whether or not the current loop has irreducible CFG.
  bool hasIrreducibleCFG(LoopBlocksDFS &DFS) {
    assert(DFS.isComplete() && "DFS is expected to be finished");
    // Index of a basic block in RPO traversal.
    DenseMap<const BasicBlock *, unsigned> RPO;
    unsigned Current = 0;
    for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I)
      RPO[*I] = Current++;

    for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
      BasicBlock *BB = *I;
      for (auto *Succ : successors(BB))
        if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ])
          // If an edge goes from a block with greater order number into a block
          // with lesses number, and it is not a loop backedge, then it can only
          // be a part of irreducible non-loop cycle.
          return true;
    }
    return false;
  }

  /// Fill all information about status of blocks and exits of the current loop
  /// if constant folding of all branches will be done.
  void analyze() {
    DFS.perform(&LI);
    assert(DFS.isComplete() && "DFS is expected to be finished");

    // TODO: The algorithm below relies on both RPO and Postorder traversals.
    // When the loop has only reducible CFG inside, then the invariant "all
    // predecessors of X are processed before X in RPO" is preserved. However
    // an irreducible loop can break this invariant (e.g. latch does not have to
    // be the last block in the traversal in this case, and the algorithm relies
    // on this). We can later decide to support such cases by altering the
    // algorithms, but so far we just give up analyzing them.
    if (hasIrreducibleCFG(DFS)) {
      HasIrreducibleCFG = true;
      return;
    }

    // Collect live and dead loop blocks and exits.
    LiveLoopBlocks.insert(L.getHeader());
    for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
      BasicBlock *BB = *I;

      // If a loop block wasn't marked as live so far, then it's dead.
      if (!LiveLoopBlocks.count(BB)) {
        DeadLoopBlocks.push_back(BB);
        continue;
      }

      BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);

      // If a block has only one live successor, it's a candidate on constant
      // folding. Only handle blocks from current loop: branches in child loops
      // are skipped because if they can be folded, they should be folded during
      // the processing of child loops.
      bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L;
      if (TakeFoldCandidate)
        FoldCandidates.push_back(BB);

      // Handle successors.
      for (BasicBlock *Succ : successors(BB))
        if (!TakeFoldCandidate || TheOnlySucc == Succ) {
          if (L.contains(Succ))
            LiveLoopBlocks.insert(Succ);
          else
            LiveExitBlocks.insert(Succ);
        }
    }

    // Sanity check: amount of dead and live loop blocks should match the total
    // number of blocks in loop.
    assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() &&
           "Malformed block sets?");

    // Now, all exit blocks that are not marked as live are dead.
    SmallVector<BasicBlock *, 8> ExitBlocks;
    L.getExitBlocks(ExitBlocks);
    SmallPtrSet<BasicBlock *, 8> UniqueDeadExits;
    for (auto *ExitBlock : ExitBlocks)
      if (!LiveExitBlocks.count(ExitBlock) &&
          UniqueDeadExits.insert(ExitBlock).second)
        DeadExitBlocks.push_back(ExitBlock);

    // Whether or not the edge From->To will still be present in graph after the
    // folding.
    auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) {
      if (!LiveLoopBlocks.count(From))
        return false;
      BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From);
      return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L;
    };

    // The loop will not be destroyed if its latch is live.
    DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader());

    // If we are going to delete the current loop completely, no extra analysis
    // is needed.
    if (DeleteCurrentLoop)
      return;

    // Otherwise, we should check which blocks will still be a part of the
    // current loop after the transform.
    BlocksInLoopAfterFolding.insert(L.getLoopLatch());
    // If the loop is live, then we should compute what blocks are still in
    // loop after all branch folding has been done. A block is in loop if
    // it has a live edge to another block that is in the loop; by definition,
    // latch is in the loop.
    auto BlockIsInLoop = [&](BasicBlock *BB) {
      return any_of(successors(BB), [&](BasicBlock *Succ) {
        return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ);
      });
    };
    for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) {
      BasicBlock *BB = *I;
      if (BlockIsInLoop(BB))
        BlocksInLoopAfterFolding.insert(BB);
    }

    // Sanity check: header must be in loop.
    assert(BlocksInLoopAfterFolding.count(L.getHeader()) &&
           "Header not in loop?");
    assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() &&
           "All blocks that stay in loop should be live!");
  }

  /// We need to preserve static reachibility of all loop exit blocks (this is)
  /// required by loop pass manager. In order to do it, we make the following
  /// trick:
  ///
  ///  preheader:
  ///    <preheader code>
  ///    br label %loop_header
  ///
  ///  loop_header:
  ///    ...
  ///    br i1 false, label %dead_exit, label %loop_block
  ///    ...
  ///
  /// We cannot simply remove edge from the loop to dead exit because in this
  /// case dead_exit (and its successors) may become unreachable. To avoid that,
  /// we insert the following fictive preheader:
  ///
  ///  preheader:
  ///    <preheader code>
  ///    switch i32 0, label %preheader-split,
  ///                  [i32 1, label %dead_exit_1],
  ///                  [i32 2, label %dead_exit_2],
  ///                  ...
  ///                  [i32 N, label %dead_exit_N],
  ///
  ///  preheader-split:
  ///    br label %loop_header
  ///
  ///  loop_header:
  ///    ...
  ///    br i1 false, label %dead_exit_N, label %loop_block
  ///    ...
  ///
  /// Doing so, we preserve static reachibility of all dead exits and can later
  /// remove edges from the loop to these blocks.
  void handleDeadExits() {
    // If no dead exits, nothing to do.
    if (DeadExitBlocks.empty())
      return;

    // Construct split preheader and the dummy switch to thread edges from it to
    // dead exits.
    BasicBlock *Preheader = L.getLoopPreheader();
    BasicBlock *NewPreheader = llvm::SplitBlock(
        Preheader, Preheader->getTerminator(), &DT, &LI, MSSAU);

    IRBuilder<> Builder(Preheader->getTerminator());
    SwitchInst *DummySwitch =
        Builder.CreateSwitch(Builder.getInt32(0), NewPreheader);
    Preheader->getTerminator()->eraseFromParent();

    unsigned DummyIdx = 1;
    for (BasicBlock *BB : DeadExitBlocks) {
      // Eliminate all Phis and LandingPads from dead exits.
      // TODO: Consider removing all instructions in this dead block.
      SmallVector<Instruction *, 4> DeadInstructions;
      for (auto &PN : BB->phis())
        DeadInstructions.push_back(&PN);

      if (auto *LandingPad = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()))
        DeadInstructions.emplace_back(LandingPad);

      for (Instruction *I : DeadInstructions) {
        I->replaceAllUsesWith(UndefValue::get(I->getType()));
        I->eraseFromParent();
      }

      assert(DummyIdx != 0 && "Too many dead exits!");
      DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB);
      DTUpdates.push_back({DominatorTree::Insert, Preheader, BB});
      ++NumLoopExitsDeleted;
    }

    assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?");
    if (Loop *OuterLoop = LI.getLoopFor(Preheader)) {
      // When we break dead edges, the outer loop may become unreachable from
      // the current loop. We need to fix loop info accordingly. For this, we
      // find the most nested loop that still contains L and remove L from all
      // loops that are inside of it.
      Loop *StillReachable = getInnermostLoopFor(LiveExitBlocks, L, LI);

      // Okay, our loop is no longer in the outer loop (and maybe not in some of
      // its parents as well). Make the fixup.
      if (StillReachable != OuterLoop) {
        LI.changeLoopFor(NewPreheader, StillReachable);
        removeBlockFromLoops(NewPreheader, OuterLoop, StillReachable);
        for (auto *BB : L.blocks())
          removeBlockFromLoops(BB, OuterLoop, StillReachable);
        OuterLoop->removeChildLoop(&L);
        if (StillReachable)
          StillReachable->addChildLoop(&L);
        else
          LI.addTopLevelLoop(&L);

        // Some values from loops in [OuterLoop, StillReachable) could be used
        // in the current loop. Now it is not their child anymore, so such uses
        // require LCSSA Phis.
        Loop *FixLCSSALoop = OuterLoop;
        while (FixLCSSALoop->getParentLoop() != StillReachable)
          FixLCSSALoop = FixLCSSALoop->getParentLoop();
        assert(FixLCSSALoop && "Should be a loop!");
        // We need all DT updates to be done before forming LCSSA.
        if (MSSAU)
          MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
        else
          DTU.applyUpdates(DTUpdates);
        DTUpdates.clear();
        formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE);
      }
    }

    if (MSSAU) {
      // Clear all updates now. Facilitates deletes that follow.
      MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
      DTUpdates.clear();
      if (VerifyMemorySSA)
        MSSAU->getMemorySSA()->verifyMemorySSA();
    }
  }

  /// Delete loop blocks that have become unreachable after folding. Make all
  /// relevant updates to DT and LI.
  void deleteDeadLoopBlocks() {
    if (MSSAU) {
      SmallSetVector<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(),
                                                        DeadLoopBlocks.end());
      MSSAU->removeBlocks(DeadLoopBlocksSet);
    }

    // The function LI.erase has some invariants that need to be preserved when
    // it tries to remove a loop which is not the top-level loop. In particular,
    // it requires loop's preheader to be strictly in loop's parent. We cannot
    // just remove blocks one by one, because after removal of preheader we may
    // break this invariant for the dead loop. So we detatch and erase all dead
    // loops beforehand.
    for (auto *BB : DeadLoopBlocks)
      if (LI.isLoopHeader(BB)) {
        assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!");
        Loop *DL = LI.getLoopFor(BB);
        if (!DL->isOutermost()) {
          for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop())
            for (auto *BB : DL->getBlocks())
              PL->removeBlockFromLoop(BB);
          DL->getParentLoop()->removeChildLoop(DL);
          LI.addTopLevelLoop(DL);
        }
        LI.erase(DL);
      }

    for (auto *BB : DeadLoopBlocks) {
      assert(BB != L.getHeader() &&
             "Header of the current loop cannot be dead!");
      LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName()
                        << "\n");
      LI.removeBlock(BB);
    }

    DetatchDeadBlocks(DeadLoopBlocks, &DTUpdates, /*KeepOneInputPHIs*/true);
    DTU.applyUpdates(DTUpdates);
    DTUpdates.clear();
    for (auto *BB : DeadLoopBlocks)
      DTU.deleteBB(BB);

    NumLoopBlocksDeleted += DeadLoopBlocks.size();
  }

  /// Constant-fold terminators of blocks acculumated in FoldCandidates into the
  /// unconditional branches.
  void foldTerminators() {
    for (BasicBlock *BB : FoldCandidates) {
      assert(LI.getLoopFor(BB) == &L && "Should be a loop block!");
      BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
      assert(TheOnlySucc && "Should have one live successor!");

      LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName()
                        << " with an unconditional branch to the block "
                        << TheOnlySucc->getName() << "\n");

      SmallPtrSet<BasicBlock *, 2> DeadSuccessors;
      // Remove all BB's successors except for the live one.
      unsigned TheOnlySuccDuplicates = 0;
      for (auto *Succ : successors(BB))
        if (Succ != TheOnlySucc) {
          DeadSuccessors.insert(Succ);
          // If our successor lies in a different loop, we don't want to remove
          // the one-input Phi because it is a LCSSA Phi.
          bool PreserveLCSSAPhi = !L.contains(Succ);
          Succ->removePredecessor(BB, PreserveLCSSAPhi);
          if (MSSAU)
            MSSAU->removeEdge(BB, Succ);
        } else
          ++TheOnlySuccDuplicates;

      assert(TheOnlySuccDuplicates > 0 && "Should be!");
      // If TheOnlySucc was BB's successor more than once, after transform it
      // will be its successor only once. Remove redundant inputs from
      // TheOnlySucc's Phis.
      bool PreserveLCSSAPhi = !L.contains(TheOnlySucc);
      for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup)
        TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi);
      if (MSSAU && TheOnlySuccDuplicates > 1)
        MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc);

      IRBuilder<> Builder(BB->getContext());
      Instruction *Term = BB->getTerminator();
      Builder.SetInsertPoint(Term);
      Builder.CreateBr(TheOnlySucc);
      Term->eraseFromParent();

      for (auto *DeadSucc : DeadSuccessors)
        DTUpdates.push_back({DominatorTree::Delete, BB, DeadSucc});

      ++NumTerminatorsFolded;
    }
  }

public:
  ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT,
                                ScalarEvolution &SE,
                                MemorySSAUpdater *MSSAU)
      : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), DFS(&L),
        DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {}
  bool run() {
    assert(L.getLoopLatch() && "Should be single latch!");

    // Collect all available information about status of blocks after constant
    // folding.
    analyze();
    BasicBlock *Header = L.getHeader();
    (void)Header;

    LLVM_DEBUG(dbgs() << "In function " << Header->getParent()->getName()
                      << ": ");

    if (HasIrreducibleCFG) {
      LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n");
      return false;
    }

    // Nothing to constant-fold.
    if (FoldCandidates.empty()) {
      LLVM_DEBUG(
          dbgs() << "No constant terminator folding candidates found in loop "
                 << Header->getName() << "\n");
      return false;
    }

    // TODO: Support deletion of the current loop.
    if (DeleteCurrentLoop) {
      LLVM_DEBUG(
          dbgs()
          << "Give up constant terminator folding in loop " << Header->getName()
          << ": we don't currently support deletion of the current loop.\n");
      return false;
    }

    // TODO: Support blocks that are not dead, but also not in loop after the
    // folding.
    if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() !=
        L.getNumBlocks()) {
      LLVM_DEBUG(
          dbgs() << "Give up constant terminator folding in loop "
                 << Header->getName() << ": we don't currently"
                    " support blocks that are not dead, but will stop "
                    "being a part of the loop after constant-folding.\n");
      return false;
    }

    SE.forgetTopmostLoop(&L);
    // Dump analysis results.
    LLVM_DEBUG(dump());

    LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size()
                      << " terminators in loop " << Header->getName() << "\n");

    // Make the actual transforms.
    handleDeadExits();
    foldTerminators();

    if (!DeadLoopBlocks.empty()) {
      LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size()
                    << " dead blocks in loop " << Header->getName() << "\n");
      deleteDeadLoopBlocks();
    } else {
      // If we didn't do updates inside deleteDeadLoopBlocks, do them here.
      DTU.applyUpdates(DTUpdates);
      DTUpdates.clear();
    }

    if (MSSAU && VerifyMemorySSA)
      MSSAU->getMemorySSA()->verifyMemorySSA();

#ifndef NDEBUG
    // Make sure that we have preserved all data structures after the transform.
#if defined(EXPENSIVE_CHECKS)
    assert(DT.verify(DominatorTree::VerificationLevel::Full) &&
           "DT broken after transform!");
#else
    assert(DT.verify(DominatorTree::VerificationLevel::Fast) &&
           "DT broken after transform!");
#endif
    assert(DT.isReachableFromEntry(Header));
    LI.verify(DT);
#endif

    return true;
  }

  bool foldingBreaksCurrentLoop() const {
    return DeleteCurrentLoop;
  }
};
} // namespace

/// Turn branches and switches with known constant conditions into unconditional
/// branches.
static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI,
                                    ScalarEvolution &SE,
                                    MemorySSAUpdater *MSSAU,
                                    bool &IsLoopDeleted) {
  if (!EnableTermFolding)
    return false;

  // To keep things simple, only process loops with single latch. We
  // canonicalize most loops to this form. We can support multi-latch if needed.
  if (!L.getLoopLatch())
    return false;

  ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU);
  bool Changed = BranchFolder.run();
  IsLoopDeleted = Changed && BranchFolder.foldingBreaksCurrentLoop();
  return Changed;
}

static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT,
                                        LoopInfo &LI, MemorySSAUpdater *MSSAU) {
  bool Changed = false;
  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
  // Copy blocks into a temporary array to avoid iterator invalidation issues
  // as we remove them.
  SmallVector<WeakTrackingVH, 16> Blocks(L.blocks());

  for (auto &Block : Blocks) {
    // Attempt to merge blocks in the trivial case. Don't modify blocks which
    // belong to other loops.
    BasicBlock *Succ = cast_or_null<BasicBlock>(Block);
    if (!Succ)
      continue;

    BasicBlock *Pred = Succ->getSinglePredecessor();
    if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L)
      continue;

    // Merge Succ into Pred and delete it.
    MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU);

    if (MSSAU && VerifyMemorySSA)
      MSSAU->getMemorySSA()->verifyMemorySSA();

    Changed = true;
  }

  return Changed;
}

static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI,
                            ScalarEvolution &SE, MemorySSAUpdater *MSSAU,
                            bool &IsLoopDeleted) {
  bool Changed = false;

  // Constant-fold terminators with known constant conditions.
  Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU, IsLoopDeleted);

  if (IsLoopDeleted)
    return true;

  // Eliminate unconditional branches by merging blocks into their predecessors.
  Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU);

  if (Changed)
    SE.forgetTopmostLoop(&L);

  return Changed;
}

PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM,
                                           LoopStandardAnalysisResults &AR,
                                           LPMUpdater &LPMU) {
  Optional<MemorySSAUpdater> MSSAU;
  if (AR.MSSA)
    MSSAU = MemorySSAUpdater(AR.MSSA);
  bool DeleteCurrentLoop = false;
  if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE,
                       MSSAU.hasValue() ? MSSAU.getPointer() : nullptr,
                       DeleteCurrentLoop))
    return PreservedAnalyses::all();

  if (DeleteCurrentLoop)
    LPMU.markLoopAsDeleted(L, "loop-simplifycfg");

  auto PA = getLoopPassPreservedAnalyses();
  if (AR.MSSA)
    PA.preserve<MemorySSAAnalysis>();
  return PA;
}

namespace {
class LoopSimplifyCFGLegacyPass : public LoopPass {
public:
  static char ID; // Pass ID, replacement for typeid
  LoopSimplifyCFGLegacyPass() : LoopPass(ID) {
    initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnLoop(Loop *L, LPPassManager &LPM) override {
    if (skipLoop(L))
      return false;

    DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    Optional<MemorySSAUpdater> MSSAU;
    if (EnableMSSALoopDependency) {
      MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
      MSSAU = MemorySSAUpdater(MSSA);
      if (VerifyMemorySSA)
        MSSA->verifyMemorySSA();
    }
    bool DeleteCurrentLoop = false;
    bool Changed = simplifyLoopCFG(
        *L, DT, LI, SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr,
        DeleteCurrentLoop);
    if (DeleteCurrentLoop)
      LPM.markLoopAsDeleted(*L);
    return Changed;
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    if (EnableMSSALoopDependency) {
      AU.addRequired<MemorySSAWrapperPass>();
      AU.addPreserved<MemorySSAWrapperPass>();
    }
    AU.addPreserved<DependenceAnalysisWrapperPass>();
    getLoopAnalysisUsage(AU);
  }
};
} // end namespace

char LoopSimplifyCFGLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
                      "Simplify loop CFG", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
                    "Simplify loop CFG", false, false)

Pass *llvm::createLoopSimplifyCFGPass() {
  return new LoopSimplifyCFGLegacyPass();
}