aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Transforms/Scalar/DeadStoreElimination.cpp
blob: 2979225c60169c82e50ac3e0de07defe6980ab20 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
//===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a trivial dead store elimination that only considers
// basic-block local redundant stores.
//
// FIXME: This should eventually be extended to be a post-dominator tree
// traversal.  Doing so would be pretty trivial.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/DeadStoreElimination.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <map>
#include <utility>

using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "dse"

STATISTIC(NumRemainingStores, "Number of stores remaining after DSE");
STATISTIC(NumRedundantStores, "Number of redundant stores deleted");
STATISTIC(NumFastStores, "Number of stores deleted");
STATISTIC(NumFastOther, "Number of other instrs removed");
STATISTIC(NumCompletePartials, "Number of stores dead by later partials");
STATISTIC(NumModifiedStores, "Number of stores modified");
STATISTIC(NumCFGChecks, "Number of stores modified");
STATISTIC(NumCFGTries, "Number of stores modified");
STATISTIC(NumCFGSuccess, "Number of stores modified");
STATISTIC(NumGetDomMemoryDefPassed,
          "Number of times a valid candidate is returned from getDomMemoryDef");
STATISTIC(NumDomMemDefChecks,
          "Number iterations check for reads in getDomMemoryDef");

DEBUG_COUNTER(MemorySSACounter, "dse-memoryssa",
              "Controls which MemoryDefs are eliminated.");

static cl::opt<bool>
EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking",
  cl::init(true), cl::Hidden,
  cl::desc("Enable partial-overwrite tracking in DSE"));

static cl::opt<bool>
EnablePartialStoreMerging("enable-dse-partial-store-merging",
  cl::init(true), cl::Hidden,
  cl::desc("Enable partial store merging in DSE"));

static cl::opt<bool>
    EnableMemorySSA("enable-dse-memoryssa", cl::init(true), cl::Hidden,
                    cl::desc("Use the new MemorySSA-backed DSE."));

static cl::opt<unsigned>
    MemorySSAScanLimit("dse-memoryssa-scanlimit", cl::init(150), cl::Hidden,
                       cl::desc("The number of memory instructions to scan for "
                                "dead store elimination (default = 100)"));
static cl::opt<unsigned> MemorySSAUpwardsStepLimit(
    "dse-memoryssa-walklimit", cl::init(90), cl::Hidden,
    cl::desc("The maximum number of steps while walking upwards to find "
             "MemoryDefs that may be killed (default = 90)"));

static cl::opt<unsigned> MemorySSAPartialStoreLimit(
    "dse-memoryssa-partial-store-limit", cl::init(5), cl::Hidden,
    cl::desc("The maximum number candidates that only partially overwrite the "
             "killing MemoryDef to consider"
             " (default = 5)"));

static cl::opt<unsigned> MemorySSADefsPerBlockLimit(
    "dse-memoryssa-defs-per-block-limit", cl::init(5000), cl::Hidden,
    cl::desc("The number of MemoryDefs we consider as candidates to eliminated "
             "other stores per basic block (default = 5000)"));

static cl::opt<unsigned> MemorySSASameBBStepCost(
    "dse-memoryssa-samebb-cost", cl::init(1), cl::Hidden,
    cl::desc(
        "The cost of a step in the same basic block as the killing MemoryDef"
        "(default = 1)"));

static cl::opt<unsigned>
    MemorySSAOtherBBStepCost("dse-memoryssa-otherbb-cost", cl::init(5),
                             cl::Hidden,
                             cl::desc("The cost of a step in a different basic "
                                      "block than the killing MemoryDef"
                                      "(default = 5)"));

static cl::opt<unsigned> MemorySSAPathCheckLimit(
    "dse-memoryssa-path-check-limit", cl::init(50), cl::Hidden,
    cl::desc("The maximum number of blocks to check when trying to prove that "
             "all paths to an exit go through a killing block (default = 50)"));

//===----------------------------------------------------------------------===//
// Helper functions
//===----------------------------------------------------------------------===//
using OverlapIntervalsTy = std::map<int64_t, int64_t>;
using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>;

/// Delete this instruction.  Before we do, go through and zero out all the
/// operands of this instruction.  If any of them become dead, delete them and
/// the computation tree that feeds them.
/// If ValueSet is non-null, remove any deleted instructions from it as well.
static void
deleteDeadInstruction(Instruction *I, BasicBlock::iterator *BBI,
                      MemoryDependenceResults &MD, const TargetLibraryInfo &TLI,
                      InstOverlapIntervalsTy &IOL,
                      MapVector<Instruction *, bool> &ThrowableInst,
                      SmallSetVector<const Value *, 16> *ValueSet = nullptr) {
  SmallVector<Instruction*, 32> NowDeadInsts;

  NowDeadInsts.push_back(I);
  --NumFastOther;

  // Keeping the iterator straight is a pain, so we let this routine tell the
  // caller what the next instruction is after we're done mucking about.
  BasicBlock::iterator NewIter = *BBI;

  // Before we touch this instruction, remove it from memdep!
  do {
    Instruction *DeadInst = NowDeadInsts.pop_back_val();
    // Mark the DeadInst as dead in the list of throwable instructions.
    auto It = ThrowableInst.find(DeadInst);
    if (It != ThrowableInst.end())
      ThrowableInst[It->first] = false;
    ++NumFastOther;

    // Try to preserve debug information attached to the dead instruction.
    salvageDebugInfo(*DeadInst);
    salvageKnowledge(DeadInst);

    // This instruction is dead, zap it, in stages.  Start by removing it from
    // MemDep, which needs to know the operands and needs it to be in the
    // function.
    MD.removeInstruction(DeadInst);

    for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
      Value *Op = DeadInst->getOperand(op);
      DeadInst->setOperand(op, nullptr);

      // If this operand just became dead, add it to the NowDeadInsts list.
      if (!Op->use_empty()) continue;

      if (Instruction *OpI = dyn_cast<Instruction>(Op))
        if (isInstructionTriviallyDead(OpI, &TLI))
          NowDeadInsts.push_back(OpI);
    }

    if (ValueSet) ValueSet->remove(DeadInst);
    IOL.erase(DeadInst);

    if (NewIter == DeadInst->getIterator())
      NewIter = DeadInst->eraseFromParent();
    else
      DeadInst->eraseFromParent();
  } while (!NowDeadInsts.empty());
  *BBI = NewIter;
  // Pop dead entries from back of ThrowableInst till we find an alive entry.
  while (!ThrowableInst.empty() && !ThrowableInst.back().second)
    ThrowableInst.pop_back();
}

/// Does this instruction write some memory?  This only returns true for things
/// that we can analyze with other helpers below.
static bool hasAnalyzableMemoryWrite(Instruction *I,
                                     const TargetLibraryInfo &TLI) {
  if (isa<StoreInst>(I))
    return true;
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    switch (II->getIntrinsicID()) {
    default:
      return false;
    case Intrinsic::memset:
    case Intrinsic::memmove:
    case Intrinsic::memcpy:
    case Intrinsic::memcpy_inline:
    case Intrinsic::memcpy_element_unordered_atomic:
    case Intrinsic::memmove_element_unordered_atomic:
    case Intrinsic::memset_element_unordered_atomic:
    case Intrinsic::init_trampoline:
    case Intrinsic::lifetime_end:
    case Intrinsic::masked_store:
      return true;
    }
  }
  if (auto *CB = dyn_cast<CallBase>(I)) {
    LibFunc LF;
    if (TLI.getLibFunc(*CB, LF) && TLI.has(LF)) {
      switch (LF) {
      case LibFunc_strcpy:
      case LibFunc_strncpy:
      case LibFunc_strcat:
      case LibFunc_strncat:
        return true;
      default:
        return false;
      }
    }
  }
  return false;
}

/// Return a Location stored to by the specified instruction. If isRemovable
/// returns true, this function and getLocForRead completely describe the memory
/// operations for this instruction.
static MemoryLocation getLocForWrite(Instruction *Inst,
                                     const TargetLibraryInfo &TLI) {
  if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
    return MemoryLocation::get(SI);

  // memcpy/memmove/memset.
  if (auto *MI = dyn_cast<AnyMemIntrinsic>(Inst))
    return MemoryLocation::getForDest(MI);

  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    switch (II->getIntrinsicID()) {
    default:
      return MemoryLocation(); // Unhandled intrinsic.
    case Intrinsic::init_trampoline:
      return MemoryLocation::getAfter(II->getArgOperand(0));
    case Intrinsic::masked_store:
      return MemoryLocation::getForArgument(II, 1, TLI);
    case Intrinsic::lifetime_end: {
      uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
      return MemoryLocation(II->getArgOperand(1), Len);
    }
    }
  }
  if (auto *CB = dyn_cast<CallBase>(Inst))
    // All the supported TLI functions so far happen to have dest as their
    // first argument.
    return MemoryLocation::getAfter(CB->getArgOperand(0));
  return MemoryLocation();
}

/// Return the location read by the specified "hasAnalyzableMemoryWrite"
/// instruction if any.
static MemoryLocation getLocForRead(Instruction *Inst,
                                    const TargetLibraryInfo &TLI) {
  assert(hasAnalyzableMemoryWrite(Inst, TLI) && "Unknown instruction case");

  // The only instructions that both read and write are the mem transfer
  // instructions (memcpy/memmove).
  if (auto *MTI = dyn_cast<AnyMemTransferInst>(Inst))
    return MemoryLocation::getForSource(MTI);
  return MemoryLocation();
}

/// If the value of this instruction and the memory it writes to is unused, may
/// we delete this instruction?
static bool isRemovable(Instruction *I) {
  // Don't remove volatile/atomic stores.
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
    return SI->isUnordered();

  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    switch (II->getIntrinsicID()) {
    default: llvm_unreachable("doesn't pass 'hasAnalyzableMemoryWrite' predicate");
    case Intrinsic::lifetime_end:
      // Never remove dead lifetime_end's, e.g. because it is followed by a
      // free.
      return false;
    case Intrinsic::init_trampoline:
      // Always safe to remove init_trampoline.
      return true;
    case Intrinsic::memset:
    case Intrinsic::memmove:
    case Intrinsic::memcpy:
    case Intrinsic::memcpy_inline:
      // Don't remove volatile memory intrinsics.
      return !cast<MemIntrinsic>(II)->isVolatile();
    case Intrinsic::memcpy_element_unordered_atomic:
    case Intrinsic::memmove_element_unordered_atomic:
    case Intrinsic::memset_element_unordered_atomic:
    case Intrinsic::masked_store:
      return true;
    }
  }

  // note: only get here for calls with analyzable writes - i.e. libcalls
  if (auto *CB = dyn_cast<CallBase>(I))
    return CB->use_empty();

  return false;
}

/// Returns true if the end of this instruction can be safely shortened in
/// length.
static bool isShortenableAtTheEnd(Instruction *I) {
  // Don't shorten stores for now
  if (isa<StoreInst>(I))
    return false;

  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    switch (II->getIntrinsicID()) {
      default: return false;
      case Intrinsic::memset:
      case Intrinsic::memcpy:
      case Intrinsic::memcpy_element_unordered_atomic:
      case Intrinsic::memset_element_unordered_atomic:
        // Do shorten memory intrinsics.
        // FIXME: Add memmove if it's also safe to transform.
        return true;
    }
  }

  // Don't shorten libcalls calls for now.

  return false;
}

/// Returns true if the beginning of this instruction can be safely shortened
/// in length.
static bool isShortenableAtTheBeginning(Instruction *I) {
  // FIXME: Handle only memset for now. Supporting memcpy/memmove should be
  // easily done by offsetting the source address.
  return isa<AnyMemSetInst>(I);
}

/// Return the pointer that is being written to.
static Value *getStoredPointerOperand(Instruction *I,
                                      const TargetLibraryInfo &TLI) {
  //TODO: factor this to reuse getLocForWrite
  MemoryLocation Loc = getLocForWrite(I, TLI);
  assert(Loc.Ptr &&
         "unable to find pointer written for analyzable instruction?");
  // TODO: most APIs don't expect const Value *
  return const_cast<Value*>(Loc.Ptr);
}

static uint64_t getPointerSize(const Value *V, const DataLayout &DL,
                               const TargetLibraryInfo &TLI,
                               const Function *F) {
  uint64_t Size;
  ObjectSizeOpts Opts;
  Opts.NullIsUnknownSize = NullPointerIsDefined(F);

  if (getObjectSize(V, Size, DL, &TLI, Opts))
    return Size;
  return MemoryLocation::UnknownSize;
}

namespace {

enum OverwriteResult {
  OW_Begin,
  OW_Complete,
  OW_End,
  OW_PartialEarlierWithFullLater,
  OW_MaybePartial,
  OW_Unknown
};

} // end anonymous namespace

/// Check if two instruction are masked stores that completely
/// overwrite one another. More specifically, \p Later has to
/// overwrite \p Earlier.
template <typename AATy>
static OverwriteResult isMaskedStoreOverwrite(const Instruction *Later,
                                              const Instruction *Earlier,
                                              AATy &AA) {
  const auto *IIL = dyn_cast<IntrinsicInst>(Later);
  const auto *IIE = dyn_cast<IntrinsicInst>(Earlier);
  if (IIL == nullptr || IIE == nullptr)
    return OW_Unknown;
  if (IIL->getIntrinsicID() != Intrinsic::masked_store ||
      IIE->getIntrinsicID() != Intrinsic::masked_store)
    return OW_Unknown;
  // Pointers.
  Value *LP = IIL->getArgOperand(1)->stripPointerCasts();
  Value *EP = IIE->getArgOperand(1)->stripPointerCasts();
  if (LP != EP && !AA.isMustAlias(LP, EP))
    return OW_Unknown;
  // Masks.
  // TODO: check that Later's mask is a superset of the Earlier's mask.
  if (IIL->getArgOperand(3) != IIE->getArgOperand(3))
    return OW_Unknown;
  return OW_Complete;
}

/// Return 'OW_Complete' if a store to the 'Later' location (by \p LaterI
/// instruction) completely overwrites a store to the 'Earlier' location.
/// (by \p EarlierI instruction).
/// Return OW_MaybePartial if \p Later does not completely overwrite
/// \p Earlier, but they both write to the same underlying object. In that
/// case, use isPartialOverwrite to check if \p Later partially overwrites
/// \p Earlier. Returns 'OW_Unknown' if nothing can be determined.
template <typename AATy>
static OverwriteResult
isOverwrite(const Instruction *LaterI, const Instruction *EarlierI,
            const MemoryLocation &Later, const MemoryLocation &Earlier,
            const DataLayout &DL, const TargetLibraryInfo &TLI,
            int64_t &EarlierOff, int64_t &LaterOff, AATy &AA,
            const Function *F) {
  // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll
  // get imprecise values here, though (except for unknown sizes).
  if (!Later.Size.isPrecise() || !Earlier.Size.isPrecise()) {
    // Masked stores have imprecise locations, but we can reason about them
    // to some extent.
    return isMaskedStoreOverwrite(LaterI, EarlierI, AA);
  }

  const uint64_t LaterSize = Later.Size.getValue();
  const uint64_t EarlierSize = Earlier.Size.getValue();

  const Value *P1 = Earlier.Ptr->stripPointerCasts();
  const Value *P2 = Later.Ptr->stripPointerCasts();

  // If the start pointers are the same, we just have to compare sizes to see if
  // the later store was larger than the earlier store.
  if (P1 == P2 || AA.isMustAlias(P1, P2)) {
    // Make sure that the Later size is >= the Earlier size.
    if (LaterSize >= EarlierSize)
      return OW_Complete;
  }

  // Check to see if the later store is to the entire object (either a global,
  // an alloca, or a byval/inalloca argument).  If so, then it clearly
  // overwrites any other store to the same object.
  const Value *UO1 = getUnderlyingObject(P1), *UO2 = getUnderlyingObject(P2);

  // If we can't resolve the same pointers to the same object, then we can't
  // analyze them at all.
  if (UO1 != UO2)
    return OW_Unknown;

  // If the "Later" store is to a recognizable object, get its size.
  uint64_t ObjectSize = getPointerSize(UO2, DL, TLI, F);
  if (ObjectSize != MemoryLocation::UnknownSize)
    if (ObjectSize == LaterSize && ObjectSize >= EarlierSize)
      return OW_Complete;

  // Okay, we have stores to two completely different pointers.  Try to
  // decompose the pointer into a "base + constant_offset" form.  If the base
  // pointers are equal, then we can reason about the two stores.
  EarlierOff = 0;
  LaterOff = 0;
  const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, DL);
  const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, DL);

  // If the base pointers still differ, we have two completely different stores.
  if (BP1 != BP2)
    return OW_Unknown;

  // The later access completely overlaps the earlier store if and only if
  // both start and end of the earlier one is "inside" the later one:
  //    |<->|--earlier--|<->|
  //    |-------later-------|
  // Accesses may overlap if and only if start of one of them is "inside"
  // another one:
  //    |<->|--earlier--|<----->|
  //    |-------later-------|
  //           OR
  //    |----- earlier -----|
  //    |<->|---later---|<----->|
  //
  // We have to be careful here as *Off is signed while *.Size is unsigned.

  // Check if the earlier access starts "not before" the later one.
  if (EarlierOff >= LaterOff) {
    // If the earlier access ends "not after" the later access then the earlier
    // one is completely overwritten by the later one.
    if (uint64_t(EarlierOff - LaterOff) + EarlierSize <= LaterSize)
      return OW_Complete;
    // If start of the earlier access is "before" end of the later access then
    // accesses overlap.
    else if ((uint64_t)(EarlierOff - LaterOff) < LaterSize)
      return OW_MaybePartial;
  }
  // If start of the later access is "before" end of the earlier access then
  // accesses overlap.
  else if ((uint64_t)(LaterOff - EarlierOff) < EarlierSize) {
    return OW_MaybePartial;
  }

  // Can reach here only if accesses are known not to overlap. There is no
  // dedicated code to indicate no overlap so signal "unknown".
  return OW_Unknown;
}

/// Return 'OW_Complete' if a store to the 'Later' location completely
/// overwrites a store to the 'Earlier' location, 'OW_End' if the end of the
/// 'Earlier' location is completely overwritten by 'Later', 'OW_Begin' if the
/// beginning of the 'Earlier' location is overwritten by 'Later'.
/// 'OW_PartialEarlierWithFullLater' means that an earlier (big) store was
/// overwritten by a latter (smaller) store which doesn't write outside the big
/// store's memory locations. Returns 'OW_Unknown' if nothing can be determined.
/// NOTE: This function must only be called if both \p Later and \p Earlier
/// write to the same underlying object with valid \p EarlierOff and \p
/// LaterOff.
static OverwriteResult isPartialOverwrite(const MemoryLocation &Later,
                                          const MemoryLocation &Earlier,
                                          int64_t EarlierOff, int64_t LaterOff,
                                          Instruction *DepWrite,
                                          InstOverlapIntervalsTy &IOL) {
  const uint64_t LaterSize = Later.Size.getValue();
  const uint64_t EarlierSize = Earlier.Size.getValue();
  // We may now overlap, although the overlap is not complete. There might also
  // be other incomplete overlaps, and together, they might cover the complete
  // earlier write.
  // Note: The correctness of this logic depends on the fact that this function
  // is not even called providing DepWrite when there are any intervening reads.
  if (EnablePartialOverwriteTracking &&
      LaterOff < int64_t(EarlierOff + EarlierSize) &&
      int64_t(LaterOff + LaterSize) >= EarlierOff) {

    // Insert our part of the overlap into the map.
    auto &IM = IOL[DepWrite];
    LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: Earlier [" << EarlierOff
                      << ", " << int64_t(EarlierOff + EarlierSize)
                      << ") Later [" << LaterOff << ", "
                      << int64_t(LaterOff + LaterSize) << ")\n");

    // Make sure that we only insert non-overlapping intervals and combine
    // adjacent intervals. The intervals are stored in the map with the ending
    // offset as the key (in the half-open sense) and the starting offset as
    // the value.
    int64_t LaterIntStart = LaterOff, LaterIntEnd = LaterOff + LaterSize;

    // Find any intervals ending at, or after, LaterIntStart which start
    // before LaterIntEnd.
    auto ILI = IM.lower_bound(LaterIntStart);
    if (ILI != IM.end() && ILI->second <= LaterIntEnd) {
      // This existing interval is overlapped with the current store somewhere
      // in [LaterIntStart, LaterIntEnd]. Merge them by erasing the existing
      // intervals and adjusting our start and end.
      LaterIntStart = std::min(LaterIntStart, ILI->second);
      LaterIntEnd = std::max(LaterIntEnd, ILI->first);
      ILI = IM.erase(ILI);

      // Continue erasing and adjusting our end in case other previous
      // intervals are also overlapped with the current store.
      //
      // |--- ealier 1 ---|  |--- ealier 2 ---|
      //     |------- later---------|
      //
      while (ILI != IM.end() && ILI->second <= LaterIntEnd) {
        assert(ILI->second > LaterIntStart && "Unexpected interval");
        LaterIntEnd = std::max(LaterIntEnd, ILI->first);
        ILI = IM.erase(ILI);
      }
    }

    IM[LaterIntEnd] = LaterIntStart;

    ILI = IM.begin();
    if (ILI->second <= EarlierOff &&
        ILI->first >= int64_t(EarlierOff + EarlierSize)) {
      LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: Earlier ["
                        << EarlierOff << ", "
                        << int64_t(EarlierOff + EarlierSize)
                        << ") Composite Later [" << ILI->second << ", "
                        << ILI->first << ")\n");
      ++NumCompletePartials;
      return OW_Complete;
    }
  }

  // Check for an earlier store which writes to all the memory locations that
  // the later store writes to.
  if (EnablePartialStoreMerging && LaterOff >= EarlierOff &&
      int64_t(EarlierOff + EarlierSize) > LaterOff &&
      uint64_t(LaterOff - EarlierOff) + LaterSize <= EarlierSize) {
    LLVM_DEBUG(dbgs() << "DSE: Partial overwrite an earlier load ["
                      << EarlierOff << ", "
                      << int64_t(EarlierOff + EarlierSize)
                      << ") by a later store [" << LaterOff << ", "
                      << int64_t(LaterOff + LaterSize) << ")\n");
    // TODO: Maybe come up with a better name?
    return OW_PartialEarlierWithFullLater;
  }

  // Another interesting case is if the later store overwrites the end of the
  // earlier store.
  //
  //      |--earlier--|
  //                |--   later   --|
  //
  // In this case we may want to trim the size of earlier to avoid generating
  // writes to addresses which will definitely be overwritten later
  if (!EnablePartialOverwriteTracking &&
      (LaterOff > EarlierOff && LaterOff < int64_t(EarlierOff + EarlierSize) &&
       int64_t(LaterOff + LaterSize) >= int64_t(EarlierOff + EarlierSize)))
    return OW_End;

  // Finally, we also need to check if the later store overwrites the beginning
  // of the earlier store.
  //
  //                |--earlier--|
  //      |--   later   --|
  //
  // In this case we may want to move the destination address and trim the size
  // of earlier to avoid generating writes to addresses which will definitely
  // be overwritten later.
  if (!EnablePartialOverwriteTracking &&
      (LaterOff <= EarlierOff && int64_t(LaterOff + LaterSize) > EarlierOff)) {
    assert(int64_t(LaterOff + LaterSize) < int64_t(EarlierOff + EarlierSize) &&
           "Expect to be handled as OW_Complete");
    return OW_Begin;
  }
  // Otherwise, they don't completely overlap.
  return OW_Unknown;
}

/// If 'Inst' might be a self read (i.e. a noop copy of a
/// memory region into an identical pointer) then it doesn't actually make its
/// input dead in the traditional sense.  Consider this case:
///
///   memmove(A <- B)
///   memmove(A <- A)
///
/// In this case, the second store to A does not make the first store to A dead.
/// The usual situation isn't an explicit A<-A store like this (which can be
/// trivially removed) but a case where two pointers may alias.
///
/// This function detects when it is unsafe to remove a dependent instruction
/// because the DSE inducing instruction may be a self-read.
static bool isPossibleSelfRead(Instruction *Inst,
                               const MemoryLocation &InstStoreLoc,
                               Instruction *DepWrite,
                               const TargetLibraryInfo &TLI,
                               AliasAnalysis &AA) {
  // Self reads can only happen for instructions that read memory.  Get the
  // location read.
  MemoryLocation InstReadLoc = getLocForRead(Inst, TLI);
  if (!InstReadLoc.Ptr)
    return false; // Not a reading instruction.

  // If the read and written loc obviously don't alias, it isn't a read.
  if (AA.isNoAlias(InstReadLoc, InstStoreLoc))
    return false;

  if (isa<AnyMemCpyInst>(Inst)) {
    // LLVM's memcpy overlap semantics are not fully fleshed out (see PR11763)
    // but in practice memcpy(A <- B) either means that A and B are disjoint or
    // are equal (i.e. there are not partial overlaps).  Given that, if we have:
    //
    //   memcpy/memmove(A <- B)  // DepWrite
    //   memcpy(A <- B)  // Inst
    //
    // with Inst reading/writing a >= size than DepWrite, we can reason as
    // follows:
    //
    //   - If A == B then both the copies are no-ops, so the DepWrite can be
    //     removed.
    //   - If A != B then A and B are disjoint locations in Inst.  Since
    //     Inst.size >= DepWrite.size A and B are disjoint in DepWrite too.
    //     Therefore DepWrite can be removed.
    MemoryLocation DepReadLoc = getLocForRead(DepWrite, TLI);

    if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
      return false;
  }

  // If DepWrite doesn't read memory or if we can't prove it is a must alias,
  // then it can't be considered dead.
  return true;
}

/// Returns true if the memory which is accessed by the second instruction is not
/// modified between the first and the second instruction.
/// Precondition: Second instruction must be dominated by the first
/// instruction.
template <typename AATy>
static bool
memoryIsNotModifiedBetween(Instruction *FirstI, Instruction *SecondI, AATy &AA,
                           const DataLayout &DL, DominatorTree *DT) {
  // Do a backwards scan through the CFG from SecondI to FirstI. Look for
  // instructions which can modify the memory location accessed by SecondI.
  //
  // While doing the walk keep track of the address to check. It might be
  // different in different basic blocks due to PHI translation.
  using BlockAddressPair = std::pair<BasicBlock *, PHITransAddr>;
  SmallVector<BlockAddressPair, 16> WorkList;
  // Keep track of the address we visited each block with. Bail out if we
  // visit a block with different addresses.
  DenseMap<BasicBlock *, Value *> Visited;

  BasicBlock::iterator FirstBBI(FirstI);
  ++FirstBBI;
  BasicBlock::iterator SecondBBI(SecondI);
  BasicBlock *FirstBB = FirstI->getParent();
  BasicBlock *SecondBB = SecondI->getParent();
  MemoryLocation MemLoc = MemoryLocation::get(SecondI);
  auto *MemLocPtr = const_cast<Value *>(MemLoc.Ptr);

  // Start checking the SecondBB.
  WorkList.push_back(
      std::make_pair(SecondBB, PHITransAddr(MemLocPtr, DL, nullptr)));
  bool isFirstBlock = true;

  // Check all blocks going backward until we reach the FirstBB.
  while (!WorkList.empty()) {
    BlockAddressPair Current = WorkList.pop_back_val();
    BasicBlock *B = Current.first;
    PHITransAddr &Addr = Current.second;
    Value *Ptr = Addr.getAddr();

    // Ignore instructions before FirstI if this is the FirstBB.
    BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin());

    BasicBlock::iterator EI;
    if (isFirstBlock) {
      // Ignore instructions after SecondI if this is the first visit of SecondBB.
      assert(B == SecondBB && "first block is not the store block");
      EI = SecondBBI;
      isFirstBlock = false;
    } else {
      // It's not SecondBB or (in case of a loop) the second visit of SecondBB.
      // In this case we also have to look at instructions after SecondI.
      EI = B->end();
    }
    for (; BI != EI; ++BI) {
      Instruction *I = &*BI;
      if (I->mayWriteToMemory() && I != SecondI)
        if (isModSet(AA.getModRefInfo(I, MemLoc.getWithNewPtr(Ptr))))
          return false;
    }
    if (B != FirstBB) {
      assert(B != &FirstBB->getParent()->getEntryBlock() &&
          "Should not hit the entry block because SI must be dominated by LI");
      for (auto PredI = pred_begin(B), PE = pred_end(B); PredI != PE; ++PredI) {
        PHITransAddr PredAddr = Addr;
        if (PredAddr.NeedsPHITranslationFromBlock(B)) {
          if (!PredAddr.IsPotentiallyPHITranslatable())
            return false;
          if (PredAddr.PHITranslateValue(B, *PredI, DT, false))
            return false;
        }
        Value *TranslatedPtr = PredAddr.getAddr();
        auto Inserted = Visited.insert(std::make_pair(*PredI, TranslatedPtr));
        if (!Inserted.second) {
          // We already visited this block before. If it was with a different
          // address - bail out!
          if (TranslatedPtr != Inserted.first->second)
            return false;
          // ... otherwise just skip it.
          continue;
        }
        WorkList.push_back(std::make_pair(*PredI, PredAddr));
      }
    }
  }
  return true;
}

/// Find all blocks that will unconditionally lead to the block BB and append
/// them to F.
static void findUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks,
                                   BasicBlock *BB, DominatorTree *DT) {
  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
    BasicBlock *Pred = *I;
    if (Pred == BB) continue;
    Instruction *PredTI = Pred->getTerminator();
    if (PredTI->getNumSuccessors() != 1)
      continue;

    if (DT->isReachableFromEntry(Pred))
      Blocks.push_back(Pred);
  }
}

/// Handle frees of entire structures whose dependency is a store
/// to a field of that structure.
static bool handleFree(CallInst *F, AliasAnalysis *AA,
                       MemoryDependenceResults *MD, DominatorTree *DT,
                       const TargetLibraryInfo *TLI,
                       InstOverlapIntervalsTy &IOL,
                       MapVector<Instruction *, bool> &ThrowableInst) {
  bool MadeChange = false;

  MemoryLocation Loc = MemoryLocation::getAfter(F->getOperand(0));
  SmallVector<BasicBlock *, 16> Blocks;
  Blocks.push_back(F->getParent());

  while (!Blocks.empty()) {
    BasicBlock *BB = Blocks.pop_back_val();
    Instruction *InstPt = BB->getTerminator();
    if (BB == F->getParent()) InstPt = F;

    MemDepResult Dep =
        MD->getPointerDependencyFrom(Loc, false, InstPt->getIterator(), BB);
    while (Dep.isDef() || Dep.isClobber()) {
      Instruction *Dependency = Dep.getInst();
      if (!hasAnalyzableMemoryWrite(Dependency, *TLI) ||
          !isRemovable(Dependency))
        break;

      Value *DepPointer =
          getUnderlyingObject(getStoredPointerOperand(Dependency, *TLI));

      // Check for aliasing.
      if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
        break;

      LLVM_DEBUG(
          dbgs() << "DSE: Dead Store to soon to be freed memory:\n  DEAD: "
                 << *Dependency << '\n');

      // DCE instructions only used to calculate that store.
      BasicBlock::iterator BBI(Dependency);
      deleteDeadInstruction(Dependency, &BBI, *MD, *TLI, IOL,
                            ThrowableInst);
      ++NumFastStores;
      MadeChange = true;

      // Inst's old Dependency is now deleted. Compute the next dependency,
      // which may also be dead, as in
      //    s[0] = 0;
      //    s[1] = 0; // This has just been deleted.
      //    free(s);
      Dep = MD->getPointerDependencyFrom(Loc, false, BBI, BB);
    }

    if (Dep.isNonLocal())
      findUnconditionalPreds(Blocks, BB, DT);
  }

  return MadeChange;
}

/// Check to see if the specified location may alias any of the stack objects in
/// the DeadStackObjects set. If so, they become live because the location is
/// being loaded.
static void removeAccessedObjects(const MemoryLocation &LoadedLoc,
                                  SmallSetVector<const Value *, 16> &DeadStackObjects,
                                  const DataLayout &DL, AliasAnalysis *AA,
                                  const TargetLibraryInfo *TLI,
                                  const Function *F) {
  const Value *UnderlyingPointer = getUnderlyingObject(LoadedLoc.Ptr);

  // A constant can't be in the dead pointer set.
  if (isa<Constant>(UnderlyingPointer))
    return;

  // If the kill pointer can be easily reduced to an alloca, don't bother doing
  // extraneous AA queries.
  if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
    DeadStackObjects.remove(UnderlyingPointer);
    return;
  }

  // Remove objects that could alias LoadedLoc.
  DeadStackObjects.remove_if([&](const Value *I) {
    // See if the loaded location could alias the stack location.
    MemoryLocation StackLoc(I, getPointerSize(I, DL, *TLI, F));
    return !AA->isNoAlias(StackLoc, LoadedLoc);
  });
}

/// Remove dead stores to stack-allocated locations in the function end block.
/// Ex:
/// %A = alloca i32
/// ...
/// store i32 1, i32* %A
/// ret void
static bool handleEndBlock(BasicBlock &BB, AliasAnalysis *AA,
                           MemoryDependenceResults *MD,
                           const TargetLibraryInfo *TLI,
                           InstOverlapIntervalsTy &IOL,
                           MapVector<Instruction *, bool> &ThrowableInst) {
  bool MadeChange = false;

  // Keep track of all of the stack objects that are dead at the end of the
  // function.
  SmallSetVector<const Value*, 16> DeadStackObjects;

  // Find all of the alloca'd pointers in the entry block.
  BasicBlock &Entry = BB.getParent()->front();
  for (Instruction &I : Entry) {
    if (isa<AllocaInst>(&I))
      DeadStackObjects.insert(&I);

    // Okay, so these are dead heap objects, but if the pointer never escapes
    // then it's leaked by this function anyways.
    else if (isAllocLikeFn(&I, TLI) && !PointerMayBeCaptured(&I, true, true))
      DeadStackObjects.insert(&I);
  }

  // Treat byval or inalloca arguments the same, stores to them are dead at the
  // end of the function.
  for (Argument &AI : BB.getParent()->args())
    if (AI.hasPassPointeeByValueCopyAttr())
      DeadStackObjects.insert(&AI);

  const DataLayout &DL = BB.getModule()->getDataLayout();

  // Scan the basic block backwards
  for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
    --BBI;

    // If we find a store, check to see if it points into a dead stack value.
    if (hasAnalyzableMemoryWrite(&*BBI, *TLI) && isRemovable(&*BBI)) {
      // See through pointer-to-pointer bitcasts
      SmallVector<const Value *, 4> Pointers;
      getUnderlyingObjects(getStoredPointerOperand(&*BBI, *TLI), Pointers);

      // Stores to stack values are valid candidates for removal.
      bool AllDead = true;
      for (const Value *Pointer : Pointers)
        if (!DeadStackObjects.count(Pointer)) {
          AllDead = false;
          break;
        }

      if (AllDead) {
        Instruction *Dead = &*BBI;

        LLVM_DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n  DEAD: "
                          << *Dead << "\n  Objects: ";
                   for (SmallVectorImpl<const Value *>::iterator I =
                            Pointers.begin(),
                        E = Pointers.end();
                        I != E; ++I) {
                     dbgs() << **I;
                     if (std::next(I) != E)
                       dbgs() << ", ";
                   } dbgs()
                   << '\n');

        // DCE instructions only used to calculate that store.
        deleteDeadInstruction(Dead, &BBI, *MD, *TLI, IOL, ThrowableInst,
                              &DeadStackObjects);
        ++NumFastStores;
        MadeChange = true;
        continue;
      }
    }

    // Remove any dead non-memory-mutating instructions.
    if (isInstructionTriviallyDead(&*BBI, TLI)) {
      LLVM_DEBUG(dbgs() << "DSE: Removing trivially dead instruction:\n  DEAD: "
                        << *&*BBI << '\n');
      deleteDeadInstruction(&*BBI, &BBI, *MD, *TLI, IOL, ThrowableInst,
                            &DeadStackObjects);
      ++NumFastOther;
      MadeChange = true;
      continue;
    }

    if (isa<AllocaInst>(BBI)) {
      // Remove allocas from the list of dead stack objects; there can't be
      // any references before the definition.
      DeadStackObjects.remove(&*BBI);
      continue;
    }

    if (auto *Call = dyn_cast<CallBase>(&*BBI)) {
      // Remove allocation function calls from the list of dead stack objects;
      // there can't be any references before the definition.
      if (isAllocLikeFn(&*BBI, TLI))
        DeadStackObjects.remove(&*BBI);

      // If this call does not access memory, it can't be loading any of our
      // pointers.
      if (AA->doesNotAccessMemory(Call))
        continue;

      // If the call might load from any of our allocas, then any store above
      // the call is live.
      DeadStackObjects.remove_if([&](const Value *I) {
        // See if the call site touches the value.
        return isRefSet(AA->getModRefInfo(
            Call, I, getPointerSize(I, DL, *TLI, BB.getParent())));
      });

      // If all of the allocas were clobbered by the call then we're not going
      // to find anything else to process.
      if (DeadStackObjects.empty())
        break;

      continue;
    }

    // We can remove the dead stores, irrespective of the fence and its ordering
    // (release/acquire/seq_cst). Fences only constraints the ordering of
    // already visible stores, it does not make a store visible to other
    // threads. So, skipping over a fence does not change a store from being
    // dead.
    if (isa<FenceInst>(*BBI))
      continue;

    MemoryLocation LoadedLoc;

    // If we encounter a use of the pointer, it is no longer considered dead
    if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
      if (!L->isUnordered()) // Be conservative with atomic/volatile load
        break;
      LoadedLoc = MemoryLocation::get(L);
    } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
      LoadedLoc = MemoryLocation::get(V);
    } else if (!BBI->mayReadFromMemory()) {
      // Instruction doesn't read memory.  Note that stores that weren't removed
      // above will hit this case.
      continue;
    } else {
      // Unknown inst; assume it clobbers everything.
      break;
    }

    // Remove any allocas from the DeadPointer set that are loaded, as this
    // makes any stores above the access live.
    removeAccessedObjects(LoadedLoc, DeadStackObjects, DL, AA, TLI, BB.getParent());

    // If all of the allocas were clobbered by the access then we're not going
    // to find anything else to process.
    if (DeadStackObjects.empty())
      break;
  }

  return MadeChange;
}

static bool tryToShorten(Instruction *EarlierWrite, int64_t &EarlierOffset,
                         uint64_t &EarlierSize, int64_t LaterOffset,
                         uint64_t LaterSize, bool IsOverwriteEnd) {
  // TODO: base this on the target vector size so that if the earlier
  // store was too small to get vector writes anyway then its likely
  // a good idea to shorten it
  // Power of 2 vector writes are probably always a bad idea to optimize
  // as any store/memset/memcpy is likely using vector instructions so
  // shortening it to not vector size is likely to be slower
  auto *EarlierIntrinsic = cast<AnyMemIntrinsic>(EarlierWrite);
  unsigned EarlierWriteAlign = EarlierIntrinsic->getDestAlignment();
  if (!IsOverwriteEnd)
    LaterOffset = int64_t(LaterOffset + LaterSize);

  if (!(isPowerOf2_64(LaterOffset) && EarlierWriteAlign <= LaterOffset) &&
      !((EarlierWriteAlign != 0) && LaterOffset % EarlierWriteAlign == 0))
    return false;

  int64_t NewLength = IsOverwriteEnd
                          ? LaterOffset - EarlierOffset
                          : EarlierSize - (LaterOffset - EarlierOffset);

  if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(EarlierWrite)) {
    // When shortening an atomic memory intrinsic, the newly shortened
    // length must remain an integer multiple of the element size.
    const uint32_t ElementSize = AMI->getElementSizeInBytes();
    if (0 != NewLength % ElementSize)
      return false;
  }

  LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  OW "
                    << (IsOverwriteEnd ? "END" : "BEGIN") << ": "
                    << *EarlierWrite << "\n  KILLER (offset " << LaterOffset
                    << ", " << EarlierSize << ")\n");

  Value *EarlierWriteLength = EarlierIntrinsic->getLength();
  Value *TrimmedLength =
      ConstantInt::get(EarlierWriteLength->getType(), NewLength);
  EarlierIntrinsic->setLength(TrimmedLength);

  EarlierSize = NewLength;
  if (!IsOverwriteEnd) {
    int64_t OffsetMoved = (LaterOffset - EarlierOffset);
    Value *Indices[1] = {
        ConstantInt::get(EarlierWriteLength->getType(), OffsetMoved)};
    GetElementPtrInst *NewDestGEP = GetElementPtrInst::CreateInBounds(
        EarlierIntrinsic->getRawDest()->getType()->getPointerElementType(),
        EarlierIntrinsic->getRawDest(), Indices, "", EarlierWrite);
    NewDestGEP->setDebugLoc(EarlierIntrinsic->getDebugLoc());
    EarlierIntrinsic->setDest(NewDestGEP);
    EarlierOffset = EarlierOffset + OffsetMoved;
  }
  return true;
}

static bool tryToShortenEnd(Instruction *EarlierWrite,
                            OverlapIntervalsTy &IntervalMap,
                            int64_t &EarlierStart, uint64_t &EarlierSize) {
  if (IntervalMap.empty() || !isShortenableAtTheEnd(EarlierWrite))
    return false;

  OverlapIntervalsTy::iterator OII = --IntervalMap.end();
  int64_t LaterStart = OII->second;
  uint64_t LaterSize = OII->first - LaterStart;

  assert(OII->first - LaterStart >= 0 && "Size expected to be positive");

  if (LaterStart > EarlierStart &&
      // Note: "LaterStart - EarlierStart" is known to be positive due to
      // preceding check.
      (uint64_t)(LaterStart - EarlierStart) < EarlierSize &&
      // Note: "EarlierSize - (uint64_t)(LaterStart - EarlierStart)" is known to
      // be non negative due to preceding checks.
      LaterSize >= EarlierSize - (uint64_t)(LaterStart - EarlierStart)) {
    if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
                     LaterSize, true)) {
      IntervalMap.erase(OII);
      return true;
    }
  }
  return false;
}

static bool tryToShortenBegin(Instruction *EarlierWrite,
                              OverlapIntervalsTy &IntervalMap,
                              int64_t &EarlierStart, uint64_t &EarlierSize) {
  if (IntervalMap.empty() || !isShortenableAtTheBeginning(EarlierWrite))
    return false;

  OverlapIntervalsTy::iterator OII = IntervalMap.begin();
  int64_t LaterStart = OII->second;
  uint64_t LaterSize = OII->first - LaterStart;

  assert(OII->first - LaterStart >= 0 && "Size expected to be positive");

  if (LaterStart <= EarlierStart &&
      // Note: "EarlierStart - LaterStart" is known to be non negative due to
      // preceding check.
      LaterSize > (uint64_t)(EarlierStart - LaterStart)) {
    // Note: "LaterSize - (uint64_t)(EarlierStart - LaterStart)" is known to be
    // positive due to preceding checks.
    assert(LaterSize - (uint64_t)(EarlierStart - LaterStart) < EarlierSize &&
           "Should have been handled as OW_Complete");
    if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
                     LaterSize, false)) {
      IntervalMap.erase(OII);
      return true;
    }
  }
  return false;
}

static bool removePartiallyOverlappedStores(const DataLayout &DL,
                                            InstOverlapIntervalsTy &IOL,
                                            const TargetLibraryInfo &TLI) {
  bool Changed = false;
  for (auto OI : IOL) {
    Instruction *EarlierWrite = OI.first;
    MemoryLocation Loc = getLocForWrite(EarlierWrite, TLI);
    assert(isRemovable(EarlierWrite) && "Expect only removable instruction");

    const Value *Ptr = Loc.Ptr->stripPointerCasts();
    int64_t EarlierStart = 0;
    uint64_t EarlierSize = Loc.Size.getValue();
    GetPointerBaseWithConstantOffset(Ptr, EarlierStart, DL);
    OverlapIntervalsTy &IntervalMap = OI.second;
    Changed |=
        tryToShortenEnd(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
    if (IntervalMap.empty())
      continue;
    Changed |=
        tryToShortenBegin(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
  }
  return Changed;
}

static bool eliminateNoopStore(Instruction *Inst, BasicBlock::iterator &BBI,
                               AliasAnalysis *AA, MemoryDependenceResults *MD,
                               const DataLayout &DL,
                               const TargetLibraryInfo *TLI,
                               InstOverlapIntervalsTy &IOL,
                               MapVector<Instruction *, bool> &ThrowableInst,
                               DominatorTree *DT) {
  // Must be a store instruction.
  StoreInst *SI = dyn_cast<StoreInst>(Inst);
  if (!SI)
    return false;

  // If we're storing the same value back to a pointer that we just loaded from,
  // then the store can be removed.
  if (LoadInst *DepLoad = dyn_cast<LoadInst>(SI->getValueOperand())) {
    if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
        isRemovable(SI) &&
        memoryIsNotModifiedBetween(DepLoad, SI, *AA, DL, DT)) {

      LLVM_DEBUG(
          dbgs() << "DSE: Remove Store Of Load from same pointer:\n  LOAD: "
                 << *DepLoad << "\n  STORE: " << *SI << '\n');

      deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, ThrowableInst);
      ++NumRedundantStores;
      return true;
    }
  }

  // Remove null stores into the calloc'ed objects
  Constant *StoredConstant = dyn_cast<Constant>(SI->getValueOperand());
  if (StoredConstant && StoredConstant->isNullValue() && isRemovable(SI)) {
    Instruction *UnderlyingPointer =
        dyn_cast<Instruction>(getUnderlyingObject(SI->getPointerOperand()));

    if (UnderlyingPointer && isCallocLikeFn(UnderlyingPointer, TLI) &&
        memoryIsNotModifiedBetween(UnderlyingPointer, SI, *AA, DL, DT)) {
      LLVM_DEBUG(
          dbgs() << "DSE: Remove null store to the calloc'ed object:\n  DEAD: "
                 << *Inst << "\n  OBJECT: " << *UnderlyingPointer << '\n');

      deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, ThrowableInst);
      ++NumRedundantStores;
      return true;
    }
  }
  return false;
}

template <typename AATy>
static Constant *tryToMergePartialOverlappingStores(
    StoreInst *Earlier, StoreInst *Later, int64_t InstWriteOffset,
    int64_t DepWriteOffset, const DataLayout &DL, AATy &AA, DominatorTree *DT) {

  if (Earlier && isa<ConstantInt>(Earlier->getValueOperand()) &&
      DL.typeSizeEqualsStoreSize(Earlier->getValueOperand()->getType()) &&
      Later && isa<ConstantInt>(Later->getValueOperand()) &&
      DL.typeSizeEqualsStoreSize(Later->getValueOperand()->getType()) &&
      memoryIsNotModifiedBetween(Earlier, Later, AA, DL, DT)) {
    // If the store we find is:
    //   a) partially overwritten by the store to 'Loc'
    //   b) the later store is fully contained in the earlier one and
    //   c) they both have a constant value
    //   d) none of the two stores need padding
    // Merge the two stores, replacing the earlier store's value with a
    // merge of both values.
    // TODO: Deal with other constant types (vectors, etc), and probably
    // some mem intrinsics (if needed)

    APInt EarlierValue =
        cast<ConstantInt>(Earlier->getValueOperand())->getValue();
    APInt LaterValue = cast<ConstantInt>(Later->getValueOperand())->getValue();
    unsigned LaterBits = LaterValue.getBitWidth();
    assert(EarlierValue.getBitWidth() > LaterValue.getBitWidth());
    LaterValue = LaterValue.zext(EarlierValue.getBitWidth());

    // Offset of the smaller store inside the larger store
    unsigned BitOffsetDiff = (InstWriteOffset - DepWriteOffset) * 8;
    unsigned LShiftAmount = DL.isBigEndian() ? EarlierValue.getBitWidth() -
                                                   BitOffsetDiff - LaterBits
                                             : BitOffsetDiff;
    APInt Mask = APInt::getBitsSet(EarlierValue.getBitWidth(), LShiftAmount,
                                   LShiftAmount + LaterBits);
    // Clear the bits we'll be replacing, then OR with the smaller
    // store, shifted appropriately.
    APInt Merged = (EarlierValue & ~Mask) | (LaterValue << LShiftAmount);
    LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n  Earlier: " << *Earlier
                      << "\n  Later: " << *Later
                      << "\n  Merged Value: " << Merged << '\n');
    return ConstantInt::get(Earlier->getValueOperand()->getType(), Merged);
  }
  return nullptr;
}

static bool eliminateDeadStores(BasicBlock &BB, AliasAnalysis *AA,
                                MemoryDependenceResults *MD, DominatorTree *DT,
                                const TargetLibraryInfo *TLI) {
  const DataLayout &DL = BB.getModule()->getDataLayout();
  bool MadeChange = false;

  MapVector<Instruction *, bool> ThrowableInst;

  // A map of interval maps representing partially-overwritten value parts.
  InstOverlapIntervalsTy IOL;

  // Do a top-down walk on the BB.
  for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
    // Handle 'free' calls specially.
    if (CallInst *F = isFreeCall(&*BBI, TLI)) {
      MadeChange |= handleFree(F, AA, MD, DT, TLI, IOL, ThrowableInst);
      // Increment BBI after handleFree has potentially deleted instructions.
      // This ensures we maintain a valid iterator.
      ++BBI;
      continue;
    }

    Instruction *Inst = &*BBI++;

    if (Inst->mayThrow()) {
      ThrowableInst[Inst] = true;
      continue;
    }

    // Check to see if Inst writes to memory.  If not, continue.
    if (!hasAnalyzableMemoryWrite(Inst, *TLI))
      continue;

    // eliminateNoopStore will update in iterator, if necessary.
    if (eliminateNoopStore(Inst, BBI, AA, MD, DL, TLI, IOL,
                           ThrowableInst, DT)) {
      MadeChange = true;
      continue;
    }

    // If we find something that writes memory, get its memory dependence.
    MemDepResult InstDep = MD->getDependency(Inst);

    // Ignore any store where we can't find a local dependence.
    // FIXME: cross-block DSE would be fun. :)
    if (!InstDep.isDef() && !InstDep.isClobber())
      continue;

    // Figure out what location is being stored to.
    MemoryLocation Loc = getLocForWrite(Inst, *TLI);

    // If we didn't get a useful location, fail.
    if (!Loc.Ptr)
      continue;

    // Loop until we find a store we can eliminate or a load that
    // invalidates the analysis. Without an upper bound on the number of
    // instructions examined, this analysis can become very time-consuming.
    // However, the potential gain diminishes as we process more instructions
    // without eliminating any of them. Therefore, we limit the number of
    // instructions we look at.
    auto Limit = MD->getDefaultBlockScanLimit();
    while (InstDep.isDef() || InstDep.isClobber()) {
      // Get the memory clobbered by the instruction we depend on.  MemDep will
      // skip any instructions that 'Loc' clearly doesn't interact with.  If we
      // end up depending on a may- or must-aliased load, then we can't optimize
      // away the store and we bail out.  However, if we depend on something
      // that overwrites the memory location we *can* potentially optimize it.
      //
      // Find out what memory location the dependent instruction stores.
      Instruction *DepWrite = InstDep.getInst();
      if (!hasAnalyzableMemoryWrite(DepWrite, *TLI))
        break;
      MemoryLocation DepLoc = getLocForWrite(DepWrite, *TLI);
      // If we didn't get a useful location, or if it isn't a size, bail out.
      if (!DepLoc.Ptr)
        break;

      // Find the last throwable instruction not removed by call to
      // deleteDeadInstruction.
      Instruction *LastThrowing = nullptr;
      if (!ThrowableInst.empty())
        LastThrowing = ThrowableInst.back().first;

      // Make sure we don't look past a call which might throw. This is an
      // issue because MemoryDependenceAnalysis works in the wrong direction:
      // it finds instructions which dominate the current instruction, rather than
      // instructions which are post-dominated by the current instruction.
      //
      // If the underlying object is a non-escaping memory allocation, any store
      // to it is dead along the unwind edge. Otherwise, we need to preserve
      // the store.
      if (LastThrowing && DepWrite->comesBefore(LastThrowing)) {
        const Value *Underlying = getUnderlyingObject(DepLoc.Ptr);
        bool IsStoreDeadOnUnwind = isa<AllocaInst>(Underlying);
        if (!IsStoreDeadOnUnwind) {
            // We're looking for a call to an allocation function
            // where the allocation doesn't escape before the last
            // throwing instruction; PointerMayBeCaptured
            // reasonably fast approximation.
            IsStoreDeadOnUnwind = isAllocLikeFn(Underlying, TLI) &&
                !PointerMayBeCaptured(Underlying, false, true);
        }
        if (!IsStoreDeadOnUnwind)
          break;
      }

      // If we find a write that is a) removable (i.e., non-volatile), b) is
      // completely obliterated by the store to 'Loc', and c) which we know that
      // 'Inst' doesn't load from, then we can remove it.
      // Also try to merge two stores if a later one only touches memory written
      // to by the earlier one.
      if (isRemovable(DepWrite) &&
          !isPossibleSelfRead(Inst, Loc, DepWrite, *TLI, *AA)) {
        int64_t InstWriteOffset, DepWriteOffset;
        OverwriteResult OR = isOverwrite(Inst, DepWrite, Loc, DepLoc, DL, *TLI,
                                         DepWriteOffset, InstWriteOffset, *AA,
                                         BB.getParent());
        if (OR == OW_MaybePartial)
          OR = isPartialOverwrite(Loc, DepLoc, DepWriteOffset, InstWriteOffset,
                                  DepWrite, IOL);

        if (OR == OW_Complete) {
          LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: " << *DepWrite
                            << "\n  KILLER: " << *Inst << '\n');

          // Delete the store and now-dead instructions that feed it.
          deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL,
                                ThrowableInst);
          ++NumFastStores;
          MadeChange = true;

          // We erased DepWrite; start over.
          InstDep = MD->getDependency(Inst);
          continue;
        } else if ((OR == OW_End && isShortenableAtTheEnd(DepWrite)) ||
                   ((OR == OW_Begin &&
                     isShortenableAtTheBeginning(DepWrite)))) {
          assert(!EnablePartialOverwriteTracking && "Do not expect to perform "
                                                    "when partial-overwrite "
                                                    "tracking is enabled");
          // The overwrite result is known, so these must be known, too.
          uint64_t EarlierSize = DepLoc.Size.getValue();
          uint64_t LaterSize = Loc.Size.getValue();
          bool IsOverwriteEnd = (OR == OW_End);
          MadeChange |= tryToShorten(DepWrite, DepWriteOffset, EarlierSize,
                                    InstWriteOffset, LaterSize, IsOverwriteEnd);
        } else if (EnablePartialStoreMerging &&
                   OR == OW_PartialEarlierWithFullLater) {
          auto *Earlier = dyn_cast<StoreInst>(DepWrite);
          auto *Later = dyn_cast<StoreInst>(Inst);
          if (Constant *C = tryToMergePartialOverlappingStores(
                  Earlier, Later, InstWriteOffset, DepWriteOffset, DL, *AA,
                  DT)) {
            auto *SI = new StoreInst(
                C, Earlier->getPointerOperand(), false, Earlier->getAlign(),
                Earlier->getOrdering(), Earlier->getSyncScopeID(), DepWrite);

            unsigned MDToKeep[] = {LLVMContext::MD_dbg, LLVMContext::MD_tbaa,
                                   LLVMContext::MD_alias_scope,
                                   LLVMContext::MD_noalias,
                                   LLVMContext::MD_nontemporal};
            SI->copyMetadata(*DepWrite, MDToKeep);
            ++NumModifiedStores;

            // Delete the old stores and now-dead instructions that feed them.
            deleteDeadInstruction(Inst, &BBI, *MD, *TLI, IOL,
                                  ThrowableInst);
            deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL,
                                  ThrowableInst);
            MadeChange = true;

            // We erased DepWrite and Inst (Loc); start over.
            break;
          }
        }
      }

      // If this is a may-aliased store that is clobbering the store value, we
      // can keep searching past it for another must-aliased pointer that stores
      // to the same location.  For example, in:
      //   store -> P
      //   store -> Q
      //   store -> P
      // we can remove the first store to P even though we don't know if P and Q
      // alias.
      if (DepWrite == &BB.front()) break;

      // Can't look past this instruction if it might read 'Loc'.
      if (isRefSet(AA->getModRefInfo(DepWrite, Loc)))
        break;

      InstDep = MD->getPointerDependencyFrom(Loc, /*isLoad=*/ false,
                                             DepWrite->getIterator(), &BB,
                                             /*QueryInst=*/ nullptr, &Limit);
    }
  }

  if (EnablePartialOverwriteTracking)
    MadeChange |= removePartiallyOverlappedStores(DL, IOL, *TLI);

  // If this block ends in a return, unwind, or unreachable, all allocas are
  // dead at its end, which means stores to them are also dead.
  if (BB.getTerminator()->getNumSuccessors() == 0)
    MadeChange |= handleEndBlock(BB, AA, MD, TLI, IOL, ThrowableInst);

  return MadeChange;
}

static bool eliminateDeadStores(Function &F, AliasAnalysis *AA,
                                MemoryDependenceResults *MD, DominatorTree *DT,
                                const TargetLibraryInfo *TLI) {
  bool MadeChange = false;
  for (BasicBlock &BB : F)
    // Only check non-dead blocks.  Dead blocks may have strange pointer
    // cycles that will confuse alias analysis.
    if (DT->isReachableFromEntry(&BB))
      MadeChange |= eliminateDeadStores(BB, AA, MD, DT, TLI);

  return MadeChange;
}

namespace {
//=============================================================================
// MemorySSA backed dead store elimination.
//
// The code below implements dead store elimination using MemorySSA. It uses
// the following general approach: given a MemoryDef, walk upwards to find
// clobbering MemoryDefs that may be killed by the starting def. Then check
// that there are no uses that may read the location of the original MemoryDef
// in between both MemoryDefs. A bit more concretely:
//
// For all MemoryDefs StartDef:
// 1. Get the next dominating clobbering MemoryDef (EarlierAccess) by walking
//    upwards.
// 2. Check that there are no reads between EarlierAccess and the StartDef by
//    checking all uses starting at EarlierAccess and walking until we see
//    StartDef.
// 3. For each found CurrentDef, check that:
//   1. There are no barrier instructions between CurrentDef and StartDef (like
//       throws or stores with ordering constraints).
//   2. StartDef is executed whenever CurrentDef is executed.
//   3. StartDef completely overwrites CurrentDef.
// 4. Erase CurrentDef from the function and MemorySSA.

// Returns true if \p I is an intrisnic that does not read or write memory.
bool isNoopIntrinsic(Instruction *I) {
  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    switch (II->getIntrinsicID()) {
    case Intrinsic::lifetime_start:
    case Intrinsic::lifetime_end:
    case Intrinsic::invariant_end:
    case Intrinsic::launder_invariant_group:
    case Intrinsic::assume:
      return true;
    case Intrinsic::dbg_addr:
    case Intrinsic::dbg_declare:
    case Intrinsic::dbg_label:
    case Intrinsic::dbg_value:
      llvm_unreachable("Intrinsic should not be modeled in MemorySSA");
    default:
      return false;
    }
  }
  return false;
}

// Check if we can ignore \p D for DSE.
bool canSkipDef(MemoryDef *D, bool DefVisibleToCaller) {
  Instruction *DI = D->getMemoryInst();
  // Calls that only access inaccessible memory cannot read or write any memory
  // locations we consider for elimination.
  if (auto *CB = dyn_cast<CallBase>(DI))
    if (CB->onlyAccessesInaccessibleMemory())
      return true;

  // We can eliminate stores to locations not visible to the caller across
  // throwing instructions.
  if (DI->mayThrow() && !DefVisibleToCaller)
    return true;

  // We can remove the dead stores, irrespective of the fence and its ordering
  // (release/acquire/seq_cst). Fences only constraints the ordering of
  // already visible stores, it does not make a store visible to other
  // threads. So, skipping over a fence does not change a store from being
  // dead.
  if (isa<FenceInst>(DI))
    return true;

  // Skip intrinsics that do not really read or modify memory.
  if (isNoopIntrinsic(D->getMemoryInst()))
    return true;

  return false;
}

struct DSEState {
  Function &F;
  AliasAnalysis &AA;

  /// The single BatchAA instance that is used to cache AA queries. It will
  /// not be invalidated over the whole run. This is safe, because:
  /// 1. Only memory writes are removed, so the alias cache for memory
  ///    locations remains valid.
  /// 2. No new instructions are added (only instructions removed), so cached
  ///    information for a deleted value cannot be accessed by a re-used new
  ///    value pointer.
  BatchAAResults BatchAA;

  MemorySSA &MSSA;
  DominatorTree &DT;
  PostDominatorTree &PDT;
  const TargetLibraryInfo &TLI;
  const DataLayout &DL;

  // All MemoryDefs that potentially could kill other MemDefs.
  SmallVector<MemoryDef *, 64> MemDefs;
  // Any that should be skipped as they are already deleted
  SmallPtrSet<MemoryAccess *, 4> SkipStores;
  // Keep track of all of the objects that are invisible to the caller before
  // the function returns.
  // SmallPtrSet<const Value *, 16> InvisibleToCallerBeforeRet;
  DenseMap<const Value *, bool> InvisibleToCallerBeforeRet;
  // Keep track of all of the objects that are invisible to the caller after
  // the function returns.
  DenseMap<const Value *, bool> InvisibleToCallerAfterRet;
  // Keep track of blocks with throwing instructions not modeled in MemorySSA.
  SmallPtrSet<BasicBlock *, 16> ThrowingBlocks;
  // Post-order numbers for each basic block. Used to figure out if memory
  // accesses are executed before another access.
  DenseMap<BasicBlock *, unsigned> PostOrderNumbers;

  /// Keep track of instructions (partly) overlapping with killing MemoryDefs per
  /// basic block.
  DenseMap<BasicBlock *, InstOverlapIntervalsTy> IOLs;

  DSEState(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, DominatorTree &DT,
           PostDominatorTree &PDT, const TargetLibraryInfo &TLI)
      : F(F), AA(AA), BatchAA(AA), MSSA(MSSA), DT(DT), PDT(PDT), TLI(TLI),
        DL(F.getParent()->getDataLayout()) {}

  static DSEState get(Function &F, AliasAnalysis &AA, MemorySSA &MSSA,
                      DominatorTree &DT, PostDominatorTree &PDT,
                      const TargetLibraryInfo &TLI) {
    DSEState State(F, AA, MSSA, DT, PDT, TLI);
    // Collect blocks with throwing instructions not modeled in MemorySSA and
    // alloc-like objects.
    unsigned PO = 0;
    for (BasicBlock *BB : post_order(&F)) {
      State.PostOrderNumbers[BB] = PO++;
      for (Instruction &I : *BB) {
        MemoryAccess *MA = MSSA.getMemoryAccess(&I);
        if (I.mayThrow() && !MA)
          State.ThrowingBlocks.insert(I.getParent());

        auto *MD = dyn_cast_or_null<MemoryDef>(MA);
        if (MD && State.MemDefs.size() < MemorySSADefsPerBlockLimit &&
            (State.getLocForWriteEx(&I) || State.isMemTerminatorInst(&I)))
          State.MemDefs.push_back(MD);
      }
    }

    // Treat byval or inalloca arguments the same as Allocas, stores to them are
    // dead at the end of the function.
    for (Argument &AI : F.args())
      if (AI.hasPassPointeeByValueCopyAttr()) {
        // For byval, the caller doesn't know the address of the allocation.
        if (AI.hasByValAttr())
          State.InvisibleToCallerBeforeRet.insert({&AI, true});
        State.InvisibleToCallerAfterRet.insert({&AI, true});
      }

    return State;
  }

  bool isInvisibleToCallerAfterRet(const Value *V) {
    if (isa<AllocaInst>(V))
      return true;
    auto I = InvisibleToCallerAfterRet.insert({V, false});
    if (I.second) {
      if (!isInvisibleToCallerBeforeRet(V)) {
        I.first->second = false;
      } else {
        auto *Inst = dyn_cast<Instruction>(V);
        if (Inst && isAllocLikeFn(Inst, &TLI))
          I.first->second = !PointerMayBeCaptured(V, true, false);
      }
    }
    return I.first->second;
  }

  bool isInvisibleToCallerBeforeRet(const Value *V) {
    if (isa<AllocaInst>(V))
      return true;
    auto I = InvisibleToCallerBeforeRet.insert({V, false});
    if (I.second) {
      auto *Inst = dyn_cast<Instruction>(V);
      if (Inst && isAllocLikeFn(Inst, &TLI))
        // NOTE: This could be made more precise by PointerMayBeCapturedBefore
        // with the killing MemoryDef. But we refrain from doing so for now to
        // limit compile-time and this does not cause any changes to the number
        // of stores removed on a large test set in practice.
        I.first->second = !PointerMayBeCaptured(V, false, true);
    }
    return I.first->second;
  }

  Optional<MemoryLocation> getLocForWriteEx(Instruction *I) const {
    if (!I->mayWriteToMemory())
      return None;

    if (auto *MTI = dyn_cast<AnyMemIntrinsic>(I))
      return {MemoryLocation::getForDest(MTI)};

    if (auto *CB = dyn_cast<CallBase>(I)) {
      // If the functions may write to memory we do not know about, bail out.
      if (!CB->onlyAccessesArgMemory() &&
          !CB->onlyAccessesInaccessibleMemOrArgMem())
        return None;

      LibFunc LF;
      if (TLI.getLibFunc(*CB, LF) && TLI.has(LF)) {
        switch (LF) {
        case LibFunc_strcpy:
        case LibFunc_strncpy:
        case LibFunc_strcat:
        case LibFunc_strncat:
          return {MemoryLocation::getAfter(CB->getArgOperand(0))};
        default:
          break;
        }
      }
      switch (CB->getIntrinsicID()) {
      case Intrinsic::init_trampoline:
        return {MemoryLocation::getAfter(CB->getArgOperand(0))};
      case Intrinsic::masked_store:
        return {MemoryLocation::getForArgument(CB, 1, TLI)};
      default:
        break;
      }
      return None;
    }

    return MemoryLocation::getOrNone(I);
  }

  /// Returns true if \p UseInst completely overwrites \p DefLoc
  /// (stored by \p DefInst).
  bool isCompleteOverwrite(const MemoryLocation &DefLoc, Instruction *DefInst,
                           Instruction *UseInst) {
    // UseInst has a MemoryDef associated in MemorySSA. It's possible for a
    // MemoryDef to not write to memory, e.g. a volatile load is modeled as a
    // MemoryDef.
    if (!UseInst->mayWriteToMemory())
      return false;

    if (auto *CB = dyn_cast<CallBase>(UseInst))
      if (CB->onlyAccessesInaccessibleMemory())
        return false;

    int64_t InstWriteOffset, DepWriteOffset;
    if (auto CC = getLocForWriteEx(UseInst))
      return isOverwrite(UseInst, DefInst, *CC, DefLoc, DL, TLI, DepWriteOffset,
                         InstWriteOffset, BatchAA, &F) == OW_Complete;
    return false;
  }

  /// Returns true if \p Def is not read before returning from the function.
  bool isWriteAtEndOfFunction(MemoryDef *Def) {
    LLVM_DEBUG(dbgs() << "  Check if def " << *Def << " ("
                      << *Def->getMemoryInst()
                      << ") is at the end the function \n");

    auto MaybeLoc = getLocForWriteEx(Def->getMemoryInst());
    if (!MaybeLoc) {
      LLVM_DEBUG(dbgs() << "  ... could not get location for write.\n");
      return false;
    }

    SmallVector<MemoryAccess *, 4> WorkList;
    SmallPtrSet<MemoryAccess *, 8> Visited;
    auto PushMemUses = [&WorkList, &Visited](MemoryAccess *Acc) {
      if (!Visited.insert(Acc).second)
        return;
      for (Use &U : Acc->uses())
        WorkList.push_back(cast<MemoryAccess>(U.getUser()));
    };
    PushMemUses(Def);
    for (unsigned I = 0; I < WorkList.size(); I++) {
      if (WorkList.size() >= MemorySSAScanLimit) {
        LLVM_DEBUG(dbgs() << "  ... hit exploration limit.\n");
        return false;
      }

      MemoryAccess *UseAccess = WorkList[I];
      // Simply adding the users of MemoryPhi to the worklist is not enough,
      // because we might miss read clobbers in different iterations of a loop,
      // for example.
      // TODO: Add support for phi translation to handle the loop case.
      if (isa<MemoryPhi>(UseAccess))
        return false;

      // TODO: Checking for aliasing is expensive. Consider reducing the amount
      // of times this is called and/or caching it.
      Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst();
      if (isReadClobber(*MaybeLoc, UseInst)) {
        LLVM_DEBUG(dbgs() << "  ... hit read clobber " << *UseInst << ".\n");
        return false;
      }

      if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess))
        PushMemUses(UseDef);
    }
    return true;
  }

  /// If \p I is a memory  terminator like llvm.lifetime.end or free, return a
  /// pair with the MemoryLocation terminated by \p I and a boolean flag
  /// indicating whether \p I is a free-like call.
  Optional<std::pair<MemoryLocation, bool>>
  getLocForTerminator(Instruction *I) const {
    uint64_t Len;
    Value *Ptr;
    if (match(I, m_Intrinsic<Intrinsic::lifetime_end>(m_ConstantInt(Len),
                                                      m_Value(Ptr))))
      return {std::make_pair(MemoryLocation(Ptr, Len), false)};

    if (auto *CB = dyn_cast<CallBase>(I)) {
      if (isFreeCall(I, &TLI))
        return {std::make_pair(MemoryLocation::getAfter(CB->getArgOperand(0)),
                               true)};
    }

    return None;
  }

  /// Returns true if \p I is a memory terminator instruction like
  /// llvm.lifetime.end or free.
  bool isMemTerminatorInst(Instruction *I) const {
    IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
    return (II && II->getIntrinsicID() == Intrinsic::lifetime_end) ||
           isFreeCall(I, &TLI);
  }

  /// Returns true if \p MaybeTerm is a memory terminator for \p Loc from
  /// instruction \p AccessI.
  bool isMemTerminator(const MemoryLocation &Loc, Instruction *AccessI,
                       Instruction *MaybeTerm) {
    Optional<std::pair<MemoryLocation, bool>> MaybeTermLoc =
        getLocForTerminator(MaybeTerm);

    if (!MaybeTermLoc)
      return false;

    // If the terminator is a free-like call, all accesses to the underlying
    // object can be considered terminated.
    if (getUnderlyingObject(Loc.Ptr) !=
        getUnderlyingObject(MaybeTermLoc->first.Ptr))
      return false;

    auto TermLoc = MaybeTermLoc->first;
    if (MaybeTermLoc->second) {
      const Value *LocUO = getUnderlyingObject(Loc.Ptr);
      return BatchAA.isMustAlias(TermLoc.Ptr, LocUO);
    }
    int64_t InstWriteOffset, DepWriteOffset;
    return isOverwrite(MaybeTerm, AccessI, TermLoc, Loc, DL, TLI,
                       DepWriteOffset, InstWriteOffset, BatchAA,
                       &F) == OW_Complete;
  }

  // Returns true if \p Use may read from \p DefLoc.
  bool isReadClobber(const MemoryLocation &DefLoc, Instruction *UseInst) {
    if (isNoopIntrinsic(UseInst))
      return false;

    // Monotonic or weaker atomic stores can be re-ordered and do not need to be
    // treated as read clobber.
    if (auto SI = dyn_cast<StoreInst>(UseInst))
      return isStrongerThan(SI->getOrdering(), AtomicOrdering::Monotonic);

    if (!UseInst->mayReadFromMemory())
      return false;

    if (auto *CB = dyn_cast<CallBase>(UseInst))
      if (CB->onlyAccessesInaccessibleMemory())
        return false;

    // NOTE: For calls, the number of stores removed could be slightly improved
    // by using AA.callCapturesBefore(UseInst, DefLoc, &DT), but that showed to
    // be expensive compared to the benefits in practice. For now, avoid more
    // expensive analysis to limit compile-time.
    return isRefSet(BatchAA.getModRefInfo(UseInst, DefLoc));
  }

  /// Returns true if \p Ptr is guaranteed to be loop invariant for any possible
  /// loop. In particular, this guarantees that it only references a single
  /// MemoryLocation during execution of the containing function.
  bool IsGuaranteedLoopInvariant(Value *Ptr) {
    auto IsGuaranteedLoopInvariantBase = [this](Value *Ptr) {
      Ptr = Ptr->stripPointerCasts();
      if (auto *I = dyn_cast<Instruction>(Ptr)) {
        if (isa<AllocaInst>(Ptr))
          return true;

        if (isAllocLikeFn(I, &TLI))
          return true;

        return false;
      }
      return true;
    };

    Ptr = Ptr->stripPointerCasts();
    if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
      return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) &&
             GEP->hasAllConstantIndices();
    }
    return IsGuaranteedLoopInvariantBase(Ptr);
  }

  // Find a MemoryDef writing to \p DefLoc and dominating \p StartAccess, with
  // no read access between them or on any other path to a function exit block
  // if \p DefLoc is not accessible after the function returns. If there is no
  // such MemoryDef, return None. The returned value may not (completely)
  // overwrite \p DefLoc. Currently we bail out when we encounter an aliasing
  // MemoryUse (read).
  Optional<MemoryAccess *>
  getDomMemoryDef(MemoryDef *KillingDef, MemoryAccess *StartAccess,
                  const MemoryLocation &DefLoc, const Value *DefUO,
                  unsigned &ScanLimit, unsigned &WalkerStepLimit,
                  bool IsMemTerm, unsigned &PartialLimit) {
    if (ScanLimit == 0 || WalkerStepLimit == 0) {
      LLVM_DEBUG(dbgs() << "\n    ...  hit scan limit\n");
      return None;
    }

    MemoryAccess *Current = StartAccess;
    Instruction *KillingI = KillingDef->getMemoryInst();
    bool StepAgain;
    LLVM_DEBUG(dbgs() << "  trying to get dominating access\n");

    // Find the next clobbering Mod access for DefLoc, starting at StartAccess.
    Optional<MemoryLocation> CurrentLoc;
    do {
      StepAgain = false;
      LLVM_DEBUG({
        dbgs() << "   visiting " << *Current;
        if (!MSSA.isLiveOnEntryDef(Current) && isa<MemoryUseOrDef>(Current))
          dbgs() << " (" << *cast<MemoryUseOrDef>(Current)->getMemoryInst()
                 << ")";
        dbgs() << "\n";
      });

      // Reached TOP.
      if (MSSA.isLiveOnEntryDef(Current)) {
        LLVM_DEBUG(dbgs() << "   ...  found LiveOnEntryDef\n");
        return None;
      }

      // Cost of a step. Accesses in the same block are more likely to be valid
      // candidates for elimination, hence consider them cheaper.
      unsigned StepCost = KillingDef->getBlock() == Current->getBlock()
                              ? MemorySSASameBBStepCost
                              : MemorySSAOtherBBStepCost;
      if (WalkerStepLimit <= StepCost) {
        LLVM_DEBUG(dbgs() << "   ...  hit walker step limit\n");
        return None;
      }
      WalkerStepLimit -= StepCost;

      // Return for MemoryPhis. They cannot be eliminated directly and the
      // caller is responsible for traversing them.
      if (isa<MemoryPhi>(Current)) {
        LLVM_DEBUG(dbgs() << "   ...  found MemoryPhi\n");
        return Current;
      }

      // Below, check if CurrentDef is a valid candidate to be eliminated by
      // KillingDef. If it is not, check the next candidate.
      MemoryDef *CurrentDef = cast<MemoryDef>(Current);
      Instruction *CurrentI = CurrentDef->getMemoryInst();

      if (canSkipDef(CurrentDef, !isInvisibleToCallerBeforeRet(DefUO))) {
        StepAgain = true;
        Current = CurrentDef->getDefiningAccess();
        continue;
      }

      // Before we try to remove anything, check for any extra throwing
      // instructions that block us from DSEing
      if (mayThrowBetween(KillingI, CurrentI, DefUO)) {
        LLVM_DEBUG(dbgs() << "  ... skip, may throw!\n");
        return None;
      }

      // Check for anything that looks like it will be a barrier to further
      // removal
      if (isDSEBarrier(DefUO, CurrentI)) {
        LLVM_DEBUG(dbgs() << "  ... skip, barrier\n");
        return None;
      }

      // If Current is known to be on path that reads DefLoc or is a read
      // clobber, bail out, as the path is not profitable. We skip this check
      // for intrinsic calls, because the code knows how to handle memcpy
      // intrinsics.
      if (!isa<IntrinsicInst>(CurrentI) && isReadClobber(DefLoc, CurrentI))
        return None;

      // Quick check if there are direct uses that are read-clobbers.
      if (any_of(Current->uses(), [this, &DefLoc, StartAccess](Use &U) {
            if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(U.getUser()))
              return !MSSA.dominates(StartAccess, UseOrDef) &&
                     isReadClobber(DefLoc, UseOrDef->getMemoryInst());
            return false;
          })) {
        LLVM_DEBUG(dbgs() << "   ...  found a read clobber\n");
        return None;
      }

      // If Current cannot be analyzed or is not removable, check the next
      // candidate.
      if (!hasAnalyzableMemoryWrite(CurrentI, TLI) || !isRemovable(CurrentI)) {
        StepAgain = true;
        Current = CurrentDef->getDefiningAccess();
        continue;
      }

      // If Current does not have an analyzable write location, skip it
      CurrentLoc = getLocForWriteEx(CurrentI);
      if (!CurrentLoc) {
        StepAgain = true;
        Current = CurrentDef->getDefiningAccess();
        continue;
      }

      // AliasAnalysis does not account for loops. Limit elimination to
      // candidates for which we can guarantee they always store to the same
      // memory location and not multiple locations in a loop.
      if (Current->getBlock() != KillingDef->getBlock() &&
          !IsGuaranteedLoopInvariant(const_cast<Value *>(CurrentLoc->Ptr))) {
        StepAgain = true;
        Current = CurrentDef->getDefiningAccess();
        WalkerStepLimit -= 1;
        continue;
      }

      if (IsMemTerm) {
        // If the killing def is a memory terminator (e.g. lifetime.end), check
        // the next candidate if the current Current does not write the same
        // underlying object as the terminator.
        if (!isMemTerminator(*CurrentLoc, CurrentI, KillingI)) {
          StepAgain = true;
          Current = CurrentDef->getDefiningAccess();
        }
        continue;
      } else {
        int64_t InstWriteOffset, DepWriteOffset;
        auto OR = isOverwrite(KillingI, CurrentI, DefLoc, *CurrentLoc, DL, TLI,
                              DepWriteOffset, InstWriteOffset, BatchAA, &F);
        // If Current does not write to the same object as KillingDef, check
        // the next candidate.
        if (OR == OW_Unknown) {
          StepAgain = true;
          Current = CurrentDef->getDefiningAccess();
        } else if (OR == OW_MaybePartial) {
          // If KillingDef only partially overwrites Current, check the next
          // candidate if the partial step limit is exceeded. This aggressively
          // limits the number of candidates for partial store elimination,
          // which are less likely to be removable in the end.
          if (PartialLimit <= 1) {
            StepAgain = true;
            Current = CurrentDef->getDefiningAccess();
            WalkerStepLimit -= 1;
            continue;
          }
          PartialLimit -= 1;
        }
      }
    } while (StepAgain);

    // Accesses to objects accessible after the function returns can only be
    // eliminated if the access is killed along all paths to the exit. Collect
    // the blocks with killing (=completely overwriting MemoryDefs) and check if
    // they cover all paths from EarlierAccess to any function exit.
    SmallPtrSet<Instruction *, 16> KillingDefs;
    KillingDefs.insert(KillingDef->getMemoryInst());
    MemoryAccess *EarlierAccess = Current;
    Instruction *EarlierMemInst =
        cast<MemoryDef>(EarlierAccess)->getMemoryInst();
    LLVM_DEBUG(dbgs() << "  Checking for reads of " << *EarlierAccess << " ("
                      << *EarlierMemInst << ")\n");

    SmallSetVector<MemoryAccess *, 32> WorkList;
    auto PushMemUses = [&WorkList](MemoryAccess *Acc) {
      for (Use &U : Acc->uses())
        WorkList.insert(cast<MemoryAccess>(U.getUser()));
    };
    PushMemUses(EarlierAccess);

    // Optimistically collect all accesses for reads. If we do not find any
    // read clobbers, add them to the cache.
    SmallPtrSet<MemoryAccess *, 16> KnownNoReads;
    if (!EarlierMemInst->mayReadFromMemory())
      KnownNoReads.insert(EarlierAccess);
    // Check if EarlierDef may be read.
    for (unsigned I = 0; I < WorkList.size(); I++) {
      MemoryAccess *UseAccess = WorkList[I];

      LLVM_DEBUG(dbgs() << "   " << *UseAccess);
      // Bail out if the number of accesses to check exceeds the scan limit.
      if (ScanLimit < (WorkList.size() - I)) {
        LLVM_DEBUG(dbgs() << "\n    ...  hit scan limit\n");
        return None;
      }
      --ScanLimit;
      NumDomMemDefChecks++;
      KnownNoReads.insert(UseAccess);

      if (isa<MemoryPhi>(UseAccess)) {
        if (any_of(KillingDefs, [this, UseAccess](Instruction *KI) {
              return DT.properlyDominates(KI->getParent(),
                                          UseAccess->getBlock());
            })) {
          LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing block\n");
          continue;
        }
        LLVM_DEBUG(dbgs() << "\n    ... adding PHI uses\n");
        PushMemUses(UseAccess);
        continue;
      }

      Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst();
      LLVM_DEBUG(dbgs() << " (" << *UseInst << ")\n");

      if (any_of(KillingDefs, [this, UseInst](Instruction *KI) {
            return DT.dominates(KI, UseInst);
          })) {
        LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing def\n");
        continue;
      }

      // A memory terminator kills all preceeding MemoryDefs and all succeeding
      // MemoryAccesses. We do not have to check it's users.
      if (isMemTerminator(*CurrentLoc, EarlierMemInst, UseInst)) {
        LLVM_DEBUG(
            dbgs()
            << " ... skipping, memterminator invalidates following accesses\n");
        continue;
      }

      if (isNoopIntrinsic(cast<MemoryUseOrDef>(UseAccess)->getMemoryInst())) {
        LLVM_DEBUG(dbgs() << "    ... adding uses of intrinsic\n");
        PushMemUses(UseAccess);
        continue;
      }

      if (UseInst->mayThrow() && !isInvisibleToCallerBeforeRet(DefUO)) {
        LLVM_DEBUG(dbgs() << "  ... found throwing instruction\n");
        return None;
      }

      // Uses which may read the original MemoryDef mean we cannot eliminate the
      // original MD. Stop walk.
      if (isReadClobber(*CurrentLoc, UseInst)) {
        LLVM_DEBUG(dbgs() << "    ... found read clobber\n");
        return None;
      }

      // For the KillingDef and EarlierAccess we only have to check if it reads
      // the memory location.
      // TODO: It would probably be better to check for self-reads before
      // calling the function.
      if (KillingDef == UseAccess || EarlierAccess == UseAccess) {
        LLVM_DEBUG(dbgs() << "    ... skipping killing def/dom access\n");
        continue;
      }

      // Check all uses for MemoryDefs, except for defs completely overwriting
      // the original location. Otherwise we have to check uses of *all*
      // MemoryDefs we discover, including non-aliasing ones. Otherwise we might
      // miss cases like the following
      //   1 = Def(LoE) ; <----- EarlierDef stores [0,1]
      //   2 = Def(1)   ; (2, 1) = NoAlias,   stores [2,3]
      //   Use(2)       ; MayAlias 2 *and* 1, loads [0, 3].
      //                  (The Use points to the *first* Def it may alias)
      //   3 = Def(1)   ; <---- Current  (3, 2) = NoAlias, (3,1) = MayAlias,
      //                  stores [0,1]
      if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess)) {
        if (isCompleteOverwrite(*CurrentLoc, EarlierMemInst, UseInst)) {
          if (!isInvisibleToCallerAfterRet(DefUO) &&
              UseAccess != EarlierAccess) {
            BasicBlock *MaybeKillingBlock = UseInst->getParent();
            if (PostOrderNumbers.find(MaybeKillingBlock)->second <
                PostOrderNumbers.find(EarlierAccess->getBlock())->second) {

              LLVM_DEBUG(dbgs()
                         << "    ... found killing def " << *UseInst << "\n");
              KillingDefs.insert(UseInst);
            }
          }
        } else
          PushMemUses(UseDef);
      }
    }

    // For accesses to locations visible after the function returns, make sure
    // that the location is killed (=overwritten) along all paths from
    // EarlierAccess to the exit.
    if (!isInvisibleToCallerAfterRet(DefUO)) {
      SmallPtrSet<BasicBlock *, 16> KillingBlocks;
      for (Instruction *KD : KillingDefs)
        KillingBlocks.insert(KD->getParent());
      assert(!KillingBlocks.empty() &&
             "Expected at least a single killing block");

      // Find the common post-dominator of all killing blocks.
      BasicBlock *CommonPred = *KillingBlocks.begin();
      for (auto I = std::next(KillingBlocks.begin()), E = KillingBlocks.end();
           I != E; I++) {
        if (!CommonPred)
          break;
        CommonPred = PDT.findNearestCommonDominator(CommonPred, *I);
      }

      // If CommonPred is in the set of killing blocks, just check if it
      // post-dominates EarlierAccess.
      if (KillingBlocks.count(CommonPred)) {
        if (PDT.dominates(CommonPred, EarlierAccess->getBlock()))
          return {EarlierAccess};
        return None;
      }

      // If the common post-dominator does not post-dominate EarlierAccess,
      // there is a path from EarlierAccess to an exit not going through a
      // killing block.
      if (PDT.dominates(CommonPred, EarlierAccess->getBlock())) {
        SetVector<BasicBlock *> WorkList;

        // If CommonPred is null, there are multiple exits from the function.
        // They all have to be added to the worklist.
        if (CommonPred)
          WorkList.insert(CommonPred);
        else
          for (BasicBlock *R : PDT.roots())
            WorkList.insert(R);

        NumCFGTries++;
        // Check if all paths starting from an exit node go through one of the
        // killing blocks before reaching EarlierAccess.
        for (unsigned I = 0; I < WorkList.size(); I++) {
          NumCFGChecks++;
          BasicBlock *Current = WorkList[I];
          if (KillingBlocks.count(Current))
            continue;
          if (Current == EarlierAccess->getBlock())
            return None;

          // EarlierAccess is reachable from the entry, so we don't have to
          // explore unreachable blocks further.
          if (!DT.isReachableFromEntry(Current))
            continue;

          for (BasicBlock *Pred : predecessors(Current))
            WorkList.insert(Pred);

          if (WorkList.size() >= MemorySSAPathCheckLimit)
            return None;
        }
        NumCFGSuccess++;
        return {EarlierAccess};
      }
      return None;
    }

    // No aliasing MemoryUses of EarlierAccess found, EarlierAccess is
    // potentially dead.
    return {EarlierAccess};
  }

  // Delete dead memory defs
  void deleteDeadInstruction(Instruction *SI) {
    MemorySSAUpdater Updater(&MSSA);
    SmallVector<Instruction *, 32> NowDeadInsts;
    NowDeadInsts.push_back(SI);
    --NumFastOther;

    while (!NowDeadInsts.empty()) {
      Instruction *DeadInst = NowDeadInsts.pop_back_val();
      ++NumFastOther;

      // Try to preserve debug information attached to the dead instruction.
      salvageDebugInfo(*DeadInst);
      salvageKnowledge(DeadInst);

      // Remove the Instruction from MSSA.
      if (MemoryAccess *MA = MSSA.getMemoryAccess(DeadInst)) {
        if (MemoryDef *MD = dyn_cast<MemoryDef>(MA)) {
          SkipStores.insert(MD);
        }
        Updater.removeMemoryAccess(MA);
      }

      auto I = IOLs.find(DeadInst->getParent());
      if (I != IOLs.end())
        I->second.erase(DeadInst);
      // Remove its operands
      for (Use &O : DeadInst->operands())
        if (Instruction *OpI = dyn_cast<Instruction>(O)) {
          O = nullptr;
          if (isInstructionTriviallyDead(OpI, &TLI))
            NowDeadInsts.push_back(OpI);
        }

      DeadInst->eraseFromParent();
    }
  }

  // Check for any extra throws between SI and NI that block DSE.  This only
  // checks extra maythrows (those that aren't MemoryDef's). MemoryDef that may
  // throw are handled during the walk from one def to the next.
  bool mayThrowBetween(Instruction *SI, Instruction *NI,
                       const Value *SILocUnd) {
    // First see if we can ignore it by using the fact that SI is an
    // alloca/alloca like object that is not visible to the caller during
    // execution of the function.
    if (SILocUnd && isInvisibleToCallerBeforeRet(SILocUnd))
      return false;

    if (SI->getParent() == NI->getParent())
      return ThrowingBlocks.count(SI->getParent());
    return !ThrowingBlocks.empty();
  }

  // Check if \p NI acts as a DSE barrier for \p SI. The following instructions
  // act as barriers:
  //  * A memory instruction that may throw and \p SI accesses a non-stack
  //  object.
  //  * Atomic stores stronger that monotonic.
  bool isDSEBarrier(const Value *SILocUnd, Instruction *NI) {
    // If NI may throw it acts as a barrier, unless we are to an alloca/alloca
    // like object that does not escape.
    if (NI->mayThrow() && !isInvisibleToCallerBeforeRet(SILocUnd))
      return true;

    // If NI is an atomic load/store stronger than monotonic, do not try to
    // eliminate/reorder it.
    if (NI->isAtomic()) {
      if (auto *LI = dyn_cast<LoadInst>(NI))
        return isStrongerThanMonotonic(LI->getOrdering());
      if (auto *SI = dyn_cast<StoreInst>(NI))
        return isStrongerThanMonotonic(SI->getOrdering());
      if (auto *ARMW = dyn_cast<AtomicRMWInst>(NI))
        return isStrongerThanMonotonic(ARMW->getOrdering());
      if (auto *CmpXchg = dyn_cast<AtomicCmpXchgInst>(NI))
        return isStrongerThanMonotonic(CmpXchg->getSuccessOrdering()) ||
               isStrongerThanMonotonic(CmpXchg->getFailureOrdering());
      llvm_unreachable("other instructions should be skipped in MemorySSA");
    }
    return false;
  }

  /// Eliminate writes to objects that are not visible in the caller and are not
  /// accessed before returning from the function.
  bool eliminateDeadWritesAtEndOfFunction() {
    bool MadeChange = false;
    LLVM_DEBUG(
        dbgs()
        << "Trying to eliminate MemoryDefs at the end of the function\n");
    for (int I = MemDefs.size() - 1; I >= 0; I--) {
      MemoryDef *Def = MemDefs[I];
      if (SkipStores.contains(Def) || !isRemovable(Def->getMemoryInst()))
        continue;

      Instruction *DefI = Def->getMemoryInst();
      SmallVector<const Value *, 4> Pointers;
      auto DefLoc = getLocForWriteEx(DefI);
      if (!DefLoc)
        continue;

      // NOTE: Currently eliminating writes at the end of a function is limited
      // to MemoryDefs with a single underlying object, to save compile-time. In
      // practice it appears the case with multiple underlying objects is very
      // uncommon. If it turns out to be important, we can use
      // getUnderlyingObjects here instead.
      const Value *UO = getUnderlyingObject(DefLoc->Ptr);
      if (!UO || !isInvisibleToCallerAfterRet(UO))
        continue;

      if (isWriteAtEndOfFunction(Def)) {
        // See through pointer-to-pointer bitcasts
        LLVM_DEBUG(dbgs() << "   ... MemoryDef is not accessed until the end "
                             "of the function\n");
        deleteDeadInstruction(DefI);
        ++NumFastStores;
        MadeChange = true;
      }
    }
    return MadeChange;
  }

  /// \returns true if \p Def is a no-op store, either because it
  /// directly stores back a loaded value or stores zero to a calloced object.
  bool storeIsNoop(MemoryDef *Def, const MemoryLocation &DefLoc,
                   const Value *DefUO) {
    StoreInst *Store = dyn_cast<StoreInst>(Def->getMemoryInst());
    if (!Store)
      return false;

    if (auto *LoadI = dyn_cast<LoadInst>(Store->getOperand(0))) {
      if (LoadI->getPointerOperand() == Store->getOperand(1)) {
        // Get the defining access for the load.
        auto *LoadAccess = MSSA.getMemoryAccess(LoadI)->getDefiningAccess();
        // Fast path: the defining accesses are the same.
        if (LoadAccess == Def->getDefiningAccess())
          return true;

        // Look through phi accesses. Recursively scan all phi accesses by
        // adding them to a worklist. Bail when we run into a memory def that
        // does not match LoadAccess.
        SetVector<MemoryAccess *> ToCheck;
        MemoryAccess *Current =
            MSSA.getWalker()->getClobberingMemoryAccess(Def);
        // We don't want to bail when we run into the store memory def. But,
        // the phi access may point to it. So, pretend like we've already
        // checked it.
        ToCheck.insert(Def);
        ToCheck.insert(Current);
        // Start at current (1) to simulate already having checked Def.
        for (unsigned I = 1; I < ToCheck.size(); ++I) {
          Current = ToCheck[I];
          if (auto PhiAccess = dyn_cast<MemoryPhi>(Current)) {
            // Check all the operands.
            for (auto &Use : PhiAccess->incoming_values())
              ToCheck.insert(cast<MemoryAccess>(&Use));
            continue;
          }

          // If we found a memory def, bail. This happens when we have an
          // unrelated write in between an otherwise noop store.
          assert(isa<MemoryDef>(Current) &&
                 "Only MemoryDefs should reach here.");
          // TODO: Skip no alias MemoryDefs that have no aliasing reads.
          // We are searching for the definition of the store's destination.
          // So, if that is the same definition as the load, then this is a
          // noop. Otherwise, fail.
          if (LoadAccess != Current)
            return false;
        }
        return true;
      }
    }

    Constant *StoredConstant = dyn_cast<Constant>(Store->getOperand(0));
    if (StoredConstant && StoredConstant->isNullValue()) {
      auto *DefUOInst = dyn_cast<Instruction>(DefUO);
      if (DefUOInst && isCallocLikeFn(DefUOInst, &TLI)) {
        auto *UnderlyingDef = cast<MemoryDef>(MSSA.getMemoryAccess(DefUOInst));
        // If UnderlyingDef is the clobbering access of Def, no instructions
        // between them can modify the memory location.
        auto *ClobberDef =
            MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(Def);
        return UnderlyingDef == ClobberDef;
      }
    }
    return false;
  }
};

bool eliminateDeadStoresMemorySSA(Function &F, AliasAnalysis &AA,
                                  MemorySSA &MSSA, DominatorTree &DT,
                                  PostDominatorTree &PDT,
                                  const TargetLibraryInfo &TLI) {
  bool MadeChange = false;

  DSEState State = DSEState::get(F, AA, MSSA, DT, PDT, TLI);
  // For each store:
  for (unsigned I = 0; I < State.MemDefs.size(); I++) {
    MemoryDef *KillingDef = State.MemDefs[I];
    if (State.SkipStores.count(KillingDef))
      continue;
    Instruction *SI = KillingDef->getMemoryInst();

    Optional<MemoryLocation> MaybeSILoc;
    if (State.isMemTerminatorInst(SI))
      MaybeSILoc = State.getLocForTerminator(SI).map(
          [](const std::pair<MemoryLocation, bool> &P) { return P.first; });
    else
      MaybeSILoc = State.getLocForWriteEx(SI);

    if (!MaybeSILoc) {
      LLVM_DEBUG(dbgs() << "Failed to find analyzable write location for "
                        << *SI << "\n");
      continue;
    }
    MemoryLocation SILoc = *MaybeSILoc;
    assert(SILoc.Ptr && "SILoc should not be null");
    const Value *SILocUnd = getUnderlyingObject(SILoc.Ptr);

    MemoryAccess *Current = KillingDef;
    LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs killed by "
                      << *KillingDef << " (" << *SI << ")\n");

    unsigned ScanLimit = MemorySSAScanLimit;
    unsigned WalkerStepLimit = MemorySSAUpwardsStepLimit;
    unsigned PartialLimit = MemorySSAPartialStoreLimit;
    // Worklist of MemoryAccesses that may be killed by KillingDef.
    SetVector<MemoryAccess *> ToCheck;

    if (SILocUnd)
      ToCheck.insert(KillingDef->getDefiningAccess());

    bool Shortend = false;
    bool IsMemTerm = State.isMemTerminatorInst(SI);
    // Check if MemoryAccesses in the worklist are killed by KillingDef.
    for (unsigned I = 0; I < ToCheck.size(); I++) {
      Current = ToCheck[I];
      if (State.SkipStores.count(Current))
        continue;

      Optional<MemoryAccess *> Next = State.getDomMemoryDef(
          KillingDef, Current, SILoc, SILocUnd, ScanLimit, WalkerStepLimit,
          IsMemTerm, PartialLimit);

      if (!Next) {
        LLVM_DEBUG(dbgs() << "  finished walk\n");
        continue;
      }

      MemoryAccess *EarlierAccess = *Next;
      LLVM_DEBUG(dbgs() << " Checking if we can kill " << *EarlierAccess);
      if (isa<MemoryPhi>(EarlierAccess)) {
        LLVM_DEBUG(dbgs() << "\n  ... adding incoming values to worklist\n");
        for (Value *V : cast<MemoryPhi>(EarlierAccess)->incoming_values()) {
          MemoryAccess *IncomingAccess = cast<MemoryAccess>(V);
          BasicBlock *IncomingBlock = IncomingAccess->getBlock();
          BasicBlock *PhiBlock = EarlierAccess->getBlock();

          // We only consider incoming MemoryAccesses that come before the
          // MemoryPhi. Otherwise we could discover candidates that do not
          // strictly dominate our starting def.
          if (State.PostOrderNumbers[IncomingBlock] >
              State.PostOrderNumbers[PhiBlock])
            ToCheck.insert(IncomingAccess);
        }
        continue;
      }
      auto *NextDef = cast<MemoryDef>(EarlierAccess);
      Instruction *NI = NextDef->getMemoryInst();
      LLVM_DEBUG(dbgs() << " (" << *NI << ")\n");
      ToCheck.insert(NextDef->getDefiningAccess());
      NumGetDomMemoryDefPassed++;

      if (!DebugCounter::shouldExecute(MemorySSACounter))
        continue;

      MemoryLocation NILoc = *State.getLocForWriteEx(NI);

      if (IsMemTerm) {
        const Value *NIUnd = getUnderlyingObject(NILoc.Ptr);
        if (SILocUnd != NIUnd)
          continue;
        LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: " << *NI
                          << "\n  KILLER: " << *SI << '\n');
        State.deleteDeadInstruction(NI);
        ++NumFastStores;
        MadeChange = true;
      } else {
        // Check if NI overwrites SI.
        int64_t InstWriteOffset, DepWriteOffset;
        OverwriteResult OR =
            isOverwrite(SI, NI, SILoc, NILoc, State.DL, TLI, DepWriteOffset,
                        InstWriteOffset, State.BatchAA, &F);
        if (OR == OW_MaybePartial) {
          auto Iter = State.IOLs.insert(
              std::make_pair<BasicBlock *, InstOverlapIntervalsTy>(
                  NI->getParent(), InstOverlapIntervalsTy()));
          auto &IOL = Iter.first->second;
          OR = isPartialOverwrite(SILoc, NILoc, DepWriteOffset, InstWriteOffset,
                                  NI, IOL);
        }

        if (EnablePartialStoreMerging && OR == OW_PartialEarlierWithFullLater) {
          auto *Earlier = dyn_cast<StoreInst>(NI);
          auto *Later = dyn_cast<StoreInst>(SI);
          // We are re-using tryToMergePartialOverlappingStores, which requires
          // Earlier to domiante Later.
          // TODO: implement tryToMergeParialOverlappingStores using MemorySSA.
          if (Earlier && Later && DT.dominates(Earlier, Later)) {
            if (Constant *Merged = tryToMergePartialOverlappingStores(
                    Earlier, Later, InstWriteOffset, DepWriteOffset, State.DL,
                    State.BatchAA, &DT)) {

              // Update stored value of earlier store to merged constant.
              Earlier->setOperand(0, Merged);
              ++NumModifiedStores;
              MadeChange = true;

              Shortend = true;
              // Remove later store and remove any outstanding overlap intervals
              // for the updated store.
              State.deleteDeadInstruction(Later);
              auto I = State.IOLs.find(Earlier->getParent());
              if (I != State.IOLs.end())
                I->second.erase(Earlier);
              break;
            }
          }
        }

        if (OR == OW_Complete) {
          LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: " << *NI
                            << "\n  KILLER: " << *SI << '\n');
          State.deleteDeadInstruction(NI);
          ++NumFastStores;
          MadeChange = true;
        }
      }
    }

    // Check if the store is a no-op.
    if (!Shortend && isRemovable(SI) &&
        State.storeIsNoop(KillingDef, SILoc, SILocUnd)) {
      LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n  DEAD: " << *SI << '\n');
      State.deleteDeadInstruction(SI);
      NumRedundantStores++;
      MadeChange = true;
      continue;
    }
  }

  if (EnablePartialOverwriteTracking)
    for (auto &KV : State.IOLs)
      MadeChange |= removePartiallyOverlappedStores(State.DL, KV.second, TLI);

  MadeChange |= State.eliminateDeadWritesAtEndOfFunction();
  return MadeChange;
}
} // end anonymous namespace

//===----------------------------------------------------------------------===//
// DSE Pass
//===----------------------------------------------------------------------===//
PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) {
  AliasAnalysis &AA = AM.getResult<AAManager>(F);
  const TargetLibraryInfo &TLI = AM.getResult<TargetLibraryAnalysis>(F);
  DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);

  bool Changed = false;
  if (EnableMemorySSA) {
    MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
    PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);

    Changed = eliminateDeadStoresMemorySSA(F, AA, MSSA, DT, PDT, TLI);
  } else {
    MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F);

    Changed = eliminateDeadStores(F, &AA, &MD, &DT, &TLI);
  }

#ifdef LLVM_ENABLE_STATS
  if (AreStatisticsEnabled())
    for (auto &I : instructions(F))
      NumRemainingStores += isa<StoreInst>(&I);
#endif

  if (!Changed)
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  PA.preserve<GlobalsAA>();
  if (EnableMemorySSA)
    PA.preserve<MemorySSAAnalysis>();
  else
    PA.preserve<MemoryDependenceAnalysis>();
  return PA;
}

namespace {

/// A legacy pass for the legacy pass manager that wraps \c DSEPass.
class DSELegacyPass : public FunctionPass {
public:
  static char ID; // Pass identification, replacement for typeid

  DSELegacyPass() : FunctionPass(ID) {
    initializeDSELegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;

    AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
    DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    const TargetLibraryInfo &TLI =
        getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);

    bool Changed = false;
    if (EnableMemorySSA) {
      MemorySSA &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
      PostDominatorTree &PDT =
          getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();

      Changed = eliminateDeadStoresMemorySSA(F, AA, MSSA, DT, PDT, TLI);
    } else {
      MemoryDependenceResults &MD =
          getAnalysis<MemoryDependenceWrapperPass>().getMemDep();

      Changed = eliminateDeadStores(F, &AA, &MD, &DT, &TLI);
    }

#ifdef LLVM_ENABLE_STATS
    if (AreStatisticsEnabled())
      for (auto &I : instructions(F))
        NumRemainingStores += isa<StoreInst>(&I);
#endif

    return Changed;
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<AAResultsWrapperPass>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();

    if (EnableMemorySSA) {
      AU.addRequired<PostDominatorTreeWrapperPass>();
      AU.addRequired<MemorySSAWrapperPass>();
      AU.addPreserved<PostDominatorTreeWrapperPass>();
      AU.addPreserved<MemorySSAWrapperPass>();
    } else {
      AU.addRequired<MemoryDependenceWrapperPass>();
      AU.addPreserved<MemoryDependenceWrapperPass>();
    }
  }
};

} // end anonymous namespace

char DSELegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false,
                      false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false,
                    false)

FunctionPass *llvm::createDeadStoreEliminationPass() {
  return new DSELegacyPass();
}