aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Transforms/InstCombine/InstCombineCasts.cpp
blob: 2b490d5084a572b05ae00f7bdd74b7d6043fecaf (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
//===- InstCombineCasts.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the visit functions for cast operations.
//
//===----------------------------------------------------------------------===//

#include "InstCombineInternal.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/DIBuilder.h" 
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/InstCombine/InstCombiner.h" 
#include <numeric>
using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "instcombine"

/// Analyze 'Val', seeing if it is a simple linear expression.
/// If so, decompose it, returning some value X, such that Val is
/// X*Scale+Offset.
///
static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
                                        uint64_t &Offset) {
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
    Offset = CI->getZExtValue();
    Scale  = 0;
    return ConstantInt::get(Val->getType(), 0);
  }

  if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
    // Cannot look past anything that might overflow.
    OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
    if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
      Scale = 1;
      Offset = 0;
      return Val;
    }

    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
      if (I->getOpcode() == Instruction::Shl) {
        // This is a value scaled by '1 << the shift amt'.
        Scale = UINT64_C(1) << RHS->getZExtValue();
        Offset = 0;
        return I->getOperand(0);
      }

      if (I->getOpcode() == Instruction::Mul) {
        // This value is scaled by 'RHS'.
        Scale = RHS->getZExtValue();
        Offset = 0;
        return I->getOperand(0);
      }

      if (I->getOpcode() == Instruction::Add) {
        // We have X+C.  Check to see if we really have (X*C2)+C1,
        // where C1 is divisible by C2.
        unsigned SubScale;
        Value *SubVal =
          decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
        Offset += RHS->getZExtValue();
        Scale = SubScale;
        return SubVal;
      }
    }
  }

  // Otherwise, we can't look past this.
  Scale = 1;
  Offset = 0;
  return Val;
}

/// If we find a cast of an allocation instruction, try to eliminate the cast by
/// moving the type information into the alloc.
Instruction *InstCombinerImpl::PromoteCastOfAllocation(BitCastInst &CI, 
                                                       AllocaInst &AI) { 
  PointerType *PTy = cast<PointerType>(CI.getType());

  IRBuilderBase::InsertPointGuard Guard(Builder);
  Builder.SetInsertPoint(&AI);

  // Get the type really allocated and the type casted to.
  Type *AllocElTy = AI.getAllocatedType();
  Type *CastElTy = PTy->getElementType();
  if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;

  // This optimisation does not work for cases where the cast type 
  // is scalable and the allocated type is not. This because we need to 
  // know how many times the casted type fits into the allocated type. 
  // For the opposite case where the allocated type is scalable and the 
  // cast type is not this leads to poor code quality due to the 
  // introduction of 'vscale' into the calculations. It seems better to 
  // bail out for this case too until we've done a proper cost-benefit 
  // analysis. 
  bool AllocIsScalable = isa<ScalableVectorType>(AllocElTy); 
  bool CastIsScalable = isa<ScalableVectorType>(CastElTy); 
  if (AllocIsScalable != CastIsScalable) return nullptr; 
 
  Align AllocElTyAlign = DL.getABITypeAlign(AllocElTy);
  Align CastElTyAlign = DL.getABITypeAlign(CastElTy);
  if (CastElTyAlign < AllocElTyAlign) return nullptr;

  // If the allocation has multiple uses, only promote it if we are strictly
  // increasing the alignment of the resultant allocation.  If we keep it the
  // same, we open the door to infinite loops of various kinds.
  if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;

  // The alloc and cast types should be either both fixed or both scalable. 
  uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy).getKnownMinSize(); 
  uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy).getKnownMinSize(); 
  if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;

  // If the allocation has multiple uses, only promote it if we're not
  // shrinking the amount of memory being allocated.
  uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy).getKnownMinSize(); 
  uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy).getKnownMinSize(); 
  if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;

  // See if we can satisfy the modulus by pulling a scale out of the array
  // size argument.
  unsigned ArraySizeScale;
  uint64_t ArrayOffset;
  Value *NumElements = // See if the array size is a decomposable linear expr.
    decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);

  // If we can now satisfy the modulus, by using a non-1 scale, we really can
  // do the xform.
  if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
      (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;

  // We don't currently support arrays of scalable types. 
  assert(!AllocIsScalable || (ArrayOffset == 1 && ArraySizeScale == 0)); 
 
  unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
  Value *Amt = nullptr;
  if (Scale == 1) {
    Amt = NumElements;
  } else {
    Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
    // Insert before the alloca, not before the cast.
    Amt = Builder.CreateMul(Amt, NumElements);
  }

  if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
    Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
                                  Offset, true);
    Amt = Builder.CreateAdd(Amt, Off);
  }

  AllocaInst *New = Builder.CreateAlloca(CastElTy, Amt);
  New->setAlignment(AI.getAlign());
  New->takeName(&AI);
  New->setUsedWithInAlloca(AI.isUsedWithInAlloca());

  // If the allocation has multiple real uses, insert a cast and change all
  // things that used it to use the new cast.  This will also hack on CI, but it
  // will die soon.
  if (!AI.hasOneUse()) {
    // New is the allocation instruction, pointer typed. AI is the original
    // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
    Value *NewCast = Builder.CreateBitCast(New, AI.getType(), "tmpcast");
    replaceInstUsesWith(AI, NewCast);
    eraseInstFromFunction(AI);
  }
  return replaceInstUsesWith(CI, New);
}

/// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
/// true for, actually insert the code to evaluate the expression.
Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty, 
                                                 bool isSigned) { 
  if (Constant *C = dyn_cast<Constant>(V)) {
    C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
    // If we got a constantexpr back, try to simplify it with DL info.
    return ConstantFoldConstant(C, DL, &TLI);
  }

  // Otherwise, it must be an instruction.
  Instruction *I = cast<Instruction>(V);
  Instruction *Res = nullptr;
  unsigned Opc = I->getOpcode();
  switch (Opc) {
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::AShr:
  case Instruction::LShr:
  case Instruction::Shl:
  case Instruction::UDiv:
  case Instruction::URem: {
    Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
    Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
    Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
    break;
  }
  case Instruction::Trunc:
  case Instruction::ZExt:
  case Instruction::SExt:
    // If the source type of the cast is the type we're trying for then we can
    // just return the source.  There's no need to insert it because it is not
    // new.
    if (I->getOperand(0)->getType() == Ty)
      return I->getOperand(0);

    // Otherwise, must be the same type of cast, so just reinsert a new one.
    // This also handles the case of zext(trunc(x)) -> zext(x).
    Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
                                      Opc == Instruction::SExt);
    break;
  case Instruction::Select: {
    Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
    Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
    Res = SelectInst::Create(I->getOperand(0), True, False);
    break;
  }
  case Instruction::PHI: {
    PHINode *OPN = cast<PHINode>(I);
    PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
    for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
      Value *V =
          EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
      NPN->addIncoming(V, OPN->getIncomingBlock(i));
    }
    Res = NPN;
    break;
  }
  default:
    // TODO: Can handle more cases here.
    llvm_unreachable("Unreachable!");
  }

  Res->takeName(I);
  return InsertNewInstWith(Res, *I);
}

Instruction::CastOps 
InstCombinerImpl::isEliminableCastPair(const CastInst *CI1, 
                                       const CastInst *CI2) { 
  Type *SrcTy = CI1->getSrcTy();
  Type *MidTy = CI1->getDestTy();
  Type *DstTy = CI2->getDestTy();

  Instruction::CastOps firstOp = CI1->getOpcode();
  Instruction::CastOps secondOp = CI2->getOpcode();
  Type *SrcIntPtrTy =
      SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
  Type *MidIntPtrTy =
      MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
  Type *DstIntPtrTy =
      DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
  unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
                                                DstTy, SrcIntPtrTy, MidIntPtrTy,
                                                DstIntPtrTy);

  // We don't want to form an inttoptr or ptrtoint that converts to an integer
  // type that differs from the pointer size.
  if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
      (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
    Res = 0;

  return Instruction::CastOps(Res);
}

/// Implement the transforms common to all CastInst visitors.
Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) { 
  Value *Src = CI.getOperand(0);

  // Try to eliminate a cast of a cast.
  if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
    if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
      // The first cast (CSrc) is eliminable so we need to fix up or replace
      // the second cast (CI). CSrc will then have a good chance of being dead.
      auto *Ty = CI.getType();
      auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
      // Point debug users of the dying cast to the new one.
      if (CSrc->hasOneUse())
        replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
      return Res;
    }
  }

  if (auto *Sel = dyn_cast<SelectInst>(Src)) {
    // We are casting a select. Try to fold the cast into the select if the
    // select does not have a compare instruction with matching operand types
    // or the select is likely better done in a narrow type.
    // Creating a select with operands that are different sizes than its
    // condition may inhibit other folds and lead to worse codegen.
    auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
    if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() ||
        (CI.getOpcode() == Instruction::Trunc &&
         shouldChangeType(CI.getSrcTy(), CI.getType()))) {
      if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
        replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
        return NV;
      }
    }
  }

  // If we are casting a PHI, then fold the cast into the PHI.
  if (auto *PN = dyn_cast<PHINode>(Src)) {
    // Don't do this if it would create a PHI node with an illegal type from a
    // legal type.
    if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
        shouldChangeType(CI.getSrcTy(), CI.getType()))
      if (Instruction *NV = foldOpIntoPhi(CI, PN))
        return NV;
  }

  return nullptr;
}

/// Constants and extensions/truncates from the destination type are always
/// free to be evaluated in that type. This is a helper for canEvaluate*.
static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
  if (isa<Constant>(V))
    return true;
  Value *X;
  if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
      X->getType() == Ty)
    return true;

  return false;
}

/// Filter out values that we can not evaluate in the destination type for free.
/// This is a helper for canEvaluate*.
static bool canNotEvaluateInType(Value *V, Type *Ty) {
  assert(!isa<Constant>(V) && "Constant should already be handled.");
  if (!isa<Instruction>(V))
    return true;
  // We don't extend or shrink something that has multiple uses --  doing so
  // would require duplicating the instruction which isn't profitable.
  if (!V->hasOneUse())
    return true;

  return false;
}

/// Return true if we can evaluate the specified expression tree as type Ty
/// instead of its larger type, and arrive with the same value.
/// This is used by code that tries to eliminate truncates.
///
/// Ty will always be a type smaller than V.  We should return true if trunc(V)
/// can be computed by computing V in the smaller type.  If V is an instruction,
/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
/// makes sense if x and y can be efficiently truncated.
///
/// This function works on both vectors and scalars.
///
static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC, 
                                 Instruction *CxtI) {
  if (canAlwaysEvaluateInType(V, Ty))
    return true;
  if (canNotEvaluateInType(V, Ty))
    return false;

  auto *I = cast<Instruction>(V);
  Type *OrigTy = V->getType();
  switch (I->getOpcode()) {
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    // These operators can all arbitrarily be extended or truncated.
    return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
           canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);

  case Instruction::UDiv:
  case Instruction::URem: {
    // UDiv and URem can be truncated if all the truncated bits are zero.
    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
    uint32_t BitWidth = Ty->getScalarSizeInBits();
    assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
    APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
    if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
        IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
      return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
             canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
    }
    break;
  }
  case Instruction::Shl: {
    // If we are truncating the result of this SHL, and if it's a shift of an
    // inrange amount, we can always perform a SHL in a smaller type.
    uint32_t BitWidth = Ty->getScalarSizeInBits();
    KnownBits AmtKnownBits =
        llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
    if (AmtKnownBits.getMaxValue().ult(BitWidth))
      return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
             canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
    break;
  }
  case Instruction::LShr: {
    // If this is a truncate of a logical shr, we can truncate it to a smaller
    // lshr iff we know that the bits we would otherwise be shifting in are
    // already zeros.
    // TODO: It is enough to check that the bits we would be shifting in are
    //       zero - use AmtKnownBits.getMaxValue().
    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
    uint32_t BitWidth = Ty->getScalarSizeInBits();
    KnownBits AmtKnownBits =
        llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
    APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
    if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
        IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) {
      return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
             canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
    }
    break;
  }
  case Instruction::AShr: {
    // If this is a truncate of an arithmetic shr, we can truncate it to a
    // smaller ashr iff we know that all the bits from the sign bit of the
    // original type and the sign bit of the truncate type are similar.
    // TODO: It is enough to check that the bits we would be shifting in are
    //       similar to sign bit of the truncate type.
    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
    uint32_t BitWidth = Ty->getScalarSizeInBits();
    KnownBits AmtKnownBits =
        llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
    unsigned ShiftedBits = OrigBitWidth - BitWidth;
    if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
        ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
      return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
             canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
    break;
  }
  case Instruction::Trunc:
    // trunc(trunc(x)) -> trunc(x)
    return true;
  case Instruction::ZExt:
  case Instruction::SExt:
    // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
    // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
    return true;
  case Instruction::Select: {
    SelectInst *SI = cast<SelectInst>(I);
    return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
           canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
  }
  case Instruction::PHI: {
    // We can change a phi if we can change all operands.  Note that we never
    // get into trouble with cyclic PHIs here because we only consider
    // instructions with a single use.
    PHINode *PN = cast<PHINode>(I);
    for (Value *IncValue : PN->incoming_values())
      if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
        return false;
    return true;
  }
  default:
    // TODO: Can handle more cases here.
    break;
  }

  return false;
}

/// Given a vector that is bitcast to an integer, optionally logically
/// right-shifted, and truncated, convert it to an extractelement.
/// Example (big endian):
///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
///   --->
///   extractelement <4 x i32> %X, 1
static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, 
                                         InstCombinerImpl &IC) { 
  Value *TruncOp = Trunc.getOperand(0);
  Type *DestType = Trunc.getType();
  if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
    return nullptr;

  Value *VecInput = nullptr;
  ConstantInt *ShiftVal = nullptr;
  if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
                                  m_LShr(m_BitCast(m_Value(VecInput)),
                                         m_ConstantInt(ShiftVal)))) ||
      !isa<VectorType>(VecInput->getType()))
    return nullptr;

  VectorType *VecType = cast<VectorType>(VecInput->getType());
  unsigned VecWidth = VecType->getPrimitiveSizeInBits();
  unsigned DestWidth = DestType->getPrimitiveSizeInBits();
  unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;

  if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
    return nullptr;

  // If the element type of the vector doesn't match the result type,
  // bitcast it to a vector type that we can extract from.
  unsigned NumVecElts = VecWidth / DestWidth;
  if (VecType->getElementType() != DestType) {
    VecType = FixedVectorType::get(DestType, NumVecElts);
    VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
  }

  unsigned Elt = ShiftAmount / DestWidth;
  if (IC.getDataLayout().isBigEndian())
    Elt = NumVecElts - 1 - Elt;

  return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
}

/// Funnel/Rotate left/right may occur in a wider type than necessary because of 
/// type promotion rules. Try to narrow the inputs and convert to funnel shift. 
Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) { 
  assert((isa<VectorType>(Trunc.getSrcTy()) ||
          shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
         "Don't narrow to an illegal scalar type");

  // Bail out on strange types. It is possible to handle some of these patterns
  // even with non-power-of-2 sizes, but it is not a likely scenario.
  Type *DestTy = Trunc.getType();
  unsigned NarrowWidth = DestTy->getScalarSizeInBits();
  if (!isPowerOf2_32(NarrowWidth))
    return nullptr;

  // First, find an or'd pair of opposite shifts: 
  // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1)) 
  BinaryOperator *Or0, *Or1; 
  if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 
    return nullptr;

  Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1; 
  if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) || 
      !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) || 
      Or0->getOpcode() == Or1->getOpcode()) 
    return nullptr;

  // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)). 
  if (Or0->getOpcode() == BinaryOperator::LShr) { 
    std::swap(Or0, Or1); 
    std::swap(ShVal0, ShVal1); 
    std::swap(ShAmt0, ShAmt1); 
  } 
  assert(Or0->getOpcode() == BinaryOperator::Shl && 
         Or1->getOpcode() == BinaryOperator::LShr && 
         "Illegal or(shift,shift) pair"); 

  // Match the shift amount operands for a funnel/rotate pattern. This always 
  // matches a subtraction on the R operand. 
  auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * { 
    // The shift amounts may add up to the narrow bit width:
    // (shl ShVal0, L) | (lshr ShVal1, Width - L) 
    if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L)))))
      return L;

    // The following patterns currently only work for rotation patterns. 
    // TODO: Add more general funnel-shift compatible patterns. 
    if (ShVal0 != ShVal1) 
      return nullptr; 
 
    // The shift amount may be masked with negation:
    // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1))) 
    Value *X;
    unsigned Mask = Width - 1;
    if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
        match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
      return X;

    // Same as above, but the shift amount may be extended after masking:
    if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
        match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
      return X;

    return nullptr;
  };

  Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth);
  bool IsFshl = true; // Sub on LSHR. 
  if (!ShAmt) {
    ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth);
    IsFshl = false; // Sub on SHL. 
  }
  if (!ShAmt)
    return nullptr;

  // The shifted value must have high zeros in the wide type. Typically, this
  // will be a zext, but it could also be the result of an 'and' or 'shift'.
  unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
  APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
  if (!MaskedValueIsZero(ShVal0, HiBitMask, 0, &Trunc) || 
      !MaskedValueIsZero(ShVal1, HiBitMask, 0, &Trunc)) 
    return nullptr;

  // We have an unnecessarily wide rotate!
  // trunc (or (lshr ShVal0, ShAmt), (shl ShVal1, BitWidth - ShAmt)) 
  // Narrow the inputs and convert to funnel shift intrinsic:
  // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt))
  Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
  Value *X, *Y; 
  X = Y = Builder.CreateTrunc(ShVal0, DestTy); 
  if (ShVal0 != ShVal1) 
    Y = Builder.CreateTrunc(ShVal1, DestTy); 
  Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
  Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy);
  return IntrinsicInst::Create(F, {X, Y, NarrowShAmt}); 
}

/// Try to narrow the width of math or bitwise logic instructions by pulling a
/// truncate ahead of binary operators.
/// TODO: Transforms for truncated shifts should be moved into here.
Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) { 
  Type *SrcTy = Trunc.getSrcTy();
  Type *DestTy = Trunc.getType();
  if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
    return nullptr;

  BinaryOperator *BinOp;
  if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
    return nullptr;

  Value *BinOp0 = BinOp->getOperand(0);
  Value *BinOp1 = BinOp->getOperand(1);
  switch (BinOp->getOpcode()) {
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul: {
    Constant *C;
    if (match(BinOp0, m_Constant(C))) {
      // trunc (binop C, X) --> binop (trunc C', X)
      Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
      Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
      return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
    }
    if (match(BinOp1, m_Constant(C))) {
      // trunc (binop X, C) --> binop (trunc X, C')
      Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
      Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
      return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
    }
    Value *X;
    if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
      // trunc (binop (ext X), Y) --> binop X, (trunc Y)
      Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
      return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
    }
    if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
      // trunc (binop Y, (ext X)) --> binop (trunc Y), X
      Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
      return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
    }
    break;
  }

  default: break;
  }

  if (Instruction *NarrowOr = narrowFunnelShift(Trunc)) 
    return NarrowOr;

  return nullptr;
}

/// Try to narrow the width of a splat shuffle. This could be generalized to any
/// shuffle with a constant operand, but we limit the transform to avoid
/// creating a shuffle type that targets may not be able to lower effectively.
static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
                                       InstCombiner::BuilderTy &Builder) {
  auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
  if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) &&
      is_splat(Shuf->getShuffleMask()) &&
      Shuf->getType() == Shuf->getOperand(0)->getType()) {
    // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
    Constant *NarrowUndef = UndefValue::get(Trunc.getType());
    Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
    return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getShuffleMask());
  }

  return nullptr;
}

/// Try to narrow the width of an insert element. This could be generalized for
/// any vector constant, but we limit the transform to insertion into undef to
/// avoid potential backend problems from unsupported insertion widths. This
/// could also be extended to handle the case of inserting a scalar constant
/// into a vector variable.
static Instruction *shrinkInsertElt(CastInst &Trunc,
                                    InstCombiner::BuilderTy &Builder) {
  Instruction::CastOps Opcode = Trunc.getOpcode();
  assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
         "Unexpected instruction for shrinking");

  auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
  if (!InsElt || !InsElt->hasOneUse())
    return nullptr;

  Type *DestTy = Trunc.getType();
  Type *DestScalarTy = DestTy->getScalarType();
  Value *VecOp = InsElt->getOperand(0);
  Value *ScalarOp = InsElt->getOperand(1);
  Value *Index = InsElt->getOperand(2);

  if (isa<UndefValue>(VecOp)) {
    // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
    // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
    UndefValue *NarrowUndef = UndefValue::get(DestTy);
    Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
    return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
  }

  return nullptr;
}

Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) { 
  if (Instruction *Result = commonCastTransforms(Trunc))
    return Result;

  Value *Src = Trunc.getOperand(0);
  Type *DestTy = Trunc.getType(), *SrcTy = Src->getType();
  unsigned DestWidth = DestTy->getScalarSizeInBits();
  unsigned SrcWidth = SrcTy->getScalarSizeInBits();

  // Attempt to truncate the entire input expression tree to the destination
  // type.   Only do this if the dest type is a simple type, don't convert the
  // expression tree to something weird like i93 unless the source is also
  // strange.
  if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
      canEvaluateTruncated(Src, DestTy, *this, &Trunc)) {

    // If this cast is a truncate, evaluting in a different type always
    // eliminates the cast, so it is always a win.
    LLVM_DEBUG(
        dbgs() << "ICE: EvaluateInDifferentType converting expression type"
                  " to avoid cast: "
               << Trunc << '\n');
    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
    assert(Res->getType() == DestTy);
    return replaceInstUsesWith(Trunc, Res);
  }

  // For integer types, check if we can shorten the entire input expression to
  // DestWidth * 2, which won't allow removing the truncate, but reducing the
  // width may enable further optimizations, e.g. allowing for larger
  // vectorization factors.
  if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) {
    if (DestWidth * 2 < SrcWidth) {
      auto *NewDestTy = DestITy->getExtendedType();
      if (shouldChangeType(SrcTy, NewDestTy) &&
          canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) {
        LLVM_DEBUG(
            dbgs() << "ICE: EvaluateInDifferentType converting expression type"
                      " to reduce the width of operand of"
                   << Trunc << '\n');
        Value *Res = EvaluateInDifferentType(Src, NewDestTy, false);
        return new TruncInst(Res, DestTy);
      }
    }
  }

  // Test if the trunc is the user of a select which is part of a
  // minimum or maximum operation. If so, don't do any more simplification.
  // Even simplifying demanded bits can break the canonical form of a
  // min/max.
  Value *LHS, *RHS;
  if (SelectInst *Sel = dyn_cast<SelectInst>(Src))
    if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN)
      return nullptr;

  // See if we can simplify any instructions used by the input whose sole
  // purpose is to compute bits we don't care about.
  if (SimplifyDemandedInstructionBits(Trunc))
    return &Trunc;

  if (DestWidth == 1) {
    Value *Zero = Constant::getNullValue(SrcTy);
    if (DestTy->isIntegerTy()) {
      // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only).
      // TODO: We canonicalize to more instructions here because we are probably
      // lacking equivalent analysis for trunc relative to icmp. There may also
      // be codegen concerns. If those trunc limitations were removed, we could
      // remove this transform.
      Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1));
      return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
    }

    // For vectors, we do not canonicalize all truncs to icmp, so optimize
    // patterns that would be covered within visitICmpInst.
    Value *X;
    Constant *C;
    if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) {
      // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
      Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
      Constant *MaskC = ConstantExpr::getShl(One, C);
      Value *And = Builder.CreateAnd(X, MaskC);
      return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
    }
    if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_Constant(C)),
                                   m_Deferred(X))))) {
      // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
      Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
      Constant *MaskC = ConstantExpr::getShl(One, C);
      MaskC = ConstantExpr::getOr(MaskC, One);
      Value *And = Builder.CreateAnd(X, MaskC);
      return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
    }
  }

  Value *A; 
  Constant *C; 
  if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) { 
    unsigned AWidth = A->getType()->getScalarSizeInBits();
    unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth);
    auto *OldSh = cast<Instruction>(Src); 
    bool IsExact = OldSh->isExact(); 

    // If the shift is small enough, all zero bits created by the shift are
    // removed by the trunc.
    if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE, 
                                    APInt(SrcWidth, MaxShiftAmt)))) { 
      // trunc (lshr (sext A), C) --> ashr A, C
      if (A->getType() == DestTy) {
        Constant *MaxAmt = ConstantInt::get(SrcTy, DestWidth - 1, false); 
        Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt); 
        ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType()); 
        ShAmt = Constant::mergeUndefsWith(ShAmt, C); 
        return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt) 
                       : BinaryOperator::CreateAShr(A, ShAmt); 
      }
      // The types are mismatched, so create a cast after shifting:
      // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C)
      if (Src->hasOneUse()) {
        Constant *MaxAmt = ConstantInt::get(SrcTy, AWidth - 1, false); 
        Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt); 
        ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType()); 
        Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact); 
        return CastInst::CreateIntegerCast(Shift, DestTy, true);
      }
    }
    // TODO: Mask high bits with 'and'.
  }

  // trunc (*shr (trunc A), C) --> trunc(*shr A, C) 
  if (match(Src, m_OneUse(m_Shr(m_Trunc(m_Value(A)), m_Constant(C))))) { 
    unsigned MaxShiftAmt = SrcWidth - DestWidth; 
 
    // If the shift is small enough, all zero/sign bits created by the shift are 
    // removed by the trunc. 
    if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE, 
                                    APInt(SrcWidth, MaxShiftAmt)))) { 
      auto *OldShift = cast<Instruction>(Src); 
      bool IsExact = OldShift->isExact(); 
      auto *ShAmt = ConstantExpr::getIntegerCast(C, A->getType(), true); 
      ShAmt = Constant::mergeUndefsWith(ShAmt, C); 
      Value *Shift = 
          OldShift->getOpcode() == Instruction::AShr 
              ? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact) 
              : Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact); 
      return CastInst::CreateTruncOrBitCast(Shift, DestTy); 
    } 
  } 
 
  if (Instruction *I = narrowBinOp(Trunc))
    return I;

  if (Instruction *I = shrinkSplatShuffle(Trunc, Builder))
    return I;

  if (Instruction *I = shrinkInsertElt(Trunc, Builder))
    return I;

  if (Src->hasOneUse() && 
      (isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) { 
    // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
    // dest type is native and cst < dest size.
    if (match(Src, m_Shl(m_Value(A), m_Constant(C))) && 
        !match(A, m_Shr(m_Value(), m_Constant()))) {
      // Skip shifts of shift by constants. It undoes a combine in
      // FoldShiftByConstant and is the extend in reg pattern.
      APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth); 
      if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) { 
        Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
        return BinaryOperator::Create(Instruction::Shl, NewTrunc, 
                                      ConstantExpr::getTrunc(C, DestTy)); 
      }
    }
  }

  if (Instruction *I = foldVecTruncToExtElt(Trunc, *this))
    return I;

  // Whenever an element is extracted from a vector, and then truncated,
  // canonicalize by converting it to a bitcast followed by an
  // extractelement.
  //
  // Example (little endian):
  //   trunc (extractelement <4 x i64> %X, 0) to i32
  //   --->
  //   extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0
  Value *VecOp;
  ConstantInt *Cst; 
  if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) {
    auto *VecOpTy = cast<VectorType>(VecOp->getType());
    auto VecElts = VecOpTy->getElementCount(); 

    // A badly fit destination size would result in an invalid cast.
    if (SrcWidth % DestWidth == 0) {
      uint64_t TruncRatio = SrcWidth / DestWidth;
      uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio; 
      uint64_t VecOpIdx = Cst->getZExtValue();
      uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1
                                         : VecOpIdx * TruncRatio;
      assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() &&
             "overflow 32-bits");

      auto *BitCastTo = 
          VectorType::get(DestTy, BitCastNumElts, VecElts.isScalable()); 
      Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo);
      return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx));
    }
  }

  return nullptr;
}

Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext, 
                                                 bool DoTransform) { 
  // If we are just checking for a icmp eq of a single bit and zext'ing it
  // to an integer, then shift the bit to the appropriate place and then
  // cast to integer to avoid the comparison.
  const APInt *Op1CV;
  if (match(Cmp->getOperand(1), m_APInt(Op1CV))) {

    // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
    // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
    if ((Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) ||
        (Cmp->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) {
      if (!DoTransform) return Cmp;

      Value *In = Cmp->getOperand(0);
      Value *Sh = ConstantInt::get(In->getType(),
                                   In->getType()->getScalarSizeInBits() - 1);
      In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
      if (In->getType() != Zext.getType())
        In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/);

      if (Cmp->getPredicate() == ICmpInst::ICMP_SGT) {
        Constant *One = ConstantInt::get(In->getType(), 1);
        In = Builder.CreateXor(In, One, In->getName() + ".not");
      }

      return replaceInstUsesWith(Zext, In);
    }

    // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
    // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
    // zext (X == 1) to i32 --> X        iff X has only the low bit set.
    // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
    // zext (X != 0) to i32 --> X        iff X has only the low bit set.
    // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
    // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
    // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
    if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) &&
        // This only works for EQ and NE
        Cmp->isEquality()) {
      // If Op1C some other power of two, convert:
      KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext);

      APInt KnownZeroMask(~Known.Zero);
      if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
        if (!DoTransform) return Cmp;

        bool isNE = Cmp->getPredicate() == ICmpInst::ICMP_NE;
        if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) {
          // (X&4) == 2 --> false
          // (X&4) != 2 --> true
          Constant *Res = ConstantInt::get(Zext.getType(), isNE);
          return replaceInstUsesWith(Zext, Res);
        }

        uint32_t ShAmt = KnownZeroMask.logBase2();
        Value *In = Cmp->getOperand(0);
        if (ShAmt) {
          // Perform a logical shr by shiftamt.
          // Insert the shift to put the result in the low bit.
          In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
                                  In->getName() + ".lobit");
        }

        if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit.
          Constant *One = ConstantInt::get(In->getType(), 1);
          In = Builder.CreateXor(In, One);
        }

        if (Zext.getType() == In->getType())
          return replaceInstUsesWith(Zext, In);

        Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false);
        return replaceInstUsesWith(Zext, IntCast);
      }
    }
  }

  // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
  // It is also profitable to transform icmp eq into not(xor(A, B)) because that
  // may lead to additional simplifications.
  if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) {
    if (IntegerType *ITy = dyn_cast<IntegerType>(Zext.getType())) {
      Value *LHS = Cmp->getOperand(0);
      Value *RHS = Cmp->getOperand(1);

      KnownBits KnownLHS = computeKnownBits(LHS, 0, &Zext);
      KnownBits KnownRHS = computeKnownBits(RHS, 0, &Zext);

      if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
        APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
        APInt UnknownBit = ~KnownBits;
        if (UnknownBit.countPopulation() == 1) {
          if (!DoTransform) return Cmp;

          Value *Result = Builder.CreateXor(LHS, RHS);

          // Mask off any bits that are set and won't be shifted away.
          if (KnownLHS.One.uge(UnknownBit))
            Result = Builder.CreateAnd(Result,
                                        ConstantInt::get(ITy, UnknownBit));

          // Shift the bit we're testing down to the lsb.
          Result = Builder.CreateLShr(
               Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));

          if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
            Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
          Result->takeName(Cmp);
          return replaceInstUsesWith(Zext, Result);
        }
      }
    }
  }

  return nullptr;
}

/// Determine if the specified value can be computed in the specified wider type
/// and produce the same low bits. If not, return false.
///
/// If this function returns true, it can also return a non-zero number of bits
/// (in BitsToClear) which indicates that the value it computes is correct for
/// the zero extend, but that the additional BitsToClear bits need to be zero'd
/// out.  For example, to promote something like:
///
///   %B = trunc i64 %A to i32
///   %C = lshr i32 %B, 8
///   %E = zext i32 %C to i64
///
/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
/// set to 8 to indicate that the promoted value needs to have bits 24-31
/// cleared in addition to bits 32-63.  Since an 'and' will be generated to
/// clear the top bits anyway, doing this has no extra cost.
///
/// This function works on both vectors and scalars.
static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
                             InstCombinerImpl &IC, Instruction *CxtI) { 
  BitsToClear = 0;
  if (canAlwaysEvaluateInType(V, Ty))
    return true;
  if (canNotEvaluateInType(V, Ty))
    return false;

  auto *I = cast<Instruction>(V);
  unsigned Tmp;
  switch (I->getOpcode()) {
  case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
  case Instruction::SExt:  // zext(sext(x)) -> sext(x).
  case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
    return true;
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
    if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
        !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
      return false;
    // These can all be promoted if neither operand has 'bits to clear'.
    if (BitsToClear == 0 && Tmp == 0)
      return true;

    // If the operation is an AND/OR/XOR and the bits to clear are zero in the
    // other side, BitsToClear is ok.
    if (Tmp == 0 && I->isBitwiseLogicOp()) {
      // We use MaskedValueIsZero here for generality, but the case we care
      // about the most is constant RHS.
      unsigned VSize = V->getType()->getScalarSizeInBits();
      if (IC.MaskedValueIsZero(I->getOperand(1),
                               APInt::getHighBitsSet(VSize, BitsToClear),
                               0, CxtI)) {
        // If this is an And instruction and all of the BitsToClear are
        // known to be zero we can reset BitsToClear.
        if (I->getOpcode() == Instruction::And)
          BitsToClear = 0;
        return true;
      }
    }

    // Otherwise, we don't know how to analyze this BitsToClear case yet.
    return false;

  case Instruction::Shl: {
    // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
    // upper bits we can reduce BitsToClear by the shift amount.
    const APInt *Amt;
    if (match(I->getOperand(1), m_APInt(Amt))) {
      if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
        return false;
      uint64_t ShiftAmt = Amt->getZExtValue();
      BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
      return true;
    }
    return false;
  }
  case Instruction::LShr: {
    // We can promote lshr(x, cst) if we can promote x.  This requires the
    // ultimate 'and' to clear out the high zero bits we're clearing out though.
    const APInt *Amt;
    if (match(I->getOperand(1), m_APInt(Amt))) {
      if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
        return false;
      BitsToClear += Amt->getZExtValue();
      if (BitsToClear > V->getType()->getScalarSizeInBits())
        BitsToClear = V->getType()->getScalarSizeInBits();
      return true;
    }
    // Cannot promote variable LSHR.
    return false;
  }
  case Instruction::Select:
    if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
        !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
        // TODO: If important, we could handle the case when the BitsToClear are
        // known zero in the disagreeing side.
        Tmp != BitsToClear)
      return false;
    return true;

  case Instruction::PHI: {
    // We can change a phi if we can change all operands.  Note that we never
    // get into trouble with cyclic PHIs here because we only consider
    // instructions with a single use.
    PHINode *PN = cast<PHINode>(I);
    if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
      return false;
    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
      if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
          // TODO: If important, we could handle the case when the BitsToClear
          // are known zero in the disagreeing input.
          Tmp != BitsToClear)
        return false;
    return true;
  }
  default:
    // TODO: Can handle more cases here.
    return false;
  }
}

Instruction *InstCombinerImpl::visitZExt(ZExtInst &CI) { 
  // If this zero extend is only used by a truncate, let the truncate be
  // eliminated before we try to optimize this zext.
  if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
    return nullptr;

  // If one of the common conversion will work, do it.
  if (Instruction *Result = commonCastTransforms(CI))
    return Result;

  Value *Src = CI.getOperand(0);
  Type *SrcTy = Src->getType(), *DestTy = CI.getType();

  // Try to extend the entire expression tree to the wide destination type.
  unsigned BitsToClear;
  if (shouldChangeType(SrcTy, DestTy) &&
      canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
    assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
           "Can't clear more bits than in SrcTy");

    // Okay, we can transform this!  Insert the new expression now.
    LLVM_DEBUG(
        dbgs() << "ICE: EvaluateInDifferentType converting expression type"
                  " to avoid zero extend: "
               << CI << '\n');
    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
    assert(Res->getType() == DestTy);

    // Preserve debug values referring to Src if the zext is its last use.
    if (auto *SrcOp = dyn_cast<Instruction>(Src))
      if (SrcOp->hasOneUse())
        replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT);

    uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
    uint32_t DestBitSize = DestTy->getScalarSizeInBits();

    // If the high bits are already filled with zeros, just replace this
    // cast with the result.
    if (MaskedValueIsZero(Res,
                          APInt::getHighBitsSet(DestBitSize,
                                                DestBitSize-SrcBitsKept),
                             0, &CI))
      return replaceInstUsesWith(CI, Res);

    // We need to emit an AND to clear the high bits.
    Constant *C = ConstantInt::get(Res->getType(),
                               APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
    return BinaryOperator::CreateAnd(Res, C);
  }

  // If this is a TRUNC followed by a ZEXT then we are dealing with integral
  // types and if the sizes are just right we can convert this into a logical
  // 'and' which will be much cheaper than the pair of casts.
  if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
    // TODO: Subsume this into EvaluateInDifferentType.

    // Get the sizes of the types involved.  We know that the intermediate type
    // will be smaller than A or C, but don't know the relation between A and C.
    Value *A = CSrc->getOperand(0);
    unsigned SrcSize = A->getType()->getScalarSizeInBits();
    unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
    unsigned DstSize = CI.getType()->getScalarSizeInBits();
    // If we're actually extending zero bits, then if
    // SrcSize <  DstSize: zext(a & mask)
    // SrcSize == DstSize: a & mask
    // SrcSize  > DstSize: trunc(a) & mask
    if (SrcSize < DstSize) {
      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
      Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
      Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
      return new ZExtInst(And, CI.getType());
    }

    if (SrcSize == DstSize) {
      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
      return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
                                                           AndValue));
    }
    if (SrcSize > DstSize) {
      Value *Trunc = Builder.CreateTrunc(A, CI.getType());
      APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
      return BinaryOperator::CreateAnd(Trunc,
                                       ConstantInt::get(Trunc->getType(),
                                                        AndValue));
    }
  }

  if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Src))
    return transformZExtICmp(Cmp, CI);

  BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
  if (SrcI && SrcI->getOpcode() == Instruction::Or) {
    // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
    // of the (zext icmp) can be eliminated. If so, immediately perform the
    // according elimination.
    ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
    ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
    if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
        LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType() && 
        (transformZExtICmp(LHS, CI, false) ||
         transformZExtICmp(RHS, CI, false))) {
      // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
      Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
      Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
      Value *Or = Builder.CreateOr(LCast, RCast, CI.getName());
      if (auto *OrInst = dyn_cast<Instruction>(Or))
        Builder.SetInsertPoint(OrInst);

      // Perform the elimination.
      if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
        transformZExtICmp(LHS, *LZExt);
      if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
        transformZExtICmp(RHS, *RZExt);

      return replaceInstUsesWith(CI, Or);
    }
  }

  // zext(trunc(X) & C) -> (X & zext(C)).
  Constant *C;
  Value *X;
  if (SrcI &&
      match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
      X->getType() == CI.getType())
    return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));

  // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
  Value *And;
  if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
      match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
      X->getType() == CI.getType()) {
    Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
    return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
  }

  return nullptr;
}

/// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *ICI, 
                                                 Instruction &CI) { 
  Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
  ICmpInst::Predicate Pred = ICI->getPredicate();

  // Don't bother if Op1 isn't of vector or integer type.
  if (!Op1->getType()->isIntOrIntVectorTy())
    return nullptr;

  if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) ||
      (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) {
    // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
    // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
    Value *Sh = ConstantInt::get(Op0->getType(),
                                 Op0->getType()->getScalarSizeInBits() - 1);
    Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
    if (In->getType() != CI.getType())
      In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);

    if (Pred == ICmpInst::ICMP_SGT)
      In = Builder.CreateNot(In, In->getName() + ".not");
    return replaceInstUsesWith(CI, In);
  }

  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
    // If we know that only one bit of the LHS of the icmp can be set and we
    // have an equality comparison with zero or a power of 2, we can transform
    // the icmp and sext into bitwise/integer operations.
    if (ICI->hasOneUse() &&
        ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
      KnownBits Known = computeKnownBits(Op0, 0, &CI);

      APInt KnownZeroMask(~Known.Zero);
      if (KnownZeroMask.isPowerOf2()) {
        Value *In = ICI->getOperand(0);

        // If the icmp tests for a known zero bit we can constant fold it.
        if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
          Value *V = Pred == ICmpInst::ICMP_NE ?
                       ConstantInt::getAllOnesValue(CI.getType()) :
                       ConstantInt::getNullValue(CI.getType());
          return replaceInstUsesWith(CI, V);
        }

        if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
          // sext ((x & 2^n) == 0)   -> (x >> n) - 1
          // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
          unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
          // Perform a right shift to place the desired bit in the LSB.
          if (ShiftAmt)
            In = Builder.CreateLShr(In,
                                    ConstantInt::get(In->getType(), ShiftAmt));

          // At this point "In" is either 1 or 0. Subtract 1 to turn
          // {1, 0} -> {0, -1}.
          In = Builder.CreateAdd(In,
                                 ConstantInt::getAllOnesValue(In->getType()),
                                 "sext");
        } else {
          // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
          // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
          unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
          // Perform a left shift to place the desired bit in the MSB.
          if (ShiftAmt)
            In = Builder.CreateShl(In,
                                   ConstantInt::get(In->getType(), ShiftAmt));

          // Distribute the bit over the whole bit width.
          In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
                                  KnownZeroMask.getBitWidth() - 1), "sext");
        }

        if (CI.getType() == In->getType())
          return replaceInstUsesWith(CI, In);
        return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
      }
    }
  }

  return nullptr;
}

/// Return true if we can take the specified value and return it as type Ty
/// without inserting any new casts and without changing the value of the common
/// low bits.  This is used by code that tries to promote integer operations to
/// a wider types will allow us to eliminate the extension.
///
/// This function works on both vectors and scalars.
///
static bool canEvaluateSExtd(Value *V, Type *Ty) {
  assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
         "Can't sign extend type to a smaller type");
  if (canAlwaysEvaluateInType(V, Ty))
    return true;
  if (canNotEvaluateInType(V, Ty))
    return false;

  auto *I = cast<Instruction>(V);
  switch (I->getOpcode()) {
  case Instruction::SExt:  // sext(sext(x)) -> sext(x)
  case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
  case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
    return true;
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
    // These operators can all arbitrarily be extended if their inputs can.
    return canEvaluateSExtd(I->getOperand(0), Ty) &&
           canEvaluateSExtd(I->getOperand(1), Ty);

  //case Instruction::Shl:   TODO
  //case Instruction::LShr:  TODO

  case Instruction::Select:
    return canEvaluateSExtd(I->getOperand(1), Ty) &&
           canEvaluateSExtd(I->getOperand(2), Ty);

  case Instruction::PHI: {
    // We can change a phi if we can change all operands.  Note that we never
    // get into trouble with cyclic PHIs here because we only consider
    // instructions with a single use.
    PHINode *PN = cast<PHINode>(I);
    for (Value *IncValue : PN->incoming_values())
      if (!canEvaluateSExtd(IncValue, Ty)) return false;
    return true;
  }
  default:
    // TODO: Can handle more cases here.
    break;
  }

  return false;
}

Instruction *InstCombinerImpl::visitSExt(SExtInst &CI) { 
  // If this sign extend is only used by a truncate, let the truncate be
  // eliminated before we try to optimize this sext.
  if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
    return nullptr;

  if (Instruction *I = commonCastTransforms(CI))
    return I;

  Value *Src = CI.getOperand(0);
  Type *SrcTy = Src->getType(), *DestTy = CI.getType();

  // If we know that the value being extended is positive, we can use a zext
  // instead.
  KnownBits Known = computeKnownBits(Src, 0, &CI);
  if (Known.isNonNegative())
    return CastInst::Create(Instruction::ZExt, Src, DestTy);

  // Try to extend the entire expression tree to the wide destination type.
  if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) {
    // Okay, we can transform this!  Insert the new expression now.
    LLVM_DEBUG(
        dbgs() << "ICE: EvaluateInDifferentType converting expression type"
                  " to avoid sign extend: "
               << CI << '\n');
    Value *Res = EvaluateInDifferentType(Src, DestTy, true);
    assert(Res->getType() == DestTy);

    uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
    uint32_t DestBitSize = DestTy->getScalarSizeInBits();

    // If the high bits are already filled with sign bit, just replace this
    // cast with the result.
    if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
      return replaceInstUsesWith(CI, Res);

    // We need to emit a shl + ashr to do the sign extend.
    Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
    return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
                                      ShAmt);
  }

  // If the input is a trunc from the destination type, then turn sext(trunc(x))
  // into shifts.
  Value *X;
  if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
    // sext(trunc(X)) --> ashr(shl(X, C), C)
    unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
    unsigned DestBitSize = DestTy->getScalarSizeInBits();
    Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
    return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
  }

  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
    return transformSExtICmp(ICI, CI);

  // If the input is a shl/ashr pair of a same constant, then this is a sign
  // extension from a smaller value.  If we could trust arbitrary bitwidth
  // integers, we could turn this into a truncate to the smaller bit and then
  // use a sext for the whole extension.  Since we don't, look deeper and check
  // for a truncate.  If the source and dest are the same type, eliminate the
  // trunc and extend and just do shifts.  For example, turn:
  //   %a = trunc i32 %i to i8
  //   %b = shl i8 %a, C 
  //   %c = ashr i8 %b, C 
  //   %d = sext i8 %c to i32
  // into:
  //   %a = shl i32 %i, 32-(8-C) 
  //   %d = ashr i32 %a, 32-(8-C) 
  Value *A = nullptr;
  // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
  Constant *BA = nullptr, *CA = nullptr;
  if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)),
                        m_Constant(CA))) &&
      BA->isElementWiseEqual(CA) && A->getType() == DestTy) { 
    Constant *WideCurrShAmt = ConstantExpr::getSExt(CA, DestTy); 
    Constant *NumLowbitsLeft = ConstantExpr::getSub( 
        ConstantInt::get(DestTy, SrcTy->getScalarSizeInBits()), WideCurrShAmt); 
    Constant *NewShAmt = ConstantExpr::getSub( 
        ConstantInt::get(DestTy, DestTy->getScalarSizeInBits()), 
        NumLowbitsLeft); 
    NewShAmt = 
        Constant::mergeUndefsWith(Constant::mergeUndefsWith(NewShAmt, BA), CA); 
    A = Builder.CreateShl(A, NewShAmt, CI.getName()); 
    return BinaryOperator::CreateAShr(A, NewShAmt); 
  }

  return nullptr;
}

/// Return a Constant* for the specified floating-point constant if it fits
/// in the specified FP type without changing its value.
static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
  bool losesInfo;
  APFloat F = CFP->getValueAPF();
  (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
  return !losesInfo;
}

static Type *shrinkFPConstant(ConstantFP *CFP) {
  if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
    return nullptr;  // No constant folding of this.
  // See if the value can be truncated to half and then reextended.
  if (fitsInFPType(CFP, APFloat::IEEEhalf()))
    return Type::getHalfTy(CFP->getContext());
  // See if the value can be truncated to float and then reextended.
  if (fitsInFPType(CFP, APFloat::IEEEsingle()))
    return Type::getFloatTy(CFP->getContext());
  if (CFP->getType()->isDoubleTy())
    return nullptr;  // Won't shrink.
  if (fitsInFPType(CFP, APFloat::IEEEdouble()))
    return Type::getDoubleTy(CFP->getContext());
  // Don't try to shrink to various long double types.
  return nullptr;
}

// Determine if this is a vector of ConstantFPs and if so, return the minimal
// type we can safely truncate all elements to.
// TODO: Make these support undef elements.
static Type *shrinkFPConstantVector(Value *V) {
  auto *CV = dyn_cast<Constant>(V);
  auto *CVVTy = dyn_cast<VectorType>(V->getType());
  if (!CV || !CVVTy)
    return nullptr;

  Type *MinType = nullptr;

  unsigned NumElts = cast<FixedVectorType>(CVVTy)->getNumElements(); 
  for (unsigned i = 0; i != NumElts; ++i) {
    auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
    if (!CFP)
      return nullptr;

    Type *T = shrinkFPConstant(CFP);
    if (!T)
      return nullptr;

    // If we haven't found a type yet or this type has a larger mantissa than
    // our previous type, this is our new minimal type.
    if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
      MinType = T;
  }

  // Make a vector type from the minimal type.
  return FixedVectorType::get(MinType, NumElts);
}

/// Find the minimum FP type we can safely truncate to.
static Type *getMinimumFPType(Value *V) {
  if (auto *FPExt = dyn_cast<FPExtInst>(V))
    return FPExt->getOperand(0)->getType();

  // If this value is a constant, return the constant in the smallest FP type
  // that can accurately represent it.  This allows us to turn
  // (float)((double)X+2.0) into x+2.0f.
  if (auto *CFP = dyn_cast<ConstantFP>(V))
    if (Type *T = shrinkFPConstant(CFP))
      return T;

  // Try to shrink a vector of FP constants.
  if (Type *T = shrinkFPConstantVector(V))
    return T;

  return V->getType();
}

/// Return true if the cast from integer to FP can be proven to be exact for all
/// possible inputs (the conversion does not lose any precision).
static bool isKnownExactCastIntToFP(CastInst &I) {
  CastInst::CastOps Opcode = I.getOpcode();
  assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) &&
         "Unexpected cast");
  Value *Src = I.getOperand(0);
  Type *SrcTy = Src->getType();
  Type *FPTy = I.getType();
  bool IsSigned = Opcode == Instruction::SIToFP;
  int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned;

  // Easy case - if the source integer type has less bits than the FP mantissa,
  // then the cast must be exact.
  int DestNumSigBits = FPTy->getFPMantissaWidth();
  if (SrcSize <= DestNumSigBits)
    return true;

  // Cast from FP to integer and back to FP is independent of the intermediate
  // integer width because of poison on overflow.
  Value *F;
  if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) {
    // If this is uitofp (fptosi F), the source needs an extra bit to avoid
    // potential rounding of negative FP input values.
    int SrcNumSigBits = F->getType()->getFPMantissaWidth();
    if (!IsSigned && match(Src, m_FPToSI(m_Value())))
      SrcNumSigBits++;

    // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal
    // significant bits than the destination (and make sure neither type is
    // weird -- ppc_fp128).
    if (SrcNumSigBits > 0 && DestNumSigBits > 0 &&
        SrcNumSigBits <= DestNumSigBits)
      return true;
  }

  // TODO:
  // Try harder to find if the source integer type has less significant bits.
  // For example, compute number of sign bits or compute low bit mask.
  return false;
}

Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) { 
  if (Instruction *I = commonCastTransforms(FPT))
    return I;

  // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
  // simplify this expression to avoid one or more of the trunc/extend
  // operations if we can do so without changing the numerical results.
  //
  // The exact manner in which the widths of the operands interact to limit
  // what we can and cannot do safely varies from operation to operation, and
  // is explained below in the various case statements.
  Type *Ty = FPT.getType();
  auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0));
  if (BO && BO->hasOneUse()) {
    Type *LHSMinType = getMinimumFPType(BO->getOperand(0));
    Type *RHSMinType = getMinimumFPType(BO->getOperand(1));
    unsigned OpWidth = BO->getType()->getFPMantissaWidth();
    unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
    unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
    unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
    unsigned DstWidth = Ty->getFPMantissaWidth();
    switch (BO->getOpcode()) {
      default: break;
      case Instruction::FAdd:
      case Instruction::FSub:
        // For addition and subtraction, the infinitely precise result can
        // essentially be arbitrarily wide; proving that double rounding
        // will not occur because the result of OpI is exact (as we will for
        // FMul, for example) is hopeless.  However, we *can* nonetheless
        // frequently know that double rounding cannot occur (or that it is
        // innocuous) by taking advantage of the specific structure of
        // infinitely-precise results that admit double rounding.
        //
        // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
        // to represent both sources, we can guarantee that the double
        // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
        // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
        // for proof of this fact).
        //
        // Note: Figueroa does not consider the case where DstFormat !=
        // SrcFormat.  It's possible (likely even!) that this analysis
        // could be tightened for those cases, but they are rare (the main
        // case of interest here is (float)((double)float + float)).
        if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
          Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
          Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
          Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS);
          RI->copyFastMathFlags(BO);
          return RI;
        }
        break;
      case Instruction::FMul:
        // For multiplication, the infinitely precise result has at most
        // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
        // that such a value can be exactly represented, then no double
        // rounding can possibly occur; we can safely perform the operation
        // in the destination format if it can represent both sources.
        if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
          Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
          Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
          return BinaryOperator::CreateFMulFMF(LHS, RHS, BO);
        }
        break;
      case Instruction::FDiv:
        // For division, we use again use the bound from Figueroa's
        // dissertation.  I am entirely certain that this bound can be
        // tightened in the unbalanced operand case by an analysis based on
        // the diophantine rational approximation bound, but the well-known
        // condition used here is a good conservative first pass.
        // TODO: Tighten bound via rigorous analysis of the unbalanced case.
        if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
          Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
          Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
          return BinaryOperator::CreateFDivFMF(LHS, RHS, BO);
        }
        break;
      case Instruction::FRem: {
        // Remainder is straightforward.  Remainder is always exact, so the
        // type of OpI doesn't enter into things at all.  We simply evaluate
        // in whichever source type is larger, then convert to the
        // destination type.
        if (SrcWidth == OpWidth)
          break;
        Value *LHS, *RHS;
        if (LHSWidth == SrcWidth) {
           LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType);
           RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType);
        } else {
           LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType);
           RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType);
        }

        Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO);
        return CastInst::CreateFPCast(ExactResult, Ty);
      }
    }
  }

  // (fptrunc (fneg x)) -> (fneg (fptrunc x))
  Value *X;
  Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0));
  if (Op && Op->hasOneUse()) {
    // FIXME: The FMF should propagate from the fptrunc, not the source op.
    IRBuilder<>::FastMathFlagGuard FMFG(Builder);
    if (isa<FPMathOperator>(Op))
      Builder.setFastMathFlags(Op->getFastMathFlags());

    if (match(Op, m_FNeg(m_Value(X)))) {
      Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty);

      return UnaryOperator::CreateFNegFMF(InnerTrunc, Op);
    }

    // If we are truncating a select that has an extended operand, we can
    // narrow the other operand and do the select as a narrow op.
    Value *Cond, *X, *Y;
    if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) &&
        X->getType() == Ty) {
      // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y)
      Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
      Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op);
      return replaceInstUsesWith(FPT, Sel);
    }
    if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) &&
        X->getType() == Ty) {
      // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X
      Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
      Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op);
      return replaceInstUsesWith(FPT, Sel);
    }
  }

  if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
    switch (II->getIntrinsicID()) {
    default: break;
    case Intrinsic::ceil:
    case Intrinsic::fabs:
    case Intrinsic::floor:
    case Intrinsic::nearbyint:
    case Intrinsic::rint:
    case Intrinsic::round:
    case Intrinsic::roundeven:
    case Intrinsic::trunc: {
      Value *Src = II->getArgOperand(0);
      if (!Src->hasOneUse())
        break;

      // Except for fabs, this transformation requires the input of the unary FP
      // operation to be itself an fpext from the type to which we're
      // truncating.
      if (II->getIntrinsicID() != Intrinsic::fabs) {
        FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
        if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
          break;
      }

      // Do unary FP operation on smaller type.
      // (fptrunc (fabs x)) -> (fabs (fptrunc x))
      Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
      Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
                                                     II->getIntrinsicID(), Ty);
      SmallVector<OperandBundleDef, 1> OpBundles;
      II->getOperandBundlesAsDefs(OpBundles);
      CallInst *NewCI =
          CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName());
      NewCI->copyFastMathFlags(II);
      return NewCI;
    }
    }
  }

  if (Instruction *I = shrinkInsertElt(FPT, Builder))
    return I;

  Value *Src = FPT.getOperand(0);
  if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
    auto *FPCast = cast<CastInst>(Src);
    if (isKnownExactCastIntToFP(*FPCast))
      return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
  }

  return nullptr;
}

Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) { 
  // If the source operand is a cast from integer to FP and known exact, then
  // cast the integer operand directly to the destination type.
  Type *Ty = FPExt.getType();
  Value *Src = FPExt.getOperand(0);
  if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
    auto *FPCast = cast<CastInst>(Src);
    if (isKnownExactCastIntToFP(*FPCast))
      return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
  }

  return commonCastTransforms(FPExt);
}

/// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
/// This is safe if the intermediate type has enough bits in its mantissa to
/// accurately represent all values of X.  For example, this won't work with
/// i64 -> float -> i64.
Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) { 
  if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
    return nullptr;

  auto *OpI = cast<CastInst>(FI.getOperand(0));
  Value *X = OpI->getOperand(0);
  Type *XType = X->getType();
  Type *DestType = FI.getType();
  bool IsOutputSigned = isa<FPToSIInst>(FI);

  // Since we can assume the conversion won't overflow, our decision as to
  // whether the input will fit in the float should depend on the minimum
  // of the input range and output range.

  // This means this is also safe for a signed input and unsigned output, since
  // a negative input would lead to undefined behavior.
  if (!isKnownExactCastIntToFP(*OpI)) {
    // The first cast may not round exactly based on the source integer width
    // and FP width, but the overflow UB rules can still allow this to fold.
    // If the destination type is narrow, that means the intermediate FP value
    // must be large enough to hold the source value exactly.
    // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior.
    int OutputSize = (int)DestType->getScalarSizeInBits() - IsOutputSigned;
    if (OutputSize > OpI->getType()->getFPMantissaWidth())
      return nullptr;
  }

  if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) {
    bool IsInputSigned = isa<SIToFPInst>(OpI);
    if (IsInputSigned && IsOutputSigned)
      return new SExtInst(X, DestType);
    return new ZExtInst(X, DestType);
  }
  if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits())
    return new TruncInst(X, DestType);

  assert(XType == DestType && "Unexpected types for int to FP to int casts");
  return replaceInstUsesWith(FI, X);
}

Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) { 
  if (Instruction *I = foldItoFPtoI(FI))
    return I;

  return commonCastTransforms(FI);
}

Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) { 
  if (Instruction *I = foldItoFPtoI(FI))
    return I;

  return commonCastTransforms(FI);
}

Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) { 
  return commonCastTransforms(CI);
}

Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) { 
  return commonCastTransforms(CI);
}

Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) { 
  // If the source integer type is not the intptr_t type for this target, do a
  // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
  // cast to be exposed to other transforms.
  unsigned AS = CI.getAddressSpace();
  if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
      DL.getPointerSizeInBits(AS)) {
    Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
    // Handle vectors of pointers.
    if (auto *CIVTy = dyn_cast<VectorType>(CI.getType()))
      Ty = VectorType::get(Ty, CIVTy->getElementCount());

    Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
    return new IntToPtrInst(P, CI.getType());
  }

  if (Instruction *I = commonCastTransforms(CI))
    return I;

  return nullptr;
}

/// Implement the transforms for cast of pointer (bitcast/ptrtoint)
Instruction *InstCombinerImpl::commonPointerCastTransforms(CastInst &CI) { 
  Value *Src = CI.getOperand(0);

  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
    // If casting the result of a getelementptr instruction with no offset, turn
    // this into a cast of the original pointer!
    if (GEP->hasAllZeroIndices() &&
        // If CI is an addrspacecast and GEP changes the poiner type, merging
        // GEP into CI would undo canonicalizing addrspacecast with different
        // pointer types, causing infinite loops.
        (!isa<AddrSpaceCastInst>(CI) ||
         GEP->getType() == GEP->getPointerOperandType())) {
      // Changing the cast operand is usually not a good idea but it is safe
      // here because the pointer operand is being replaced with another
      // pointer operand so the opcode doesn't need to change.
      return replaceOperand(CI, 0, GEP->getOperand(0));
    }
  }

  return commonCastTransforms(CI);
}

Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) { 
  // If the destination integer type is not the intptr_t type for this target,
  // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
  // to be exposed to other transforms.
  Value *SrcOp = CI.getPointerOperand(); 
  Type *Ty = CI.getType();
  unsigned AS = CI.getPointerAddressSpace();
  unsigned TySize = Ty->getScalarSizeInBits(); 
  unsigned PtrSize = DL.getPointerSizeInBits(AS); 
  if (TySize != PtrSize) { 
    Type *IntPtrTy = DL.getIntPtrType(CI.getContext(), AS); 
    // Handle vectors of pointers. 
    if (auto *VecTy = dyn_cast<VectorType>(Ty)) 
      IntPtrTy = VectorType::get(IntPtrTy, VecTy->getElementCount()); 

    Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy); 
    return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 
  } 

  Value *Vec, *Scalar, *Index; 
  if (match(SrcOp, m_OneUse(m_InsertElt(m_IntToPtr(m_Value(Vec)), 
                                        m_Value(Scalar), m_Value(Index)))) && 
      Vec->getType() == Ty) { 
    assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type"); 
    // Convert the scalar to int followed by insert to eliminate one cast: 
    // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index 
    Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType()); 
    return InsertElementInst::Create(Vec, NewCast, Index); 
  }

  return commonPointerCastTransforms(CI); 
}

/// This input value (which is known to have vector type) is being zero extended
/// or truncated to the specified vector type. Since the zext/trunc is done
/// using an integer type, we have a (bitcast(cast(bitcast))) pattern,
/// endianness will impact which end of the vector that is extended or
/// truncated.
///
/// A vector is always stored with index 0 at the lowest address, which
/// corresponds to the most significant bits for a big endian stored integer and
/// the least significant bits for little endian. A trunc/zext of an integer
/// impacts the big end of the integer. Thus, we need to add/remove elements at
/// the front of the vector for big endian targets, and the back of the vector
/// for little endian targets.
///
/// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
///
/// The source and destination vector types may have different element types.
static Instruction * 
optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy, 
                                        InstCombinerImpl &IC) { 
  // We can only do this optimization if the output is a multiple of the input
  // element size, or the input is a multiple of the output element size.
  // Convert the input type to have the same element type as the output.
  VectorType *SrcTy = cast<VectorType>(InVal->getType());

  if (SrcTy->getElementType() != DestTy->getElementType()) {
    // The input types don't need to be identical, but for now they must be the
    // same size.  There is no specific reason we couldn't handle things like
    // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
    // there yet.
    if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
        DestTy->getElementType()->getPrimitiveSizeInBits())
      return nullptr;

    SrcTy =
        FixedVectorType::get(DestTy->getElementType(), 
                             cast<FixedVectorType>(SrcTy)->getNumElements()); 
    InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
  }

  bool IsBigEndian = IC.getDataLayout().isBigEndian();
  unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements(); 
  unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements(); 

  assert(SrcElts != DestElts && "Element counts should be different.");

  // Now that the element types match, get the shuffle mask and RHS of the
  // shuffle to use, which depends on whether we're increasing or decreasing the
  // size of the input.
  SmallVector<int, 16> ShuffleMaskStorage;
  ArrayRef<int> ShuffleMask;
  Value *V2;

  // Produce an identify shuffle mask for the src vector.
  ShuffleMaskStorage.resize(SrcElts);
  std::iota(ShuffleMaskStorage.begin(), ShuffleMaskStorage.end(), 0);

  if (SrcElts > DestElts) {
    // If we're shrinking the number of elements (rewriting an integer
    // truncate), just shuffle in the elements corresponding to the least
    // significant bits from the input and use undef as the second shuffle
    // input.
    V2 = UndefValue::get(SrcTy);
    // Make sure the shuffle mask selects the "least significant bits" by
    // keeping elements from back of the src vector for big endian, and from the
    // front for little endian.
    ShuffleMask = ShuffleMaskStorage;
    if (IsBigEndian)
      ShuffleMask = ShuffleMask.take_back(DestElts);
    else
      ShuffleMask = ShuffleMask.take_front(DestElts);
  } else {
    // If we're increasing the number of elements (rewriting an integer zext),
    // shuffle in all of the elements from InVal. Fill the rest of the result
    // elements with zeros from a constant zero.
    V2 = Constant::getNullValue(SrcTy);
    // Use first elt from V2 when indicating zero in the shuffle mask.
    uint32_t NullElt = SrcElts;
    // Extend with null values in the "most significant bits" by adding elements
    // in front of the src vector for big endian, and at the back for little
    // endian.
    unsigned DeltaElts = DestElts - SrcElts;
    if (IsBigEndian)
      ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt);
    else
      ShuffleMaskStorage.append(DeltaElts, NullElt);
    ShuffleMask = ShuffleMaskStorage;
  }

  return new ShuffleVectorInst(InVal, V2, ShuffleMask);
}

static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
  return Value % Ty->getPrimitiveSizeInBits() == 0;
}

static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
  return Value / Ty->getPrimitiveSizeInBits();
}

/// V is a value which is inserted into a vector of VecEltTy.
/// Look through the value to see if we can decompose it into
/// insertions into the vector.  See the example in the comment for
/// OptimizeIntegerToVectorInsertions for the pattern this handles.
/// The type of V is always a non-zero multiple of VecEltTy's size.
/// Shift is the number of bits between the lsb of V and the lsb of
/// the vector.
///
/// This returns false if the pattern can't be matched or true if it can,
/// filling in Elements with the elements found here.
static bool collectInsertionElements(Value *V, unsigned Shift,
                                     SmallVectorImpl<Value *> &Elements,
                                     Type *VecEltTy, bool isBigEndian) {
  assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
         "Shift should be a multiple of the element type size");

  // Undef values never contribute useful bits to the result.
  if (isa<UndefValue>(V)) return true;

  // If we got down to a value of the right type, we win, try inserting into the
  // right element.
  if (V->getType() == VecEltTy) {
    // Inserting null doesn't actually insert any elements.
    if (Constant *C = dyn_cast<Constant>(V))
      if (C->isNullValue())
        return true;

    unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
    if (isBigEndian)
      ElementIndex = Elements.size() - ElementIndex - 1;

    // Fail if multiple elements are inserted into this slot.
    if (Elements[ElementIndex])
      return false;

    Elements[ElementIndex] = V;
    return true;
  }

  if (Constant *C = dyn_cast<Constant>(V)) {
    // Figure out the # elements this provides, and bitcast it or slice it up
    // as required.
    unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
                                        VecEltTy);
    // If the constant is the size of a vector element, we just need to bitcast
    // it to the right type so it gets properly inserted.
    if (NumElts == 1)
      return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
                                      Shift, Elements, VecEltTy, isBigEndian);

    // Okay, this is a constant that covers multiple elements.  Slice it up into
    // pieces and insert each element-sized piece into the vector.
    if (!isa<IntegerType>(C->getType()))
      C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
                                       C->getType()->getPrimitiveSizeInBits()));
    unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
    Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);

    for (unsigned i = 0; i != NumElts; ++i) {
      unsigned ShiftI = Shift+i*ElementSize;
      Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
                                                                  ShiftI));
      Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
      if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
                                    isBigEndian))
        return false;
    }
    return true;
  }

  if (!V->hasOneUse()) return false;

  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return false;
  switch (I->getOpcode()) {
  default: return false; // Unhandled case.
  case Instruction::BitCast:
    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
                                    isBigEndian);
  case Instruction::ZExt:
    if (!isMultipleOfTypeSize(
                          I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
                              VecEltTy))
      return false;
    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
                                    isBigEndian);
  case Instruction::Or:
    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
                                    isBigEndian) &&
           collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
                                    isBigEndian);
  case Instruction::Shl: {
    // Must be shifting by a constant that is a multiple of the element size.
    ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
    if (!CI) return false;
    Shift += CI->getZExtValue();
    if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
                                    isBigEndian);
  }

  }
}


/// If the input is an 'or' instruction, we may be doing shifts and ors to
/// assemble the elements of the vector manually.
/// Try to rip the code out and replace it with insertelements.  This is to
/// optimize code like this:
///
///    %tmp37 = bitcast float %inc to i32
///    %tmp38 = zext i32 %tmp37 to i64
///    %tmp31 = bitcast float %inc5 to i32
///    %tmp32 = zext i32 %tmp31 to i64
///    %tmp33 = shl i64 %tmp32, 32
///    %ins35 = or i64 %tmp33, %tmp38
///    %tmp43 = bitcast i64 %ins35 to <2 x float>
///
/// Into two insertelements that do "buildvector{%inc, %inc5}".
static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
                                                InstCombinerImpl &IC) { 
  auto *DestVecTy = cast<FixedVectorType>(CI.getType()); 
  Value *IntInput = CI.getOperand(0);

  SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
  if (!collectInsertionElements(IntInput, 0, Elements,
                                DestVecTy->getElementType(),
                                IC.getDataLayout().isBigEndian()))
    return nullptr;

  // If we succeeded, we know that all of the element are specified by Elements
  // or are zero if Elements has a null entry.  Recast this as a set of
  // insertions.
  Value *Result = Constant::getNullValue(CI.getType());
  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
    if (!Elements[i]) continue;  // Unset element.

    Result = IC.Builder.CreateInsertElement(Result, Elements[i],
                                            IC.Builder.getInt32(i));
  }

  return Result;
}

/// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
/// vector followed by extract element. The backend tends to handle bitcasts of
/// vectors better than bitcasts of scalars because vector registers are
/// usually not type-specific like scalar integer or scalar floating-point.
static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
                                              InstCombinerImpl &IC) { 
  // TODO: Create and use a pattern matcher for ExtractElementInst.
  auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
  if (!ExtElt || !ExtElt->hasOneUse())
    return nullptr;

  // The bitcast must be to a vectorizable type, otherwise we can't make a new
  // type to extract from.
  Type *DestType = BitCast.getType();
  if (!VectorType::isValidElementType(DestType))
    return nullptr;

  auto *NewVecType = VectorType::get(DestType, ExtElt->getVectorOperandType()); 
  auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
                                         NewVecType, "bc");
  return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
}

/// Change the type of a bitwise logic operation if we can eliminate a bitcast.
static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
                                            InstCombiner::BuilderTy &Builder) {
  Type *DestTy = BitCast.getType();
  BinaryOperator *BO;
  if (!DestTy->isIntOrIntVectorTy() ||
      !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
      !BO->isBitwiseLogicOp())
    return nullptr;

  // FIXME: This transform is restricted to vector types to avoid backend
  // problems caused by creating potentially illegal operations. If a fix-up is
  // added to handle that situation, we can remove this check.
  if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
    return nullptr;

  Value *X;
  if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
      X->getType() == DestTy && !isa<Constant>(X)) {
    // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
    Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
    return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
  }

  if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
      X->getType() == DestTy && !isa<Constant>(X)) {
    // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
    Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
    return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
  }

  // Canonicalize vector bitcasts to come before vector bitwise logic with a
  // constant. This eases recognition of special constants for later ops.
  // Example:
  // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
  Constant *C;
  if (match(BO->getOperand(1), m_Constant(C))) {
    // bitcast (logic X, C) --> logic (bitcast X, C')
    Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
    Value *CastedC = Builder.CreateBitCast(C, DestTy);
    return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
  }

  return nullptr;
}

/// Change the type of a select if we can eliminate a bitcast.
static Instruction *foldBitCastSelect(BitCastInst &BitCast,
                                      InstCombiner::BuilderTy &Builder) {
  Value *Cond, *TVal, *FVal;
  if (!match(BitCast.getOperand(0),
             m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
    return nullptr;

  // A vector select must maintain the same number of elements in its operands.
  Type *CondTy = Cond->getType();
  Type *DestTy = BitCast.getType();
  if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) 
    if (!DestTy->isVectorTy() || 
        CondVTy->getElementCount() != 
            cast<VectorType>(DestTy)->getElementCount()) 
      return nullptr;

  // FIXME: This transform is restricted from changing the select between
  // scalars and vectors to avoid backend problems caused by creating
  // potentially illegal operations. If a fix-up is added to handle that
  // situation, we can remove this check.
  if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
    return nullptr;

  auto *Sel = cast<Instruction>(BitCast.getOperand(0));
  Value *X;
  if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
      !isa<Constant>(X)) {
    // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
    Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
    return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
  }

  if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
      !isa<Constant>(X)) {
    // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
    Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
    return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
  }

  return nullptr;
}

/// Check if all users of CI are StoreInsts.
static bool hasStoreUsersOnly(CastInst &CI) {
  for (User *U : CI.users()) {
    if (!isa<StoreInst>(U))
      return false;
  }
  return true;
}

/// This function handles following case
///
///     A  ->  B    cast
///     PHI
///     B  ->  A    cast
///
/// All the related PHI nodes can be replaced by new PHI nodes with type A.
/// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI, 
                                                      PHINode *PN) { 
  // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
  if (hasStoreUsersOnly(CI))
    return nullptr;

  Value *Src = CI.getOperand(0);
  Type *SrcTy = Src->getType();         // Type B
  Type *DestTy = CI.getType();          // Type A

  SmallVector<PHINode *, 4> PhiWorklist;
  SmallSetVector<PHINode *, 4> OldPhiNodes;

  // Find all of the A->B casts and PHI nodes.
  // We need to inspect all related PHI nodes, but PHIs can be cyclic, so
  // OldPhiNodes is used to track all known PHI nodes, before adding a new
  // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
  PhiWorklist.push_back(PN);
  OldPhiNodes.insert(PN);
  while (!PhiWorklist.empty()) {
    auto *OldPN = PhiWorklist.pop_back_val();
    for (Value *IncValue : OldPN->incoming_values()) {
      if (isa<Constant>(IncValue))
        continue;

      if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
        // If there is a sequence of one or more load instructions, each loaded
        // value is used as address of later load instruction, bitcast is
        // necessary to change the value type, don't optimize it. For
        // simplicity we give up if the load address comes from another load.
        Value *Addr = LI->getOperand(0);
        if (Addr == &CI || isa<LoadInst>(Addr))
          return nullptr;
        if (LI->hasOneUse() && LI->isSimple())
          continue;
        // If a LoadInst has more than one use, changing the type of loaded
        // value may create another bitcast.
        return nullptr;
      }

      if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
        if (OldPhiNodes.insert(PNode))
          PhiWorklist.push_back(PNode);
        continue;
      }

      auto *BCI = dyn_cast<BitCastInst>(IncValue);
      // We can't handle other instructions.
      if (!BCI)
        return nullptr;

      // Verify it's a A->B cast.
      Type *TyA = BCI->getOperand(0)->getType();
      Type *TyB = BCI->getType();
      if (TyA != DestTy || TyB != SrcTy)
        return nullptr;
    }
  }

  // Check that each user of each old PHI node is something that we can
  // rewrite, so that all of the old PHI nodes can be cleaned up afterwards.
  for (auto *OldPN : OldPhiNodes) {
    for (User *V : OldPN->users()) {
      if (auto *SI = dyn_cast<StoreInst>(V)) {
        if (!SI->isSimple() || SI->getOperand(0) != OldPN)
          return nullptr;
      } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
        // Verify it's a B->A cast.
        Type *TyB = BCI->getOperand(0)->getType();
        Type *TyA = BCI->getType();
        if (TyA != DestTy || TyB != SrcTy)
          return nullptr;
      } else if (auto *PHI = dyn_cast<PHINode>(V)) {
        // As long as the user is another old PHI node, then even if we don't
        // rewrite it, the PHI web we're considering won't have any users
        // outside itself, so it'll be dead.
        if (OldPhiNodes.count(PHI) == 0)
          return nullptr;
      } else {
        return nullptr;
      }
    }
  }

  // For each old PHI node, create a corresponding new PHI node with a type A.
  SmallDenseMap<PHINode *, PHINode *> NewPNodes;
  for (auto *OldPN : OldPhiNodes) {
    Builder.SetInsertPoint(OldPN);
    PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
    NewPNodes[OldPN] = NewPN;
  }

  // Fill in the operands of new PHI nodes.
  for (auto *OldPN : OldPhiNodes) {
    PHINode *NewPN = NewPNodes[OldPN];
    for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
      Value *V = OldPN->getOperand(j);
      Value *NewV = nullptr;
      if (auto *C = dyn_cast<Constant>(V)) {
        NewV = ConstantExpr::getBitCast(C, DestTy);
      } else if (auto *LI = dyn_cast<LoadInst>(V)) {
        // Explicitly perform load combine to make sure no opposing transform
        // can remove the bitcast in the meantime and trigger an infinite loop.
        Builder.SetInsertPoint(LI);
        NewV = combineLoadToNewType(*LI, DestTy);
        // Remove the old load and its use in the old phi, which itself becomes
        // dead once the whole transform finishes.
        replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
        eraseInstFromFunction(*LI);
      } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
        NewV = BCI->getOperand(0);
      } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
        NewV = NewPNodes[PrevPN];
      }
      assert(NewV);
      NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
    }
  }

  // Traverse all accumulated PHI nodes and process its users,
  // which are Stores and BitcCasts. Without this processing
  // NewPHI nodes could be replicated and could lead to extra
  // moves generated after DeSSA.
  // If there is a store with type B, change it to type A.


  // Replace users of BitCast B->A with NewPHI. These will help
  // later to get rid off a closure formed by OldPHI nodes.
  Instruction *RetVal = nullptr;
  for (auto *OldPN : OldPhiNodes) {
    PHINode *NewPN = NewPNodes[OldPN];
    for (User *V : make_early_inc_range(OldPN->users())) { 
      if (auto *SI = dyn_cast<StoreInst>(V)) {
        assert(SI->isSimple() && SI->getOperand(0) == OldPN);
        Builder.SetInsertPoint(SI);
        auto *NewBC =
          cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy));
        SI->setOperand(0, NewBC);
        Worklist.push(SI);
        assert(hasStoreUsersOnly(*NewBC));
      }
      else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
        Type *TyB = BCI->getOperand(0)->getType();
        Type *TyA = BCI->getType();
        assert(TyA == DestTy && TyB == SrcTy);
        (void) TyA;
        (void) TyB;
        Instruction *I = replaceInstUsesWith(*BCI, NewPN);
        if (BCI == &CI)
          RetVal = I;
      } else if (auto *PHI = dyn_cast<PHINode>(V)) {
        assert(OldPhiNodes.contains(PHI)); 
        (void) PHI;
      } else {
        llvm_unreachable("all uses should be handled");
      }
    }
  }

  return RetVal;
}

Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) { 
  // If the operands are integer typed then apply the integer transforms,
  // otherwise just apply the common ones.
  Value *Src = CI.getOperand(0);
  Type *SrcTy = Src->getType();
  Type *DestTy = CI.getType();

  // Get rid of casts from one type to the same type. These are useless and can
  // be replaced by the operand.
  if (DestTy == Src->getType())
    return replaceInstUsesWith(CI, Src);

  if (isa<PointerType>(SrcTy) && isa<PointerType>(DestTy)) {
    PointerType *SrcPTy = cast<PointerType>(SrcTy);
    PointerType *DstPTy = cast<PointerType>(DestTy);
    Type *DstElTy = DstPTy->getElementType();
    Type *SrcElTy = SrcPTy->getElementType();

    // Casting pointers between the same type, but with different address spaces
    // is an addrspace cast rather than a bitcast.
    if ((DstElTy == SrcElTy) &&
        (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace()))
      return new AddrSpaceCastInst(Src, DestTy);

    // If we are casting a alloca to a pointer to a type of the same
    // size, rewrite the allocation instruction to allocate the "right" type.
    // There is no need to modify malloc calls because it is their bitcast that
    // needs to be cleaned up.
    if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
      if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
        return V;

    // When the type pointed to is not sized the cast cannot be
    // turned into a gep.
    Type *PointeeType =
        cast<PointerType>(Src->getType()->getScalarType())->getElementType();
    if (!PointeeType->isSized())
      return nullptr;

    // If the source and destination are pointers, and this cast is equivalent
    // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
    // This can enhance SROA and other transforms that want type-safe pointers.
    unsigned NumZeros = 0;
    while (SrcElTy && SrcElTy != DstElTy) {
      SrcElTy = GetElementPtrInst::getTypeAtIndex(SrcElTy, (uint64_t)0);
      ++NumZeros;
    }

    // If we found a path from the src to dest, create the getelementptr now.
    if (SrcElTy == DstElTy) {
      SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
      GetElementPtrInst *GEP =
          GetElementPtrInst::Create(SrcPTy->getElementType(), Src, Idxs);

      // If the source pointer is dereferenceable, then assume it points to an
      // allocated object and apply "inbounds" to the GEP.
      bool CanBeNull;
      if (Src->getPointerDereferenceableBytes(DL, CanBeNull)) {
        // In a non-default address space (not 0), a null pointer can not be
        // assumed inbounds, so ignore that case (dereferenceable_or_null).
        // The reason is that 'null' is not treated differently in these address
        // spaces, and we consequently ignore the 'gep inbounds' special case
        // for 'null' which allows 'inbounds' on 'null' if the indices are
        // zeros.
        if (SrcPTy->getAddressSpace() == 0 || !CanBeNull)
          GEP->setIsInBounds();
      }
      return GEP;
    }
  }

  if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) {
    // Beware: messing with this target-specific oddity may cause trouble.
    if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) {
      Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
      return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
    }

    if (isa<IntegerType>(SrcTy)) {
      // If this is a cast from an integer to vector, check to see if the input
      // is a trunc or zext of a bitcast from vector.  If so, we can replace all
      // the casts with a shuffle and (potentially) a bitcast.
      if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
        CastInst *SrcCast = cast<CastInst>(Src);
        if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
          if (isa<VectorType>(BCIn->getOperand(0)->getType()))
            if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts(
                    BCIn->getOperand(0), cast<VectorType>(DestTy), *this))
              return I;
      }

      // If the input is an 'or' instruction, we may be doing shifts and ors to
      // assemble the elements of the vector manually.  Try to rip the code out
      // and replace it with insertelements.
      if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
        return replaceInstUsesWith(CI, V);
    }
  }

  if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) {
    if (SrcVTy->getNumElements() == 1) {
      // If our destination is not a vector, then make this a straight
      // scalar-scalar cast.
      if (!DestTy->isVectorTy()) {
        Value *Elem =
          Builder.CreateExtractElement(Src,
                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
        return CastInst::Create(Instruction::BitCast, Elem, DestTy);
      }

      // Otherwise, see if our source is an insert. If so, then use the scalar
      // component directly:
      // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m>
      if (auto *InsElt = dyn_cast<InsertElementInst>(Src))
        return new BitCastInst(InsElt->getOperand(1), DestTy);
    }
  }

  if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) {
    // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
    // a bitcast to a vector with the same # elts.
    Value *ShufOp0 = Shuf->getOperand(0);
    Value *ShufOp1 = Shuf->getOperand(1);
    auto ShufElts = cast<VectorType>(Shuf->getType())->getElementCount(); 
    auto SrcVecElts = cast<VectorType>(ShufOp0->getType())->getElementCount(); 
    if (Shuf->hasOneUse() && DestTy->isVectorTy() &&
        cast<VectorType>(DestTy)->getElementCount() == ShufElts && 
        ShufElts == SrcVecElts) { 
      BitCastInst *Tmp;
      // If either of the operands is a cast from CI.getType(), then
      // evaluating the shuffle in the casted destination's type will allow
      // us to eliminate at least one cast.
      if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) &&
           Tmp->getOperand(0)->getType() == DestTy) ||
          ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) &&
           Tmp->getOperand(0)->getType() == DestTy)) {
        Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy);
        Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy);
        // Return a new shuffle vector.  Use the same element ID's, as we
        // know the vector types match #elts.
        return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask());
      }
    }

    // A bitcasted-to-scalar and byte-reversing shuffle is better recognized as
    // a byte-swap:
    // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) --> bswap (bitcast X)
    // TODO: We should match the related pattern for bitreverse.
    if (DestTy->isIntegerTy() &&
        DL.isLegalInteger(DestTy->getScalarSizeInBits()) &&
        SrcTy->getScalarSizeInBits() == 8 && 
        ShufElts.getKnownMinValue() % 2 == 0 && Shuf->hasOneUse() && 
        Shuf->isReverse()) { 
      assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask");
      assert(isa<UndefValue>(ShufOp1) && "Unexpected shuffle op");
      Function *Bswap =
          Intrinsic::getDeclaration(CI.getModule(), Intrinsic::bswap, DestTy);
      Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy);
      return IntrinsicInst::Create(Bswap, { ScalarX });
    }
  }

  // Handle the A->B->A cast, and there is an intervening PHI node.
  if (PHINode *PN = dyn_cast<PHINode>(Src))
    if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
      return I;

  if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
    return I;

  if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
    return I;

  if (Instruction *I = foldBitCastSelect(CI, Builder))
    return I;

  if (SrcTy->isPointerTy())
    return commonPointerCastTransforms(CI);
  return commonCastTransforms(CI);
}

Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 
  // If the destination pointer element type is not the same as the source's
  // first do a bitcast to the destination type, and then the addrspacecast.
  // This allows the cast to be exposed to other transforms.
  Value *Src = CI.getOperand(0);
  PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
  PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());

  Type *DestElemTy = DestTy->getElementType();
  if (SrcTy->getElementType() != DestElemTy) {
    Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
    // Handle vectors of pointers. 
    if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) 
      MidTy = VectorType::get(MidTy, VT->getElementCount()); 

    Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
    return new AddrSpaceCastInst(NewBitCast, CI.getType());
  }

  return commonPointerCastTransforms(CI);
}