aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Transforms/Instrumentation/MemProfiler.cpp
blob: fa2edf52a2ea2380c6ac87df858fb20005494bc8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
//===- MemProfiler.cpp - memory allocation and access profiler ------------===// 
// 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
// See https://llvm.org/LICENSE.txt for license information. 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
// 
//===----------------------------------------------------------------------===// 
// 
// This file is a part of MemProfiler. Memory accesses are instrumented 
// to increment the access count held in a shadow memory location, or 
// alternatively to call into the runtime. Memory intrinsic calls (memmove, 
// memcpy, memset) are changed to call the memory profiling runtime version 
// instead. 
// 
//===----------------------------------------------------------------------===// 
 
#include "llvm/Transforms/Instrumentation/MemProfiler.h" 
#include "llvm/ADT/SmallVector.h" 
#include "llvm/ADT/Statistic.h" 
#include "llvm/ADT/StringRef.h" 
#include "llvm/ADT/Triple.h" 
#include "llvm/IR/Constant.h" 
#include "llvm/IR/DataLayout.h" 
#include "llvm/IR/Function.h" 
#include "llvm/IR/GlobalValue.h" 
#include "llvm/IR/IRBuilder.h" 
#include "llvm/IR/Instruction.h" 
#include "llvm/IR/LLVMContext.h" 
#include "llvm/IR/Module.h" 
#include "llvm/IR/Type.h" 
#include "llvm/IR/Value.h" 
#include "llvm/InitializePasses.h" 
#include "llvm/Pass.h" 
#include "llvm/Support/CommandLine.h" 
#include "llvm/Support/Debug.h" 
#include "llvm/Transforms/Instrumentation.h" 
#include "llvm/Transforms/Utils/BasicBlockUtils.h" 
#include "llvm/Transforms/Utils/ModuleUtils.h" 
 
using namespace llvm; 
 
#define DEBUG_TYPE "memprof" 
 
constexpr int LLVM_MEM_PROFILER_VERSION = 1; 
 
// Size of memory mapped to a single shadow location. 
constexpr uint64_t DefaultShadowGranularity = 64; 
 
// Scale from granularity down to shadow size. 
constexpr uint64_t DefaultShadowScale = 3; 
 
constexpr char MemProfModuleCtorName[] = "memprof.module_ctor"; 
constexpr uint64_t MemProfCtorAndDtorPriority = 1; 
// On Emscripten, the system needs more than one priorities for constructors. 
constexpr uint64_t MemProfEmscriptenCtorAndDtorPriority = 50; 
constexpr char MemProfInitName[] = "__memprof_init"; 
constexpr char MemProfVersionCheckNamePrefix[] = 
    "__memprof_version_mismatch_check_v"; 
 
constexpr char MemProfShadowMemoryDynamicAddress[] = 
    "__memprof_shadow_memory_dynamic_address"; 
 
constexpr char MemProfFilenameVar[] = "__memprof_profile_filename"; 
 
// Command-line flags. 
 
static cl::opt<bool> ClInsertVersionCheck( 
    "memprof-guard-against-version-mismatch", 
    cl::desc("Guard against compiler/runtime version mismatch."), cl::Hidden, 
    cl::init(true)); 
 
// This flag may need to be replaced with -f[no-]memprof-reads. 
static cl::opt<bool> ClInstrumentReads("memprof-instrument-reads", 
                                       cl::desc("instrument read instructions"), 
                                       cl::Hidden, cl::init(true)); 
 
static cl::opt<bool> 
    ClInstrumentWrites("memprof-instrument-writes", 
                       cl::desc("instrument write instructions"), cl::Hidden, 
                       cl::init(true)); 
 
static cl::opt<bool> ClInstrumentAtomics( 
    "memprof-instrument-atomics", 
    cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 
    cl::init(true)); 
 
static cl::opt<bool> ClUseCalls( 
    "memprof-use-callbacks", 
    cl::desc("Use callbacks instead of inline instrumentation sequences."), 
    cl::Hidden, cl::init(false)); 
 
static cl::opt<std::string> 
    ClMemoryAccessCallbackPrefix("memprof-memory-access-callback-prefix", 
                                 cl::desc("Prefix for memory access callbacks"), 
                                 cl::Hidden, cl::init("__memprof_")); 
 
// These flags allow to change the shadow mapping. 
// The shadow mapping looks like 
//    Shadow = ((Mem & mask) >> scale) + offset 
 
static cl::opt<int> ClMappingScale("memprof-mapping-scale", 
                                   cl::desc("scale of memprof shadow mapping"), 
                                   cl::Hidden, cl::init(DefaultShadowScale)); 
 
static cl::opt<int> 
    ClMappingGranularity("memprof-mapping-granularity", 
                         cl::desc("granularity of memprof shadow mapping"), 
                         cl::Hidden, cl::init(DefaultShadowGranularity)); 
 
// Debug flags. 
 
static cl::opt<int> ClDebug("memprof-debug", cl::desc("debug"), cl::Hidden, 
                            cl::init(0)); 
 
static cl::opt<std::string> ClDebugFunc("memprof-debug-func", cl::Hidden, 
                                        cl::desc("Debug func")); 
 
static cl::opt<int> ClDebugMin("memprof-debug-min", cl::desc("Debug min inst"), 
                               cl::Hidden, cl::init(-1)); 
 
static cl::opt<int> ClDebugMax("memprof-debug-max", cl::desc("Debug max inst"), 
                               cl::Hidden, cl::init(-1)); 
 
STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 
STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 
 
namespace { 
 
/// This struct defines the shadow mapping using the rule: 
///   shadow = ((mem & mask) >> Scale) ADD DynamicShadowOffset. 
struct ShadowMapping { 
  ShadowMapping() { 
    Scale = ClMappingScale; 
    Granularity = ClMappingGranularity; 
    Mask = ~(Granularity - 1); 
  } 
 
  int Scale; 
  int Granularity; 
  uint64_t Mask; // Computed as ~(Granularity-1) 
}; 
 
static uint64_t getCtorAndDtorPriority(Triple &TargetTriple) { 
  return TargetTriple.isOSEmscripten() ? MemProfEmscriptenCtorAndDtorPriority 
                                       : MemProfCtorAndDtorPriority; 
} 
 
struct InterestingMemoryAccess { 
  Value *Addr = nullptr; 
  bool IsWrite; 
  unsigned Alignment; 
  uint64_t TypeSize; 
  Value *MaybeMask = nullptr; 
}; 
 
/// Instrument the code in module to profile memory accesses. 
class MemProfiler { 
public: 
  MemProfiler(Module &M) { 
    C = &(M.getContext()); 
    LongSize = M.getDataLayout().getPointerSizeInBits(); 
    IntptrTy = Type::getIntNTy(*C, LongSize); 
  } 
 
  /// If it is an interesting memory access, populate information 
  /// about the access and return a InterestingMemoryAccess struct. 
  /// Otherwise return None. 
  Optional<InterestingMemoryAccess> 
  isInterestingMemoryAccess(Instruction *I) const; 
 
  void instrumentMop(Instruction *I, const DataLayout &DL, 
                     InterestingMemoryAccess &Access); 
  void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 
                         Value *Addr, uint32_t TypeSize, bool IsWrite); 
  void instrumentMaskedLoadOrStore(const DataLayout &DL, Value *Mask, 
                                   Instruction *I, Value *Addr, 
                                   unsigned Alignment, uint32_t TypeSize, 
                                   bool IsWrite); 
  void instrumentMemIntrinsic(MemIntrinsic *MI); 
  Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 
  bool instrumentFunction(Function &F); 
  bool maybeInsertMemProfInitAtFunctionEntry(Function &F); 
  bool insertDynamicShadowAtFunctionEntry(Function &F); 
 
private: 
  void initializeCallbacks(Module &M); 
 
  LLVMContext *C; 
  int LongSize; 
  Type *IntptrTy; 
  ShadowMapping Mapping; 
 
  // These arrays is indexed by AccessIsWrite 
  FunctionCallee MemProfMemoryAccessCallback[2]; 
  FunctionCallee MemProfMemoryAccessCallbackSized[2]; 
 
  FunctionCallee MemProfMemmove, MemProfMemcpy, MemProfMemset; 
  Value *DynamicShadowOffset = nullptr; 
}; 
 
class MemProfilerLegacyPass : public FunctionPass { 
public: 
  static char ID; 
 
  explicit MemProfilerLegacyPass() : FunctionPass(ID) { 
    initializeMemProfilerLegacyPassPass(*PassRegistry::getPassRegistry()); 
  } 
 
  StringRef getPassName() const override { return "MemProfilerFunctionPass"; } 
 
  bool runOnFunction(Function &F) override { 
    MemProfiler Profiler(*F.getParent()); 
    return Profiler.instrumentFunction(F); 
  } 
}; 
 
class ModuleMemProfiler { 
public: 
  ModuleMemProfiler(Module &M) { TargetTriple = Triple(M.getTargetTriple()); } 
 
  bool instrumentModule(Module &); 
 
private: 
  Triple TargetTriple; 
  ShadowMapping Mapping; 
  Function *MemProfCtorFunction = nullptr; 
}; 
 
class ModuleMemProfilerLegacyPass : public ModulePass { 
public: 
  static char ID; 
 
  explicit ModuleMemProfilerLegacyPass() : ModulePass(ID) { 
    initializeModuleMemProfilerLegacyPassPass(*PassRegistry::getPassRegistry()); 
  } 
 
  StringRef getPassName() const override { return "ModuleMemProfiler"; } 
 
  void getAnalysisUsage(AnalysisUsage &AU) const override {} 
 
  bool runOnModule(Module &M) override { 
    ModuleMemProfiler MemProfiler(M); 
    return MemProfiler.instrumentModule(M); 
  } 
}; 
 
} // end anonymous namespace 
 
MemProfilerPass::MemProfilerPass() {} 
 
PreservedAnalyses MemProfilerPass::run(Function &F, 
                                       AnalysisManager<Function> &AM) { 
  Module &M = *F.getParent(); 
  MemProfiler Profiler(M); 
  if (Profiler.instrumentFunction(F)) 
    return PreservedAnalyses::none(); 
  return PreservedAnalyses::all(); 
 
  return PreservedAnalyses::all(); 
} 
 
ModuleMemProfilerPass::ModuleMemProfilerPass() {} 
 
PreservedAnalyses ModuleMemProfilerPass::run(Module &M, 
                                             AnalysisManager<Module> &AM) { 
  ModuleMemProfiler Profiler(M); 
  if (Profiler.instrumentModule(M)) 
    return PreservedAnalyses::none(); 
  return PreservedAnalyses::all(); 
} 
 
char MemProfilerLegacyPass::ID = 0; 
 
INITIALIZE_PASS_BEGIN(MemProfilerLegacyPass, "memprof", 
                      "MemProfiler: profile memory allocations and accesses.", 
                      false, false) 
INITIALIZE_PASS_END(MemProfilerLegacyPass, "memprof", 
                    "MemProfiler: profile memory allocations and accesses.", 
                    false, false) 
 
FunctionPass *llvm::createMemProfilerFunctionPass() { 
  return new MemProfilerLegacyPass(); 
} 
 
char ModuleMemProfilerLegacyPass::ID = 0; 
 
INITIALIZE_PASS(ModuleMemProfilerLegacyPass, "memprof-module", 
                "MemProfiler: profile memory allocations and accesses." 
                "ModulePass", 
                false, false) 
 
ModulePass *llvm::createModuleMemProfilerLegacyPassPass() { 
  return new ModuleMemProfilerLegacyPass(); 
} 
 
Value *MemProfiler::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 
  // (Shadow & mask) >> scale 
  Shadow = IRB.CreateAnd(Shadow, Mapping.Mask); 
  Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 
  // (Shadow >> scale) | offset 
  assert(DynamicShadowOffset); 
  return IRB.CreateAdd(Shadow, DynamicShadowOffset); 
} 
 
// Instrument memset/memmove/memcpy 
void MemProfiler::instrumentMemIntrinsic(MemIntrinsic *MI) { 
  IRBuilder<> IRB(MI); 
  if (isa<MemTransferInst>(MI)) { 
    IRB.CreateCall( 
        isa<MemMoveInst>(MI) ? MemProfMemmove : MemProfMemcpy, 
        {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 
         IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 
         IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 
  } else if (isa<MemSetInst>(MI)) { 
    IRB.CreateCall( 
        MemProfMemset, 
        {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 
         IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 
         IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 
  } 
  MI->eraseFromParent(); 
} 
 
Optional<InterestingMemoryAccess> 
MemProfiler::isInterestingMemoryAccess(Instruction *I) const { 
  // Do not instrument the load fetching the dynamic shadow address. 
  if (DynamicShadowOffset == I) 
    return None; 
 
  InterestingMemoryAccess Access; 
 
  const DataLayout &DL = I->getModule()->getDataLayout(); 
  if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 
    if (!ClInstrumentReads) 
      return None; 
    Access.IsWrite = false; 
    Access.TypeSize = DL.getTypeStoreSizeInBits(LI->getType()); 
    Access.Alignment = LI->getAlignment(); 
    Access.Addr = LI->getPointerOperand(); 
  } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 
    if (!ClInstrumentWrites) 
      return None; 
    Access.IsWrite = true; 
    Access.TypeSize = 
        DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType()); 
    Access.Alignment = SI->getAlignment(); 
    Access.Addr = SI->getPointerOperand(); 
  } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 
    if (!ClInstrumentAtomics) 
      return None; 
    Access.IsWrite = true; 
    Access.TypeSize = 
        DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType()); 
    Access.Alignment = 0; 
    Access.Addr = RMW->getPointerOperand(); 
  } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 
    if (!ClInstrumentAtomics) 
      return None; 
    Access.IsWrite = true; 
    Access.TypeSize = 
        DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType()); 
    Access.Alignment = 0; 
    Access.Addr = XCHG->getPointerOperand(); 
  } else if (auto *CI = dyn_cast<CallInst>(I)) { 
    auto *F = CI->getCalledFunction(); 
    if (F && (F->getIntrinsicID() == Intrinsic::masked_load || 
              F->getIntrinsicID() == Intrinsic::masked_store)) { 
      unsigned OpOffset = 0; 
      if (F->getIntrinsicID() == Intrinsic::masked_store) { 
        if (!ClInstrumentWrites) 
          return None; 
        // Masked store has an initial operand for the value. 
        OpOffset = 1; 
        Access.IsWrite = true; 
      } else { 
        if (!ClInstrumentReads) 
          return None; 
        Access.IsWrite = false; 
      } 
 
      auto *BasePtr = CI->getOperand(0 + OpOffset); 
      auto *Ty = cast<PointerType>(BasePtr->getType())->getElementType(); 
      Access.TypeSize = DL.getTypeStoreSizeInBits(Ty); 
      if (auto *AlignmentConstant = 
              dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 
        Access.Alignment = (unsigned)AlignmentConstant->getZExtValue(); 
      else 
        Access.Alignment = 1; // No alignment guarantees. We probably got Undef 
      Access.MaybeMask = CI->getOperand(2 + OpOffset); 
      Access.Addr = BasePtr; 
    } 
  } 
 
  if (!Access.Addr) 
    return None; 
 
  // Do not instrument acesses from different address spaces; we cannot deal 
  // with them. 
  Type *PtrTy = cast<PointerType>(Access.Addr->getType()->getScalarType()); 
  if (PtrTy->getPointerAddressSpace() != 0) 
    return None; 
 
  // Ignore swifterror addresses. 
  // swifterror memory addresses are mem2reg promoted by instruction 
  // selection. As such they cannot have regular uses like an instrumentation 
  // function and it makes no sense to track them as memory. 
  if (Access.Addr->isSwiftError()) 
    return None; 
 
  return Access; 
} 
 
void MemProfiler::instrumentMaskedLoadOrStore(const DataLayout &DL, Value *Mask, 
                                              Instruction *I, Value *Addr, 
                                              unsigned Alignment, 
                                              uint32_t TypeSize, bool IsWrite) { 
  auto *VTy = cast<FixedVectorType>( 
      cast<PointerType>(Addr->getType())->getElementType()); 
  uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 
  unsigned Num = VTy->getNumElements(); 
  auto *Zero = ConstantInt::get(IntptrTy, 0); 
  for (unsigned Idx = 0; Idx < Num; ++Idx) { 
    Value *InstrumentedAddress = nullptr; 
    Instruction *InsertBefore = I; 
    if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 
      // dyn_cast as we might get UndefValue 
      if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 
        if (Masked->isZero()) 
          // Mask is constant false, so no instrumentation needed. 
          continue; 
        // If we have a true or undef value, fall through to instrumentAddress. 
        // with InsertBefore == I 
      } 
    } else { 
      IRBuilder<> IRB(I); 
      Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 
      Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 
      InsertBefore = ThenTerm; 
    } 
 
    IRBuilder<> IRB(InsertBefore); 
    InstrumentedAddress = 
        IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 
    instrumentAddress(I, InsertBefore, InstrumentedAddress, ElemTypeSize, 
                      IsWrite); 
  } 
} 
 
void MemProfiler::instrumentMop(Instruction *I, const DataLayout &DL, 
                                InterestingMemoryAccess &Access) { 
  if (Access.IsWrite) 
    NumInstrumentedWrites++; 
  else 
    NumInstrumentedReads++; 
 
  if (Access.MaybeMask) { 
    instrumentMaskedLoadOrStore(DL, Access.MaybeMask, I, Access.Addr, 
                                Access.Alignment, Access.TypeSize, 
                                Access.IsWrite); 
  } else { 
    // Since the access counts will be accumulated across the entire allocation, 
    // we only update the shadow access count for the first location and thus 
    // don't need to worry about alignment and type size. 
    instrumentAddress(I, I, Access.Addr, Access.TypeSize, Access.IsWrite); 
  } 
} 
 
void MemProfiler::instrumentAddress(Instruction *OrigIns, 
                                    Instruction *InsertBefore, Value *Addr, 
                                    uint32_t TypeSize, bool IsWrite) { 
  IRBuilder<> IRB(InsertBefore); 
  Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 
 
  if (ClUseCalls) { 
    IRB.CreateCall(MemProfMemoryAccessCallback[IsWrite], AddrLong); 
    return; 
  } 
 
  // Create an inline sequence to compute shadow location, and increment the 
  // value by one. 
  Type *ShadowTy = Type::getInt64Ty(*C); 
  Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 
  Value *ShadowPtr = memToShadow(AddrLong, IRB); 
  Value *ShadowAddr = IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy); 
  Value *ShadowValue = IRB.CreateLoad(ShadowTy, ShadowAddr); 
  Value *Inc = ConstantInt::get(Type::getInt64Ty(*C), 1); 
  ShadowValue = IRB.CreateAdd(ShadowValue, Inc); 
  IRB.CreateStore(ShadowValue, ShadowAddr); 
} 
 
// Create the variable for the profile file name. 
void createProfileFileNameVar(Module &M) { 
  const MDString *MemProfFilename = 
      dyn_cast_or_null<MDString>(M.getModuleFlag("MemProfProfileFilename")); 
  if (!MemProfFilename) 
    return; 
  assert(!MemProfFilename->getString().empty() && 
         "Unexpected MemProfProfileFilename metadata with empty string"); 
  Constant *ProfileNameConst = ConstantDataArray::getString( 
      M.getContext(), MemProfFilename->getString(), true); 
  GlobalVariable *ProfileNameVar = new GlobalVariable( 
      M, ProfileNameConst->getType(), /*isConstant=*/true, 
      GlobalValue::WeakAnyLinkage, ProfileNameConst, MemProfFilenameVar); 
  Triple TT(M.getTargetTriple()); 
  if (TT.supportsCOMDAT()) { 
    ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage); 
    ProfileNameVar->setComdat(M.getOrInsertComdat(MemProfFilenameVar)); 
  } 
} 
 
bool ModuleMemProfiler::instrumentModule(Module &M) { 
  // Create a module constructor. 
  std::string MemProfVersion = std::to_string(LLVM_MEM_PROFILER_VERSION); 
  std::string VersionCheckName = 
      ClInsertVersionCheck ? (MemProfVersionCheckNamePrefix + MemProfVersion) 
                           : ""; 
  std::tie(MemProfCtorFunction, std::ignore) = 
      createSanitizerCtorAndInitFunctions(M, MemProfModuleCtorName, 
                                          MemProfInitName, /*InitArgTypes=*/{}, 
                                          /*InitArgs=*/{}, VersionCheckName); 
 
  const uint64_t Priority = getCtorAndDtorPriority(TargetTriple); 
  appendToGlobalCtors(M, MemProfCtorFunction, Priority); 
 
  createProfileFileNameVar(M); 
 
  return true; 
} 
 
void MemProfiler::initializeCallbacks(Module &M) { 
  IRBuilder<> IRB(*C); 
 
  for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 
    const std::string TypeStr = AccessIsWrite ? "store" : "load"; 
 
    SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 
    SmallVector<Type *, 2> Args1{1, IntptrTy}; 
    MemProfMemoryAccessCallbackSized[AccessIsWrite] = 
        M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + TypeStr + "N", 
                              FunctionType::get(IRB.getVoidTy(), Args2, false)); 
 
    MemProfMemoryAccessCallback[AccessIsWrite] = 
        M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + TypeStr, 
                              FunctionType::get(IRB.getVoidTy(), Args1, false)); 
  } 
  MemProfMemmove = M.getOrInsertFunction( 
      ClMemoryAccessCallbackPrefix + "memmove", IRB.getInt8PtrTy(), 
      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy); 
  MemProfMemcpy = M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "memcpy", 
                                        IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 
                                        IRB.getInt8PtrTy(), IntptrTy); 
  MemProfMemset = M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "memset", 
                                        IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 
                                        IRB.getInt32Ty(), IntptrTy); 
} 
 
bool MemProfiler::maybeInsertMemProfInitAtFunctionEntry(Function &F) { 
  // For each NSObject descendant having a +load method, this method is invoked 
  // by the ObjC runtime before any of the static constructors is called. 
  // Therefore we need to instrument such methods with a call to __memprof_init 
  // at the beginning in order to initialize our runtime before any access to 
  // the shadow memory. 
  // We cannot just ignore these methods, because they may call other 
  // instrumented functions. 
  if (F.getName().find(" load]") != std::string::npos) { 
    FunctionCallee MemProfInitFunction = 
        declareSanitizerInitFunction(*F.getParent(), MemProfInitName, {}); 
    IRBuilder<> IRB(&F.front(), F.front().begin()); 
    IRB.CreateCall(MemProfInitFunction, {}); 
    return true; 
  } 
  return false; 
} 
 
bool MemProfiler::insertDynamicShadowAtFunctionEntry(Function &F) { 
  IRBuilder<> IRB(&F.front().front()); 
  Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 
      MemProfShadowMemoryDynamicAddress, IntptrTy); 
  if (F.getParent()->getPICLevel() == PICLevel::NotPIC) 
    cast<GlobalVariable>(GlobalDynamicAddress)->setDSOLocal(true); 
  DynamicShadowOffset = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 
  return true; 
} 
 
bool MemProfiler::instrumentFunction(Function &F) { 
  if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) 
    return false; 
  if (ClDebugFunc == F.getName()) 
    return false; 
  if (F.getName().startswith("__memprof_")) 
    return false; 
 
  bool FunctionModified = false; 
 
  // If needed, insert __memprof_init. 
  // This function needs to be called even if the function body is not 
  // instrumented. 
  if (maybeInsertMemProfInitAtFunctionEntry(F)) 
    FunctionModified = true; 
 
  LLVM_DEBUG(dbgs() << "MEMPROF instrumenting:\n" << F << "\n"); 
 
  initializeCallbacks(*F.getParent()); 
 
  FunctionModified |= insertDynamicShadowAtFunctionEntry(F); 
 
  SmallVector<Instruction *, 16> ToInstrument; 
 
  // Fill the set of memory operations to instrument. 
  for (auto &BB : F) { 
    for (auto &Inst : BB) { 
      if (isInterestingMemoryAccess(&Inst) || isa<MemIntrinsic>(Inst)) 
        ToInstrument.push_back(&Inst); 
    } 
  } 
 
  int NumInstrumented = 0; 
  for (auto *Inst : ToInstrument) { 
    if (ClDebugMin < 0 || ClDebugMax < 0 || 
        (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { 
      Optional<InterestingMemoryAccess> Access = 
          isInterestingMemoryAccess(Inst); 
      if (Access) 
        instrumentMop(Inst, F.getParent()->getDataLayout(), *Access); 
      else 
        instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); 
    } 
    NumInstrumented++; 
  } 
 
  if (NumInstrumented > 0) 
    FunctionModified = true; 
 
  LLVM_DEBUG(dbgs() << "MEMPROF done instrumenting: " << FunctionModified << " " 
                    << F << "\n"); 
 
  return FunctionModified; 
}