aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Transforms/IPO/WholeProgramDevirt.cpp
blob: 1c851975bb07d7d1b24adfb45e0dc62d1486d5ce (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
//===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements whole program optimization of virtual calls in cases
// where we know (via !type metadata) that the list of callees is fixed. This
// includes the following:
// - Single implementation devirtualization: if a virtual call has a single
//   possible callee, replace all calls with a direct call to that callee.
// - Virtual constant propagation: if the virtual function's return type is an
//   integer <=64 bits and all possible callees are readnone, for each class and
//   each list of constant arguments: evaluate the function, store the return
//   value alongside the virtual table, and rewrite each virtual call as a load
//   from the virtual table.
// - Uniform return value optimization: if the conditions for virtual constant
//   propagation hold and each function returns the same constant value, replace
//   each virtual call with that constant.
// - Unique return value optimization for i1 return values: if the conditions
//   for virtual constant propagation hold and a single vtable's function
//   returns 0, or a single vtable's function returns 1, replace each virtual
//   call with a comparison of the vptr against that vtable's address.
//
// This pass is intended to be used during the regular and thin LTO pipelines:
//
// During regular LTO, the pass determines the best optimization for each
// virtual call and applies the resolutions directly to virtual calls that are
// eligible for virtual call optimization (i.e. calls that use either of the
// llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
//
// During hybrid Regular/ThinLTO, the pass operates in two phases:
// - Export phase: this is run during the thin link over a single merged module
//   that contains all vtables with !type metadata that participate in the link.
//   The pass computes a resolution for each virtual call and stores it in the
//   type identifier summary.
// - Import phase: this is run during the thin backends over the individual
//   modules. The pass applies the resolutions previously computed during the
//   import phase to each eligible virtual call.
//
// During ThinLTO, the pass operates in two phases:
// - Export phase: this is run during the thin link over the index which
//   contains a summary of all vtables with !type metadata that participate in
//   the link. It computes a resolution for each virtual call and stores it in
//   the type identifier summary. Only single implementation devirtualization
//   is supported.
// - Import phase: (same as with hybrid case above).
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AssumptionCache.h" 
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSummaryIndexYAML.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/PassRegistry.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/GlobPattern.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/FunctionAttrs.h"
#include "llvm/Transforms/Utils/Evaluator.h"
#include <algorithm>
#include <cstddef>
#include <map>
#include <set>
#include <string>

using namespace llvm;
using namespace wholeprogramdevirt;

#define DEBUG_TYPE "wholeprogramdevirt"

static cl::opt<PassSummaryAction> ClSummaryAction(
    "wholeprogramdevirt-summary-action",
    cl::desc("What to do with the summary when running this pass"),
    cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
               clEnumValN(PassSummaryAction::Import, "import",
                          "Import typeid resolutions from summary and globals"),
               clEnumValN(PassSummaryAction::Export, "export",
                          "Export typeid resolutions to summary and globals")),
    cl::Hidden);

static cl::opt<std::string> ClReadSummary(
    "wholeprogramdevirt-read-summary",
    cl::desc(
        "Read summary from given bitcode or YAML file before running pass"),
    cl::Hidden);

static cl::opt<std::string> ClWriteSummary(
    "wholeprogramdevirt-write-summary",
    cl::desc("Write summary to given bitcode or YAML file after running pass. "
             "Output file format is deduced from extension: *.bc means writing "
             "bitcode, otherwise YAML"),
    cl::Hidden);

static cl::opt<unsigned>
    ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
                cl::init(10), cl::ZeroOrMore,
                cl::desc("Maximum number of call targets per "
                         "call site to enable branch funnels"));

static cl::opt<bool>
    PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden,
                       cl::init(false), cl::ZeroOrMore,
                       cl::desc("Print index-based devirtualization messages"));

/// Provide a way to force enable whole program visibility in tests.
/// This is needed to support legacy tests that don't contain
/// !vcall_visibility metadata (the mere presense of type tests
/// previously implied hidden visibility).
cl::opt<bool>
    WholeProgramVisibility("whole-program-visibility", cl::init(false),
                           cl::Hidden, cl::ZeroOrMore,
                           cl::desc("Enable whole program visibility"));

/// Provide a way to force disable whole program for debugging or workarounds,
/// when enabled via the linker.
cl::opt<bool> DisableWholeProgramVisibility(
    "disable-whole-program-visibility", cl::init(false), cl::Hidden,
    cl::ZeroOrMore,
    cl::desc("Disable whole program visibility (overrides enabling options)"));

/// Provide way to prevent certain function from being devirtualized
cl::list<std::string>
    SkipFunctionNames("wholeprogramdevirt-skip",
                      cl::desc("Prevent function(s) from being devirtualized"),
                      cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated);

namespace {
struct PatternList {
  std::vector<GlobPattern> Patterns;
  template <class T> void init(const T &StringList) {
    for (const auto &S : StringList)
      if (Expected<GlobPattern> Pat = GlobPattern::create(S))
        Patterns.push_back(std::move(*Pat));
  }
  bool match(StringRef S) {
    for (const GlobPattern &P : Patterns)
      if (P.match(S))
        return true;
    return false;
  }
};
} // namespace

// Find the minimum offset that we may store a value of size Size bits at. If
// IsAfter is set, look for an offset before the object, otherwise look for an
// offset after the object.
uint64_t
wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
                                     bool IsAfter, uint64_t Size) {
  // Find a minimum offset taking into account only vtable sizes.
  uint64_t MinByte = 0;
  for (const VirtualCallTarget &Target : Targets) {
    if (IsAfter)
      MinByte = std::max(MinByte, Target.minAfterBytes());
    else
      MinByte = std::max(MinByte, Target.minBeforeBytes());
  }

  // Build a vector of arrays of bytes covering, for each target, a slice of the
  // used region (see AccumBitVector::BytesUsed in
  // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
  // this aligns the used regions to start at MinByte.
  //
  // In this example, A, B and C are vtables, # is a byte already allocated for
  // a virtual function pointer, AAAA... (etc.) are the used regions for the
  // vtables and Offset(X) is the value computed for the Offset variable below
  // for X.
  //
  //                    Offset(A)
  //                    |       |
  //                            |MinByte
  // A: ################AAAAAAAA|AAAAAAAA
  // B: ########BBBBBBBBBBBBBBBB|BBBB
  // C: ########################|CCCCCCCCCCCCCCCC
  //            |   Offset(B)   |
  //
  // This code produces the slices of A, B and C that appear after the divider
  // at MinByte.
  std::vector<ArrayRef<uint8_t>> Used;
  for (const VirtualCallTarget &Target : Targets) {
    ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
                                       : Target.TM->Bits->Before.BytesUsed;
    uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
                              : MinByte - Target.minBeforeBytes();

    // Disregard used regions that are smaller than Offset. These are
    // effectively all-free regions that do not need to be checked.
    if (VTUsed.size() > Offset)
      Used.push_back(VTUsed.slice(Offset));
  }

  if (Size == 1) {
    // Find a free bit in each member of Used.
    for (unsigned I = 0;; ++I) {
      uint8_t BitsUsed = 0;
      for (auto &&B : Used)
        if (I < B.size())
          BitsUsed |= B[I];
      if (BitsUsed != 0xff)
        return (MinByte + I) * 8 +
               countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
    }
  } else {
    // Find a free (Size/8) byte region in each member of Used.
    // FIXME: see if alignment helps.
    for (unsigned I = 0;; ++I) {
      for (auto &&B : Used) {
        unsigned Byte = 0;
        while ((I + Byte) < B.size() && Byte < (Size / 8)) {
          if (B[I + Byte])
            goto NextI;
          ++Byte;
        }
      }
      return (MinByte + I) * 8;
    NextI:;
    }
  }
}

void wholeprogramdevirt::setBeforeReturnValues(
    MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
    unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
  if (BitWidth == 1)
    OffsetByte = -(AllocBefore / 8 + 1);
  else
    OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
  OffsetBit = AllocBefore % 8;

  for (VirtualCallTarget &Target : Targets) {
    if (BitWidth == 1)
      Target.setBeforeBit(AllocBefore);
    else
      Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
  }
}

void wholeprogramdevirt::setAfterReturnValues(
    MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
    unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
  if (BitWidth == 1)
    OffsetByte = AllocAfter / 8;
  else
    OffsetByte = (AllocAfter + 7) / 8;
  OffsetBit = AllocAfter % 8;

  for (VirtualCallTarget &Target : Targets) {
    if (BitWidth == 1)
      Target.setAfterBit(AllocAfter);
    else
      Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
  }
}

VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
    : Fn(Fn), TM(TM),
      IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}

namespace {

// A slot in a set of virtual tables. The TypeID identifies the set of virtual
// tables, and the ByteOffset is the offset in bytes from the address point to
// the virtual function pointer.
struct VTableSlot {
  Metadata *TypeID;
  uint64_t ByteOffset;
};

} // end anonymous namespace

namespace llvm {

template <> struct DenseMapInfo<VTableSlot> {
  static VTableSlot getEmptyKey() {
    return {DenseMapInfo<Metadata *>::getEmptyKey(),
            DenseMapInfo<uint64_t>::getEmptyKey()};
  }
  static VTableSlot getTombstoneKey() {
    return {DenseMapInfo<Metadata *>::getTombstoneKey(),
            DenseMapInfo<uint64_t>::getTombstoneKey()};
  }
  static unsigned getHashValue(const VTableSlot &I) {
    return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
           DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
  }
  static bool isEqual(const VTableSlot &LHS,
                      const VTableSlot &RHS) {
    return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
  }
};

template <> struct DenseMapInfo<VTableSlotSummary> {
  static VTableSlotSummary getEmptyKey() {
    return {DenseMapInfo<StringRef>::getEmptyKey(),
            DenseMapInfo<uint64_t>::getEmptyKey()};
  }
  static VTableSlotSummary getTombstoneKey() {
    return {DenseMapInfo<StringRef>::getTombstoneKey(),
            DenseMapInfo<uint64_t>::getTombstoneKey()};
  }
  static unsigned getHashValue(const VTableSlotSummary &I) {
    return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^
           DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
  }
  static bool isEqual(const VTableSlotSummary &LHS,
                      const VTableSlotSummary &RHS) {
    return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
  }
};

} // end namespace llvm

namespace {

// A virtual call site. VTable is the loaded virtual table pointer, and CS is
// the indirect virtual call.
struct VirtualCallSite {
  Value *VTable = nullptr;
  CallBase &CB;

  // If non-null, this field points to the associated unsafe use count stored in
  // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
  // of that field for details.
  unsigned *NumUnsafeUses = nullptr;

  void
  emitRemark(const StringRef OptName, const StringRef TargetName,
             function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
    Function *F = CB.getCaller();
    DebugLoc DLoc = CB.getDebugLoc();
    BasicBlock *Block = CB.getParent();

    using namespace ore;
    OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
                      << NV("Optimization", OptName)
                      << ": devirtualized a call to "
                      << NV("FunctionName", TargetName));
  }

  void replaceAndErase(
      const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
      function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
      Value *New) {
    if (RemarksEnabled)
      emitRemark(OptName, TargetName, OREGetter);
    CB.replaceAllUsesWith(New);
    if (auto *II = dyn_cast<InvokeInst>(&CB)) {
      BranchInst::Create(II->getNormalDest(), &CB);
      II->getUnwindDest()->removePredecessor(II->getParent());
    }
    CB.eraseFromParent();
    // This use is no longer unsafe.
    if (NumUnsafeUses)
      --*NumUnsafeUses;
  }
};

// Call site information collected for a specific VTableSlot and possibly a list
// of constant integer arguments. The grouping by arguments is handled by the
// VTableSlotInfo class.
struct CallSiteInfo {
  /// The set of call sites for this slot. Used during regular LTO and the
  /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
  /// call sites that appear in the merged module itself); in each of these
  /// cases we are directly operating on the call sites at the IR level.
  std::vector<VirtualCallSite> CallSites;

  /// Whether all call sites represented by this CallSiteInfo, including those
  /// in summaries, have been devirtualized. This starts off as true because a
  /// default constructed CallSiteInfo represents no call sites.
  bool AllCallSitesDevirted = true;

  // These fields are used during the export phase of ThinLTO and reflect
  // information collected from function summaries.

  /// Whether any function summary contains an llvm.assume(llvm.type.test) for
  /// this slot.
  bool SummaryHasTypeTestAssumeUsers = false;

  /// CFI-specific: a vector containing the list of function summaries that use
  /// the llvm.type.checked.load intrinsic and therefore will require
  /// resolutions for llvm.type.test in order to implement CFI checks if
  /// devirtualization was unsuccessful. If devirtualization was successful, the
  /// pass will clear this vector by calling markDevirt(). If at the end of the
  /// pass the vector is non-empty, we will need to add a use of llvm.type.test
  /// to each of the function summaries in the vector.
  std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
  std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers;

  bool isExported() const {
    return SummaryHasTypeTestAssumeUsers ||
           !SummaryTypeCheckedLoadUsers.empty();
  }

  void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
    SummaryTypeCheckedLoadUsers.push_back(FS);
    AllCallSitesDevirted = false;
  }

  void addSummaryTypeTestAssumeUser(FunctionSummary *FS) {
    SummaryTypeTestAssumeUsers.push_back(FS);
    SummaryHasTypeTestAssumeUsers = true;
    AllCallSitesDevirted = false;
  }

  void markDevirt() {
    AllCallSitesDevirted = true;

    // As explained in the comment for SummaryTypeCheckedLoadUsers.
    SummaryTypeCheckedLoadUsers.clear();
  }
};

// Call site information collected for a specific VTableSlot.
struct VTableSlotInfo {
  // The set of call sites which do not have all constant integer arguments
  // (excluding "this").
  CallSiteInfo CSInfo;

  // The set of call sites with all constant integer arguments (excluding
  // "this"), grouped by argument list.
  std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;

  void addCallSite(Value *VTable, CallBase &CB, unsigned *NumUnsafeUses);

private:
  CallSiteInfo &findCallSiteInfo(CallBase &CB);
};

CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallBase &CB) {
  std::vector<uint64_t> Args;
  auto *CBType = dyn_cast<IntegerType>(CB.getType());
  if (!CBType || CBType->getBitWidth() > 64 || CB.arg_empty())
    return CSInfo;
  for (auto &&Arg : drop_begin(CB.args())) { 
    auto *CI = dyn_cast<ConstantInt>(Arg);
    if (!CI || CI->getBitWidth() > 64)
      return CSInfo;
    Args.push_back(CI->getZExtValue());
  }
  return ConstCSInfo[Args];
}

void VTableSlotInfo::addCallSite(Value *VTable, CallBase &CB,
                                 unsigned *NumUnsafeUses) {
  auto &CSI = findCallSiteInfo(CB);
  CSI.AllCallSitesDevirted = false;
  CSI.CallSites.push_back({VTable, CB, NumUnsafeUses});
}

struct DevirtModule {
  Module &M;
  function_ref<AAResults &(Function &)> AARGetter;
  function_ref<DominatorTree &(Function &)> LookupDomTree;

  ModuleSummaryIndex *ExportSummary;
  const ModuleSummaryIndex *ImportSummary;

  IntegerType *Int8Ty;
  PointerType *Int8PtrTy;
  IntegerType *Int32Ty;
  IntegerType *Int64Ty;
  IntegerType *IntPtrTy;
  /// Sizeless array type, used for imported vtables. This provides a signal
  /// to analyzers that these imports may alias, as they do for example
  /// when multiple unique return values occur in the same vtable.
  ArrayType *Int8Arr0Ty;

  bool RemarksEnabled;
  function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;

  MapVector<VTableSlot, VTableSlotInfo> CallSlots;

  // This map keeps track of the number of "unsafe" uses of a loaded function
  // pointer. The key is the associated llvm.type.test intrinsic call generated
  // by this pass. An unsafe use is one that calls the loaded function pointer
  // directly. Every time we eliminate an unsafe use (for example, by
  // devirtualizing it or by applying virtual constant propagation), we
  // decrement the value stored in this map. If a value reaches zero, we can
  // eliminate the type check by RAUWing the associated llvm.type.test call with
  // true.
  std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
  PatternList FunctionsToSkip;

  DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
               function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
               function_ref<DominatorTree &(Function &)> LookupDomTree,
               ModuleSummaryIndex *ExportSummary,
               const ModuleSummaryIndex *ImportSummary)
      : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree),
        ExportSummary(ExportSummary), ImportSummary(ImportSummary),
        Int8Ty(Type::getInt8Ty(M.getContext())),
        Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
        Int32Ty(Type::getInt32Ty(M.getContext())),
        Int64Ty(Type::getInt64Ty(M.getContext())),
        IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
        Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M.getContext()), 0)),
        RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
    assert(!(ExportSummary && ImportSummary));
    FunctionsToSkip.init(SkipFunctionNames);
  }

  bool areRemarksEnabled();

  void
  scanTypeTestUsers(Function *TypeTestFunc,
                    DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
  void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);

  void buildTypeIdentifierMap(
      std::vector<VTableBits> &Bits,
      DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
  bool
  tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
                            const std::set<TypeMemberInfo> &TypeMemberInfos,
                            uint64_t ByteOffset);

  void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
                             bool &IsExported);
  bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary,
                           MutableArrayRef<VirtualCallTarget> TargetsForSlot,
                           VTableSlotInfo &SlotInfo,
                           WholeProgramDevirtResolution *Res);

  void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
                              bool &IsExported);
  void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
                            VTableSlotInfo &SlotInfo,
                            WholeProgramDevirtResolution *Res, VTableSlot Slot);

  bool tryEvaluateFunctionsWithArgs(
      MutableArrayRef<VirtualCallTarget> TargetsForSlot,
      ArrayRef<uint64_t> Args);

  void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
                             uint64_t TheRetVal);
  bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
                           CallSiteInfo &CSInfo,
                           WholeProgramDevirtResolution::ByArg *Res);

  // Returns the global symbol name that is used to export information about the
  // given vtable slot and list of arguments.
  std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
                            StringRef Name);

  bool shouldExportConstantsAsAbsoluteSymbols();

  // This function is called during the export phase to create a symbol
  // definition containing information about the given vtable slot and list of
  // arguments.
  void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
                    Constant *C);
  void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
                      uint32_t Const, uint32_t &Storage);

  // This function is called during the import phase to create a reference to
  // the symbol definition created during the export phase.
  Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
                         StringRef Name);
  Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
                           StringRef Name, IntegerType *IntTy,
                           uint32_t Storage);

  Constant *getMemberAddr(const TypeMemberInfo *M);

  void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
                            Constant *UniqueMemberAddr);
  bool tryUniqueRetValOpt(unsigned BitWidth,
                          MutableArrayRef<VirtualCallTarget> TargetsForSlot,
                          CallSiteInfo &CSInfo,
                          WholeProgramDevirtResolution::ByArg *Res,
                          VTableSlot Slot, ArrayRef<uint64_t> Args);

  void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
                             Constant *Byte, Constant *Bit);
  bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
                           VTableSlotInfo &SlotInfo,
                           WholeProgramDevirtResolution *Res, VTableSlot Slot);

  void rebuildGlobal(VTableBits &B);

  // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
  void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);

  // If we were able to eliminate all unsafe uses for a type checked load,
  // eliminate the associated type tests by replacing them with true.
  void removeRedundantTypeTests();

  bool run();

  // Lower the module using the action and summary passed as command line
  // arguments. For testing purposes only.
  static bool
  runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter,
                function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
                function_ref<DominatorTree &(Function &)> LookupDomTree);
};

struct DevirtIndex {
  ModuleSummaryIndex &ExportSummary;
  // The set in which to record GUIDs exported from their module by
  // devirtualization, used by client to ensure they are not internalized.
  std::set<GlobalValue::GUID> &ExportedGUIDs;
  // A map in which to record the information necessary to locate the WPD
  // resolution for local targets in case they are exported by cross module
  // importing.
  std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap;

  MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots;

  PatternList FunctionsToSkip;

  DevirtIndex(
      ModuleSummaryIndex &ExportSummary,
      std::set<GlobalValue::GUID> &ExportedGUIDs,
      std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap)
      : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs),
        LocalWPDTargetsMap(LocalWPDTargetsMap) {
    FunctionsToSkip.init(SkipFunctionNames);
  }

  bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot,
                                 const TypeIdCompatibleVtableInfo TIdInfo,
                                 uint64_t ByteOffset);

  bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
                           VTableSlotSummary &SlotSummary,
                           VTableSlotInfo &SlotInfo,
                           WholeProgramDevirtResolution *Res,
                           std::set<ValueInfo> &DevirtTargets);

  void run();
};

struct WholeProgramDevirt : public ModulePass {
  static char ID;

  bool UseCommandLine = false;

  ModuleSummaryIndex *ExportSummary = nullptr;
  const ModuleSummaryIndex *ImportSummary = nullptr;

  WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) {
    initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
  }

  WholeProgramDevirt(ModuleSummaryIndex *ExportSummary,
                     const ModuleSummaryIndex *ImportSummary)
      : ModulePass(ID), ExportSummary(ExportSummary),
        ImportSummary(ImportSummary) {
    initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
  }

  bool runOnModule(Module &M) override {
    if (skipModule(M))
      return false;

    // In the new pass manager, we can request the optimization
    // remark emitter pass on a per-function-basis, which the
    // OREGetter will do for us.
    // In the old pass manager, this is harder, so we just build
    // an optimization remark emitter on the fly, when we need it.
    std::unique_ptr<OptimizationRemarkEmitter> ORE;
    auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
      ORE = std::make_unique<OptimizationRemarkEmitter>(F);
      return *ORE;
    };

    auto LookupDomTree = [this](Function &F) -> DominatorTree & {
      return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
    };

    if (UseCommandLine)
      return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter,
                                         LookupDomTree);

    return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree,
                        ExportSummary, ImportSummary)
        .run();
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
  }
};

} // end anonymous namespace

INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt",
                      "Whole program devirtualization", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt",
                    "Whole program devirtualization", false, false)
char WholeProgramDevirt::ID = 0;

ModulePass *
llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary,
                                   const ModuleSummaryIndex *ImportSummary) {
  return new WholeProgramDevirt(ExportSummary, ImportSummary);
}

PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
                                              ModuleAnalysisManager &AM) {
  auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
  auto AARGetter = [&](Function &F) -> AAResults & {
    return FAM.getResult<AAManager>(F);
  };
  auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
    return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
  };
  auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
    return FAM.getResult<DominatorTreeAnalysis>(F);
  };
  if (UseCommandLine) { 
    if (DevirtModule::runForTesting(M, AARGetter, OREGetter, LookupDomTree)) 
      return PreservedAnalyses::all(); 
    return PreservedAnalyses::none(); 
  } 
  if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary,
                    ImportSummary)
           .run())
    return PreservedAnalyses::all();
  return PreservedAnalyses::none();
}

// Enable whole program visibility if enabled by client (e.g. linker) or
// internal option, and not force disabled.
static bool hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO) {
  return (WholeProgramVisibilityEnabledInLTO || WholeProgramVisibility) &&
         !DisableWholeProgramVisibility;
}

namespace llvm {

/// If whole program visibility asserted, then upgrade all public vcall
/// visibility metadata on vtable definitions to linkage unit visibility in
/// Module IR (for regular or hybrid LTO).
void updateVCallVisibilityInModule(Module &M,
                                   bool WholeProgramVisibilityEnabledInLTO) {
  if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
    return;
  for (GlobalVariable &GV : M.globals())
    // Add linkage unit visibility to any variable with type metadata, which are
    // the vtable definitions. We won't have an existing vcall_visibility
    // metadata on vtable definitions with public visibility.
    if (GV.hasMetadata(LLVMContext::MD_type) &&
        GV.getVCallVisibility() == GlobalObject::VCallVisibilityPublic)
      GV.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit);
}

/// If whole program visibility asserted, then upgrade all public vcall
/// visibility metadata on vtable definition summaries to linkage unit
/// visibility in Module summary index (for ThinLTO).
void updateVCallVisibilityInIndex(ModuleSummaryIndex &Index,
                                  bool WholeProgramVisibilityEnabledInLTO) {
  if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
    return;
  for (auto &P : Index) {
    for (auto &S : P.second.SummaryList) {
      auto *GVar = dyn_cast<GlobalVarSummary>(S.get());
      if (!GVar || GVar->vTableFuncs().empty() ||
          GVar->getVCallVisibility() != GlobalObject::VCallVisibilityPublic)
        continue;
      GVar->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit);
    }
  }
}

void runWholeProgramDevirtOnIndex(
    ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs,
    std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
  DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run();
}

void updateIndexWPDForExports(
    ModuleSummaryIndex &Summary,
    function_ref<bool(StringRef, ValueInfo)> isExported,
    std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
  for (auto &T : LocalWPDTargetsMap) {
    auto &VI = T.first;
    // This was enforced earlier during trySingleImplDevirt.
    assert(VI.getSummaryList().size() == 1 &&
           "Devirt of local target has more than one copy");
    auto &S = VI.getSummaryList()[0];
    if (!isExported(S->modulePath(), VI))
      continue;

    // It's been exported by a cross module import.
    for (auto &SlotSummary : T.second) {
      auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID);
      assert(TIdSum);
      auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset);
      assert(WPDRes != TIdSum->WPDRes.end());
      WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
          WPDRes->second.SingleImplName,
          Summary.getModuleHash(S->modulePath()));
    }
  }
}

} // end namespace llvm

static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) {
  // Check that summary index contains regular LTO module when performing
  // export to prevent occasional use of index from pure ThinLTO compilation
  // (-fno-split-lto-module). This kind of summary index is passed to
  // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting.
  const auto &ModPaths = Summary->modulePaths();
  if (ClSummaryAction != PassSummaryAction::Import &&
      ModPaths.find(ModuleSummaryIndex::getRegularLTOModuleName()) ==
          ModPaths.end())
    return createStringError(
        errc::invalid_argument,
        "combined summary should contain Regular LTO module");
  return ErrorSuccess();
}

bool DevirtModule::runForTesting(
    Module &M, function_ref<AAResults &(Function &)> AARGetter,
    function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
    function_ref<DominatorTree &(Function &)> LookupDomTree) {
  std::unique_ptr<ModuleSummaryIndex> Summary =
      std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);

  // Handle the command-line summary arguments. This code is for testing
  // purposes only, so we handle errors directly.
  if (!ClReadSummary.empty()) {
    ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
                          ": ");
    auto ReadSummaryFile =
        ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
    if (Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr =
            getModuleSummaryIndex(*ReadSummaryFile)) {
      Summary = std::move(*SummaryOrErr);
      ExitOnErr(checkCombinedSummaryForTesting(Summary.get()));
    } else {
      // Try YAML if we've failed with bitcode.
      consumeError(SummaryOrErr.takeError());
      yaml::Input In(ReadSummaryFile->getBuffer());
      In >> *Summary;
      ExitOnErr(errorCodeToError(In.error()));
    }
  }

  bool Changed =
      DevirtModule(M, AARGetter, OREGetter, LookupDomTree,
                   ClSummaryAction == PassSummaryAction::Export ? Summary.get()
                                                                : nullptr,
                   ClSummaryAction == PassSummaryAction::Import ? Summary.get()
                                                                : nullptr)
          .run();

  if (!ClWriteSummary.empty()) {
    ExitOnError ExitOnErr(
        "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
    std::error_code EC;
    if (StringRef(ClWriteSummary).endswith(".bc")) {
      raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None);
      ExitOnErr(errorCodeToError(EC));
      WriteIndexToFile(*Summary, OS);
    } else {
      raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_Text);
      ExitOnErr(errorCodeToError(EC));
      yaml::Output Out(OS);
      Out << *Summary;
    }
  }

  return Changed;
}

void DevirtModule::buildTypeIdentifierMap(
    std::vector<VTableBits> &Bits,
    DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
  DenseMap<GlobalVariable *, VTableBits *> GVToBits;
  Bits.reserve(M.getGlobalList().size());
  SmallVector<MDNode *, 2> Types;
  for (GlobalVariable &GV : M.globals()) {
    Types.clear();
    GV.getMetadata(LLVMContext::MD_type, Types);
    if (GV.isDeclaration() || Types.empty())
      continue;

    VTableBits *&BitsPtr = GVToBits[&GV];
    if (!BitsPtr) {
      Bits.emplace_back();
      Bits.back().GV = &GV;
      Bits.back().ObjectSize =
          M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
      BitsPtr = &Bits.back();
    }

    for (MDNode *Type : Types) {
      auto TypeID = Type->getOperand(1).get();

      uint64_t Offset =
          cast<ConstantInt>(
              cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
              ->getZExtValue();

      TypeIdMap[TypeID].insert({BitsPtr, Offset});
    }
  }
}

bool DevirtModule::tryFindVirtualCallTargets(
    std::vector<VirtualCallTarget> &TargetsForSlot,
    const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
  for (const TypeMemberInfo &TM : TypeMemberInfos) {
    if (!TM.Bits->GV->isConstant())
      return false;

    // We cannot perform whole program devirtualization analysis on a vtable
    // with public LTO visibility.
    if (TM.Bits->GV->getVCallVisibility() ==
        GlobalObject::VCallVisibilityPublic)
      return false;

    Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
                                       TM.Offset + ByteOffset, M);
    if (!Ptr)
      return false;

    auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts());
    if (!Fn)
      return false;

    if (FunctionsToSkip.match(Fn->getName()))
      return false;

    // We can disregard __cxa_pure_virtual as a possible call target, as
    // calls to pure virtuals are UB.
    if (Fn->getName() == "__cxa_pure_virtual")
      continue;

    TargetsForSlot.push_back({Fn, &TM});
  }

  // Give up if we couldn't find any targets.
  return !TargetsForSlot.empty();
}

bool DevirtIndex::tryFindVirtualCallTargets(
    std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo,
    uint64_t ByteOffset) {
  for (const TypeIdOffsetVtableInfo &P : TIdInfo) {
    // Find the first non-available_externally linkage vtable initializer.
    // We can have multiple available_externally, linkonce_odr and weak_odr
    // vtable initializers, however we want to skip available_externally as they
    // do not have type metadata attached, and therefore the summary will not
    // contain any vtable functions. We can also have multiple external
    // vtable initializers in the case of comdats, which we cannot check here.
    // The linker should give an error in this case.
    //
    // Also, handle the case of same-named local Vtables with the same path
    // and therefore the same GUID. This can happen if there isn't enough
    // distinguishing path when compiling the source file. In that case we
    // conservatively return false early.
    const GlobalVarSummary *VS = nullptr;
    bool LocalFound = false;
    for (auto &S : P.VTableVI.getSummaryList()) {
      if (GlobalValue::isLocalLinkage(S->linkage())) {
        if (LocalFound)
          return false;
        LocalFound = true;
      }
      if (!GlobalValue::isAvailableExternallyLinkage(S->linkage())) {
        VS = cast<GlobalVarSummary>(S->getBaseObject());
        // We cannot perform whole program devirtualization analysis on a vtable
        // with public LTO visibility.
        if (VS->getVCallVisibility() == GlobalObject::VCallVisibilityPublic)
          return false;
      }
    }
    if (!VS->isLive())
      continue;
    for (auto VTP : VS->vTableFuncs()) {
      if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset)
        continue;

      TargetsForSlot.push_back(VTP.FuncVI);
    }
  }

  // Give up if we couldn't find any targets.
  return !TargetsForSlot.empty();
}

void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
                                         Constant *TheFn, bool &IsExported) {
  // Don't devirtualize function if we're told to skip it 
  // in -wholeprogramdevirt-skip. 
  if (FunctionsToSkip.match(TheFn->stripPointerCasts()->getName())) 
    return; 
  auto Apply = [&](CallSiteInfo &CSInfo) {
    for (auto &&VCallSite : CSInfo.CallSites) {
      if (RemarksEnabled)
        VCallSite.emitRemark("single-impl",
                             TheFn->stripPointerCasts()->getName(), OREGetter);
      VCallSite.CB.setCalledOperand(ConstantExpr::getBitCast(
          TheFn, VCallSite.CB.getCalledOperand()->getType()));
      // This use is no longer unsafe.
      if (VCallSite.NumUnsafeUses)
        --*VCallSite.NumUnsafeUses;
    }
    if (CSInfo.isExported())
      IsExported = true;
    CSInfo.markDevirt();
  };
  Apply(SlotInfo.CSInfo);
  for (auto &P : SlotInfo.ConstCSInfo)
    Apply(P.second);
}

static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) {
  // We can't add calls if we haven't seen a definition
  if (Callee.getSummaryList().empty())
    return false;

  // Insert calls into the summary index so that the devirtualized targets
  // are eligible for import.
  // FIXME: Annotate type tests with hotness. For now, mark these as hot
  // to better ensure we have the opportunity to inline them.
  bool IsExported = false;
  auto &S = Callee.getSummaryList()[0];
  CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0);
  auto AddCalls = [&](CallSiteInfo &CSInfo) {
    for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) {
      FS->addCall({Callee, CI});
      IsExported |= S->modulePath() != FS->modulePath();
    }
    for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) {
      FS->addCall({Callee, CI});
      IsExported |= S->modulePath() != FS->modulePath();
    }
  };
  AddCalls(SlotInfo.CSInfo);
  for (auto &P : SlotInfo.ConstCSInfo)
    AddCalls(P.second);
  return IsExported;
}

bool DevirtModule::trySingleImplDevirt(
    ModuleSummaryIndex *ExportSummary,
    MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
    WholeProgramDevirtResolution *Res) {
  // See if the program contains a single implementation of this virtual
  // function.
  Function *TheFn = TargetsForSlot[0].Fn;
  for (auto &&Target : TargetsForSlot)
    if (TheFn != Target.Fn)
      return false;

  // If so, update each call site to call that implementation directly.
  if (RemarksEnabled)
    TargetsForSlot[0].WasDevirt = true;

  bool IsExported = false;
  applySingleImplDevirt(SlotInfo, TheFn, IsExported);
  if (!IsExported)
    return false;

  // If the only implementation has local linkage, we must promote to external
  // to make it visible to thin LTO objects. We can only get here during the
  // ThinLTO export phase.
  if (TheFn->hasLocalLinkage()) {
    std::string NewName = (TheFn->getName() + "$merged").str();

    // Since we are renaming the function, any comdats with the same name must
    // also be renamed. This is required when targeting COFF, as the comdat name
    // must match one of the names of the symbols in the comdat.
    if (Comdat *C = TheFn->getComdat()) {
      if (C->getName() == TheFn->getName()) {
        Comdat *NewC = M.getOrInsertComdat(NewName);
        NewC->setSelectionKind(C->getSelectionKind());
        for (GlobalObject &GO : M.global_objects())
          if (GO.getComdat() == C)
            GO.setComdat(NewC);
      }
    }

    TheFn->setLinkage(GlobalValue::ExternalLinkage);
    TheFn->setVisibility(GlobalValue::HiddenVisibility);
    TheFn->setName(NewName);
  }
  if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID()))
    // Any needed promotion of 'TheFn' has already been done during
    // LTO unit split, so we can ignore return value of AddCalls.
    AddCalls(SlotInfo, TheFnVI);

  Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
  Res->SingleImplName = std::string(TheFn->getName());

  return true;
}

bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
                                      VTableSlotSummary &SlotSummary,
                                      VTableSlotInfo &SlotInfo,
                                      WholeProgramDevirtResolution *Res,
                                      std::set<ValueInfo> &DevirtTargets) {
  // See if the program contains a single implementation of this virtual
  // function.
  auto TheFn = TargetsForSlot[0];
  for (auto &&Target : TargetsForSlot)
    if (TheFn != Target)
      return false;

  // Don't devirtualize if we don't have target definition.
  auto Size = TheFn.getSummaryList().size();
  if (!Size)
    return false;

  // Don't devirtualize function if we're told to skip it
  // in -wholeprogramdevirt-skip.
  if (FunctionsToSkip.match(TheFn.name()))
    return false;

  // If the summary list contains multiple summaries where at least one is
  // a local, give up, as we won't know which (possibly promoted) name to use.
  for (auto &S : TheFn.getSummaryList())
    if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1)
      return false;

  // Collect functions devirtualized at least for one call site for stats.
  if (PrintSummaryDevirt)
    DevirtTargets.insert(TheFn);

  auto &S = TheFn.getSummaryList()[0];
  bool IsExported = AddCalls(SlotInfo, TheFn);
  if (IsExported)
    ExportedGUIDs.insert(TheFn.getGUID());

  // Record in summary for use in devirtualization during the ThinLTO import
  // step.
  Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
  if (GlobalValue::isLocalLinkage(S->linkage())) {
    if (IsExported)
      // If target is a local function and we are exporting it by
      // devirtualizing a call in another module, we need to record the
      // promoted name.
      Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
          TheFn.name(), ExportSummary.getModuleHash(S->modulePath()));
    else {
      LocalWPDTargetsMap[TheFn].push_back(SlotSummary);
      Res->SingleImplName = std::string(TheFn.name());
    }
  } else
    Res->SingleImplName = std::string(TheFn.name());

  // Name will be empty if this thin link driven off of serialized combined
  // index (e.g. llvm-lto). However, WPD is not supported/invoked for the
  // legacy LTO API anyway.
  assert(!Res->SingleImplName.empty());

  return true;
}

void DevirtModule::tryICallBranchFunnel(
    MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
    WholeProgramDevirtResolution *Res, VTableSlot Slot) {
  Triple T(M.getTargetTriple());
  if (T.getArch() != Triple::x86_64)
    return;

  if (TargetsForSlot.size() > ClThreshold)
    return;

  bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
  if (!HasNonDevirt)
    for (auto &P : SlotInfo.ConstCSInfo)
      if (!P.second.AllCallSitesDevirted) {
        HasNonDevirt = true;
        break;
      }

  if (!HasNonDevirt)
    return;

  FunctionType *FT =
      FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
  Function *JT;
  if (isa<MDString>(Slot.TypeID)) {
    JT = Function::Create(FT, Function::ExternalLinkage,
                          M.getDataLayout().getProgramAddressSpace(),
                          getGlobalName(Slot, {}, "branch_funnel"), &M);
    JT->setVisibility(GlobalValue::HiddenVisibility);
  } else {
    JT = Function::Create(FT, Function::InternalLinkage,
                          M.getDataLayout().getProgramAddressSpace(),
                          "branch_funnel", &M);
  }
  JT->addAttribute(1, Attribute::Nest);

  std::vector<Value *> JTArgs;
  JTArgs.push_back(JT->arg_begin());
  for (auto &T : TargetsForSlot) {
    JTArgs.push_back(getMemberAddr(T.TM));
    JTArgs.push_back(T.Fn);
  }

  BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
  Function *Intr =
      Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});

  auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
  CI->setTailCallKind(CallInst::TCK_MustTail);
  ReturnInst::Create(M.getContext(), nullptr, BB);

  bool IsExported = false;
  applyICallBranchFunnel(SlotInfo, JT, IsExported);
  if (IsExported)
    Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
}

void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
                                          Constant *JT, bool &IsExported) {
  auto Apply = [&](CallSiteInfo &CSInfo) {
    if (CSInfo.isExported())
      IsExported = true;
    if (CSInfo.AllCallSitesDevirted)
      return;
    for (auto &&VCallSite : CSInfo.CallSites) {
      CallBase &CB = VCallSite.CB;

      // Jump tables are only profitable if the retpoline mitigation is enabled.
      Attribute FSAttr = CB.getCaller()->getFnAttribute("target-features");
      if (!FSAttr.isValid() || 
          !FSAttr.getValueAsString().contains("+retpoline"))
        continue;

      if (RemarksEnabled)
        VCallSite.emitRemark("branch-funnel",
                             JT->stripPointerCasts()->getName(), OREGetter);

      // Pass the address of the vtable in the nest register, which is r10 on
      // x86_64.
      std::vector<Type *> NewArgs;
      NewArgs.push_back(Int8PtrTy);
      append_range(NewArgs, CB.getFunctionType()->params()); 
      FunctionType *NewFT =
          FunctionType::get(CB.getFunctionType()->getReturnType(), NewArgs,
                            CB.getFunctionType()->isVarArg());
      PointerType *NewFTPtr = PointerType::getUnqual(NewFT);

      IRBuilder<> IRB(&CB);
      std::vector<Value *> Args;
      Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy));
      llvm::append_range(Args, CB.args()); 

      CallBase *NewCS = nullptr;
      if (isa<CallInst>(CB))
        NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args);
      else
        NewCS = IRB.CreateInvoke(NewFT, IRB.CreateBitCast(JT, NewFTPtr),
                                 cast<InvokeInst>(CB).getNormalDest(),
                                 cast<InvokeInst>(CB).getUnwindDest(), Args);
      NewCS->setCallingConv(CB.getCallingConv());

      AttributeList Attrs = CB.getAttributes();
      std::vector<AttributeSet> NewArgAttrs;
      NewArgAttrs.push_back(AttributeSet::get(
          M.getContext(), ArrayRef<Attribute>{Attribute::get(
                              M.getContext(), Attribute::Nest)}));
      for (unsigned I = 0; I + 2 <  Attrs.getNumAttrSets(); ++I)
        NewArgAttrs.push_back(Attrs.getParamAttributes(I));
      NewCS->setAttributes(
          AttributeList::get(M.getContext(), Attrs.getFnAttributes(),
                             Attrs.getRetAttributes(), NewArgAttrs));

      CB.replaceAllUsesWith(NewCS);
      CB.eraseFromParent();

      // This use is no longer unsafe.
      if (VCallSite.NumUnsafeUses)
        --*VCallSite.NumUnsafeUses;
    }
    // Don't mark as devirtualized because there may be callers compiled without
    // retpoline mitigation, which would mean that they are lowered to
    // llvm.type.test and therefore require an llvm.type.test resolution for the
    // type identifier.
  };
  Apply(SlotInfo.CSInfo);
  for (auto &P : SlotInfo.ConstCSInfo)
    Apply(P.second);
}

bool DevirtModule::tryEvaluateFunctionsWithArgs(
    MutableArrayRef<VirtualCallTarget> TargetsForSlot,
    ArrayRef<uint64_t> Args) {
  // Evaluate each function and store the result in each target's RetVal
  // field.
  for (VirtualCallTarget &Target : TargetsForSlot) {
    if (Target.Fn->arg_size() != Args.size() + 1)
      return false;

    Evaluator Eval(M.getDataLayout(), nullptr);
    SmallVector<Constant *, 2> EvalArgs;
    EvalArgs.push_back(
        Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
    for (unsigned I = 0; I != Args.size(); ++I) {
      auto *ArgTy = dyn_cast<IntegerType>(
          Target.Fn->getFunctionType()->getParamType(I + 1));
      if (!ArgTy)
        return false;
      EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
    }

    Constant *RetVal;
    if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
        !isa<ConstantInt>(RetVal))
      return false;
    Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
  }
  return true;
}

void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
                                         uint64_t TheRetVal) {
  for (auto Call : CSInfo.CallSites)
    Call.replaceAndErase(
        "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
        ConstantInt::get(cast<IntegerType>(Call.CB.getType()), TheRetVal));
  CSInfo.markDevirt();
}

bool DevirtModule::tryUniformRetValOpt(
    MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
    WholeProgramDevirtResolution::ByArg *Res) {
  // Uniform return value optimization. If all functions return the same
  // constant, replace all calls with that constant.
  uint64_t TheRetVal = TargetsForSlot[0].RetVal;
  for (const VirtualCallTarget &Target : TargetsForSlot)
    if (Target.RetVal != TheRetVal)
      return false;

  if (CSInfo.isExported()) {
    Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
    Res->Info = TheRetVal;
  }

  applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
  if (RemarksEnabled)
    for (auto &&Target : TargetsForSlot)
      Target.WasDevirt = true;
  return true;
}

std::string DevirtModule::getGlobalName(VTableSlot Slot,
                                        ArrayRef<uint64_t> Args,
                                        StringRef Name) {
  std::string FullName = "__typeid_";
  raw_string_ostream OS(FullName);
  OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
  for (uint64_t Arg : Args)
    OS << '_' << Arg;
  OS << '_' << Name;
  return OS.str();
}

bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
  Triple T(M.getTargetTriple());
  return T.isX86() && T.getObjectFormat() == Triple::ELF;
}

void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
                                StringRef Name, Constant *C) {
  GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
                                        getGlobalName(Slot, Args, Name), C, &M);
  GA->setVisibility(GlobalValue::HiddenVisibility);
}

void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
                                  StringRef Name, uint32_t Const,
                                  uint32_t &Storage) {
  if (shouldExportConstantsAsAbsoluteSymbols()) {
    exportGlobal(
        Slot, Args, Name,
        ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
    return;
  }

  Storage = Const;
}

Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
                                     StringRef Name) {
  Constant *C =
      M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Arr0Ty);
  auto *GV = dyn_cast<GlobalVariable>(C);
  if (GV)
    GV->setVisibility(GlobalValue::HiddenVisibility);
  return C;
}

Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
                                       StringRef Name, IntegerType *IntTy,
                                       uint32_t Storage) {
  if (!shouldExportConstantsAsAbsoluteSymbols())
    return ConstantInt::get(IntTy, Storage);

  Constant *C = importGlobal(Slot, Args, Name);
  auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
  C = ConstantExpr::getPtrToInt(C, IntTy);

  // We only need to set metadata if the global is newly created, in which
  // case it would not have hidden visibility.
  if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
    return C;

  auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
    auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
    auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
    GV->setMetadata(LLVMContext::MD_absolute_symbol,
                    MDNode::get(M.getContext(), {MinC, MaxC}));
  };
  unsigned AbsWidth = IntTy->getBitWidth();
  if (AbsWidth == IntPtrTy->getBitWidth())
    SetAbsRange(~0ull, ~0ull); // Full set.
  else
    SetAbsRange(0, 1ull << AbsWidth);
  return C;
}

void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
                                        bool IsOne,
                                        Constant *UniqueMemberAddr) {
  for (auto &&Call : CSInfo.CallSites) {
    IRBuilder<> B(&Call.CB);
    Value *Cmp =
        B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, Call.VTable,
                     B.CreateBitCast(UniqueMemberAddr, Call.VTable->getType()));
    Cmp = B.CreateZExt(Cmp, Call.CB.getType());
    Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
                         Cmp);
  }
  CSInfo.markDevirt();
}

Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
  Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy);
  return ConstantExpr::getGetElementPtr(Int8Ty, C,
                                        ConstantInt::get(Int64Ty, M->Offset));
}

bool DevirtModule::tryUniqueRetValOpt(
    unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
    CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
    VTableSlot Slot, ArrayRef<uint64_t> Args) {
  // IsOne controls whether we look for a 0 or a 1.
  auto tryUniqueRetValOptFor = [&](bool IsOne) {
    const TypeMemberInfo *UniqueMember = nullptr;
    for (const VirtualCallTarget &Target : TargetsForSlot) {
      if (Target.RetVal == (IsOne ? 1 : 0)) {
        if (UniqueMember)
          return false;
        UniqueMember = Target.TM;
      }
    }

    // We should have found a unique member or bailed out by now. We already
    // checked for a uniform return value in tryUniformRetValOpt.
    assert(UniqueMember);

    Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
    if (CSInfo.isExported()) {
      Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
      Res->Info = IsOne;

      exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
    }

    // Replace each call with the comparison.
    applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
                         UniqueMemberAddr);

    // Update devirtualization statistics for targets.
    if (RemarksEnabled)
      for (auto &&Target : TargetsForSlot)
        Target.WasDevirt = true;

    return true;
  };

  if (BitWidth == 1) {
    if (tryUniqueRetValOptFor(true))
      return true;
    if (tryUniqueRetValOptFor(false))
      return true;
  }
  return false;
}

void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
                                         Constant *Byte, Constant *Bit) {
  for (auto Call : CSInfo.CallSites) {
    auto *RetType = cast<IntegerType>(Call.CB.getType());
    IRBuilder<> B(&Call.CB);
    Value *Addr =
        B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte);
    if (RetType->getBitWidth() == 1) {
      Value *Bits = B.CreateLoad(Int8Ty, Addr);
      Value *BitsAndBit = B.CreateAnd(Bits, Bit);
      auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
      Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
                           OREGetter, IsBitSet);
    } else {
      Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
      Value *Val = B.CreateLoad(RetType, ValAddr);
      Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
                           OREGetter, Val);
    }
  }
  CSInfo.markDevirt();
}

bool DevirtModule::tryVirtualConstProp(
    MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
    WholeProgramDevirtResolution *Res, VTableSlot Slot) {
  // This only works if the function returns an integer.
  auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
  if (!RetType)
    return false;
  unsigned BitWidth = RetType->getBitWidth();
  if (BitWidth > 64)
    return false;

  // Make sure that each function is defined, does not access memory, takes at
  // least one argument, does not use its first argument (which we assume is
  // 'this'), and has the same return type.
  //
  // Note that we test whether this copy of the function is readnone, rather
  // than testing function attributes, which must hold for any copy of the
  // function, even a less optimized version substituted at link time. This is
  // sound because the virtual constant propagation optimizations effectively
  // inline all implementations of the virtual function into each call site,
  // rather than using function attributes to perform local optimization.
  for (VirtualCallTarget &Target : TargetsForSlot) {
    if (Target.Fn->isDeclaration() ||
        computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) !=
            MAK_ReadNone ||
        Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() ||
        Target.Fn->getReturnType() != RetType)
      return false;
  }

  for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
    if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
      continue;

    WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
    if (Res)
      ResByArg = &Res->ResByArg[CSByConstantArg.first];

    if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
      continue;

    if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
                           ResByArg, Slot, CSByConstantArg.first))
      continue;

    // Find an allocation offset in bits in all vtables associated with the
    // type.
    uint64_t AllocBefore =
        findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
    uint64_t AllocAfter =
        findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);

    // Calculate the total amount of padding needed to store a value at both
    // ends of the object.
    uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
    for (auto &&Target : TargetsForSlot) {
      TotalPaddingBefore += std::max<int64_t>(
          (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
      TotalPaddingAfter += std::max<int64_t>(
          (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
    }

    // If the amount of padding is too large, give up.
    // FIXME: do something smarter here.
    if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
      continue;

    // Calculate the offset to the value as a (possibly negative) byte offset
    // and (if applicable) a bit offset, and store the values in the targets.
    int64_t OffsetByte;
    uint64_t OffsetBit;
    if (TotalPaddingBefore <= TotalPaddingAfter)
      setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
                            OffsetBit);
    else
      setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
                           OffsetBit);

    if (RemarksEnabled)
      for (auto &&Target : TargetsForSlot)
        Target.WasDevirt = true;


    if (CSByConstantArg.second.isExported()) {
      ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
      exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
                     ResByArg->Byte);
      exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
                     ResByArg->Bit);
    }

    // Rewrite each call to a load from OffsetByte/OffsetBit.
    Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
    Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
    applyVirtualConstProp(CSByConstantArg.second,
                          TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
  }
  return true;
}

void DevirtModule::rebuildGlobal(VTableBits &B) {
  if (B.Before.Bytes.empty() && B.After.Bytes.empty())
    return;

  // Align the before byte array to the global's minimum alignment so that we
  // don't break any alignment requirements on the global.
  Align Alignment = M.getDataLayout().getValueOrABITypeAlignment(
      B.GV->getAlign(), B.GV->getValueType());
  B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment));

  // Before was stored in reverse order; flip it now.
  for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
    std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);

  // Build an anonymous global containing the before bytes, followed by the
  // original initializer, followed by the after bytes.
  auto NewInit = ConstantStruct::getAnon(
      {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
       B.GV->getInitializer(),
       ConstantDataArray::get(M.getContext(), B.After.Bytes)});
  auto NewGV =
      new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
                         GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
  NewGV->setSection(B.GV->getSection());
  NewGV->setComdat(B.GV->getComdat());
  NewGV->setAlignment(MaybeAlign(B.GV->getAlignment()));

  // Copy the original vtable's metadata to the anonymous global, adjusting
  // offsets as required.
  NewGV->copyMetadata(B.GV, B.Before.Bytes.size());

  // Build an alias named after the original global, pointing at the second
  // element (the original initializer).
  auto Alias = GlobalAlias::create(
      B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
      ConstantExpr::getGetElementPtr(
          NewInit->getType(), NewGV,
          ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
                               ConstantInt::get(Int32Ty, 1)}),
      &M);
  Alias->setVisibility(B.GV->getVisibility());
  Alias->takeName(B.GV);

  B.GV->replaceAllUsesWith(Alias);
  B.GV->eraseFromParent();
}

bool DevirtModule::areRemarksEnabled() {
  const auto &FL = M.getFunctionList();
  for (const Function &Fn : FL) {
    const auto &BBL = Fn.getBasicBlockList();
    if (BBL.empty())
      continue;
    auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front());
    return DI.isEnabled();
  }
  return false;
}

void DevirtModule::scanTypeTestUsers(
    Function *TypeTestFunc,
    DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
  // Find all virtual calls via a virtual table pointer %p under an assumption
  // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
  // points to a member of the type identifier %md. Group calls by (type ID,
  // offset) pair (effectively the identity of the virtual function) and store
  // to CallSlots.
  for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
       I != E;) {
    auto CI = dyn_cast<CallInst>(I->getUser());
    ++I;
    if (!CI)
      continue;

    // Search for virtual calls based on %p and add them to DevirtCalls.
    SmallVector<DevirtCallSite, 1> DevirtCalls;
    SmallVector<CallInst *, 1> Assumes;
    auto &DT = LookupDomTree(*CI->getFunction());
    findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);

    Metadata *TypeId =
        cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
    // If we found any, add them to CallSlots.
    if (!Assumes.empty()) {
      Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
      for (DevirtCallSite Call : DevirtCalls)
        CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, nullptr);
    }

    auto RemoveTypeTestAssumes = [&]() {
      // We no longer need the assumes or the type test.
      for (auto Assume : Assumes)
        Assume->eraseFromParent();
      // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
      // may use the vtable argument later.
      if (CI->use_empty())
        CI->eraseFromParent();
    };

    // At this point we could remove all type test assume sequences, as they
    // were originally inserted for WPD. However, we can keep these in the
    // code stream for later analysis (e.g. to help drive more efficient ICP
    // sequences). They will eventually be removed by a second LowerTypeTests
    // invocation that cleans them up. In order to do this correctly, the first
    // LowerTypeTests invocation needs to know that they have "Unknown" type
    // test resolution, so that they aren't treated as Unsat and lowered to
    // False, which will break any uses on assumes. Below we remove any type
    // test assumes that will not be treated as Unknown by LTT.

    // The type test assumes will be treated by LTT as Unsat if the type id is
    // not used on a global (in which case it has no entry in the TypeIdMap).
    if (!TypeIdMap.count(TypeId))
      RemoveTypeTestAssumes();

    // For ThinLTO importing, we need to remove the type test assumes if this is
    // an MDString type id without a corresponding TypeIdSummary. Any
    // non-MDString type ids are ignored and treated as Unknown by LTT, so their
    // type test assumes can be kept. If the MDString type id is missing a
    // TypeIdSummary (e.g. because there was no use on a vcall, preventing the
    // exporting phase of WPD from analyzing it), then it would be treated as
    // Unsat by LTT and we need to remove its type test assumes here. If not
    // used on a vcall we don't need them for later optimization use in any
    // case.
    else if (ImportSummary && isa<MDString>(TypeId)) {
      const TypeIdSummary *TidSummary =
          ImportSummary->getTypeIdSummary(cast<MDString>(TypeId)->getString());
      if (!TidSummary)
        RemoveTypeTestAssumes();
      else
        // If one was created it should not be Unsat, because if we reached here
        // the type id was used on a global.
        assert(TidSummary->TTRes.TheKind != TypeTestResolution::Unsat);
    }
  }
}

void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
  Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);

  for (auto I = TypeCheckedLoadFunc->use_begin(),
            E = TypeCheckedLoadFunc->use_end();
       I != E;) {
    auto CI = dyn_cast<CallInst>(I->getUser());
    ++I;
    if (!CI)
      continue;

    Value *Ptr = CI->getArgOperand(0);
    Value *Offset = CI->getArgOperand(1);
    Value *TypeIdValue = CI->getArgOperand(2);
    Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();

    SmallVector<DevirtCallSite, 1> DevirtCalls;
    SmallVector<Instruction *, 1> LoadedPtrs;
    SmallVector<Instruction *, 1> Preds;
    bool HasNonCallUses = false;
    auto &DT = LookupDomTree(*CI->getFunction());
    findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
                                               HasNonCallUses, CI, DT);

    // Start by generating "pessimistic" code that explicitly loads the function
    // pointer from the vtable and performs the type check. If possible, we will
    // eliminate the load and the type check later.

    // If possible, only generate the load at the point where it is used.
    // This helps avoid unnecessary spills.
    IRBuilder<> LoadB(
        (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
    Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
    Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
    Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);

    for (Instruction *LoadedPtr : LoadedPtrs) {
      LoadedPtr->replaceAllUsesWith(LoadedValue);
      LoadedPtr->eraseFromParent();
    }

    // Likewise for the type test.
    IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
    CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});

    for (Instruction *Pred : Preds) {
      Pred->replaceAllUsesWith(TypeTestCall);
      Pred->eraseFromParent();
    }

    // We have already erased any extractvalue instructions that refer to the
    // intrinsic call, but the intrinsic may have other non-extractvalue uses
    // (although this is unlikely). In that case, explicitly build a pair and
    // RAUW it.
    if (!CI->use_empty()) {
      Value *Pair = UndefValue::get(CI->getType());
      IRBuilder<> B(CI);
      Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
      Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
      CI->replaceAllUsesWith(Pair);
    }

    // The number of unsafe uses is initially the number of uses.
    auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
    NumUnsafeUses = DevirtCalls.size();

    // If the function pointer has a non-call user, we cannot eliminate the type
    // check, as one of those users may eventually call the pointer. Increment
    // the unsafe use count to make sure it cannot reach zero.
    if (HasNonCallUses)
      ++NumUnsafeUses;
    for (DevirtCallSite Call : DevirtCalls) {
      CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB,
                                                   &NumUnsafeUses);
    }

    CI->eraseFromParent();
  }
}

void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
  auto *TypeId = dyn_cast<MDString>(Slot.TypeID);
  if (!TypeId)
    return;
  const TypeIdSummary *TidSummary =
      ImportSummary->getTypeIdSummary(TypeId->getString());
  if (!TidSummary)
    return;
  auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
  if (ResI == TidSummary->WPDRes.end())
    return;
  const WholeProgramDevirtResolution &Res = ResI->second;

  if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
    assert(!Res.SingleImplName.empty());
    // The type of the function in the declaration is irrelevant because every
    // call site will cast it to the correct type.
    Constant *SingleImpl =
        cast<Constant>(M.getOrInsertFunction(Res.SingleImplName,
                                             Type::getVoidTy(M.getContext()))
                           .getCallee());

    // This is the import phase so we should not be exporting anything.
    bool IsExported = false;
    applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
    assert(!IsExported);
  }

  for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
    auto I = Res.ResByArg.find(CSByConstantArg.first);
    if (I == Res.ResByArg.end())
      continue;
    auto &ResByArg = I->second;
    // FIXME: We should figure out what to do about the "function name" argument
    // to the apply* functions, as the function names are unavailable during the
    // importing phase. For now we just pass the empty string. This does not
    // impact correctness because the function names are just used for remarks.
    switch (ResByArg.TheKind) {
    case WholeProgramDevirtResolution::ByArg::UniformRetVal:
      applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
      break;
    case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
      Constant *UniqueMemberAddr =
          importGlobal(Slot, CSByConstantArg.first, "unique_member");
      applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
                           UniqueMemberAddr);
      break;
    }
    case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
      Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
                                      Int32Ty, ResByArg.Byte);
      Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
                                     ResByArg.Bit);
      applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
      break;
    }
    default:
      break;
    }
  }

  if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
    // The type of the function is irrelevant, because it's bitcast at calls
    // anyhow.
    Constant *JT = cast<Constant>(
        M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
                              Type::getVoidTy(M.getContext()))
            .getCallee());
    bool IsExported = false;
    applyICallBranchFunnel(SlotInfo, JT, IsExported);
    assert(!IsExported);
  }
}

void DevirtModule::removeRedundantTypeTests() {
  auto True = ConstantInt::getTrue(M.getContext());
  for (auto &&U : NumUnsafeUsesForTypeTest) {
    if (U.second == 0) {
      U.first->replaceAllUsesWith(True);
      U.first->eraseFromParent();
    }
  }
}

bool DevirtModule::run() {
  // If only some of the modules were split, we cannot correctly perform
  // this transformation. We already checked for the presense of type tests
  // with partially split modules during the thin link, and would have emitted
  // an error if any were found, so here we can simply return.
  if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
      (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
    return false;

  Function *TypeTestFunc =
      M.getFunction(Intrinsic::getName(Intrinsic::type_test));
  Function *TypeCheckedLoadFunc =
      M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
  Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));

  // Normally if there are no users of the devirtualization intrinsics in the
  // module, this pass has nothing to do. But if we are exporting, we also need
  // to handle any users that appear only in the function summaries.
  if (!ExportSummary &&
      (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
       AssumeFunc->use_empty()) &&
      (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
    return false;

  // Rebuild type metadata into a map for easy lookup.
  std::vector<VTableBits> Bits;
  DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
  buildTypeIdentifierMap(Bits, TypeIdMap);

  if (TypeTestFunc && AssumeFunc)
    scanTypeTestUsers(TypeTestFunc, TypeIdMap);

  if (TypeCheckedLoadFunc)
    scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);

  if (ImportSummary) {
    for (auto &S : CallSlots)
      importResolution(S.first, S.second);

    removeRedundantTypeTests();

    // We have lowered or deleted the type instrinsics, so we will no
    // longer have enough information to reason about the liveness of virtual
    // function pointers in GlobalDCE.
    for (GlobalVariable &GV : M.globals())
      GV.eraseMetadata(LLVMContext::MD_vcall_visibility);

    // The rest of the code is only necessary when exporting or during regular
    // LTO, so we are done.
    return true;
  }

  if (TypeIdMap.empty())
    return true;

  // Collect information from summary about which calls to try to devirtualize.
  if (ExportSummary) {
    DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
    for (auto &P : TypeIdMap) {
      if (auto *TypeId = dyn_cast<MDString>(P.first))
        MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
            TypeId);
    }

    for (auto &P : *ExportSummary) {
      for (auto &S : P.second.SummaryList) {
        auto *FS = dyn_cast<FunctionSummary>(S.get());
        if (!FS)
          continue;
        // FIXME: Only add live functions.
        for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
          for (Metadata *MD : MetadataByGUID[VF.GUID]) {
            CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
          }
        }
        for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
          for (Metadata *MD : MetadataByGUID[VF.GUID]) {
            CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
          }
        }
        for (const FunctionSummary::ConstVCall &VC :
             FS->type_test_assume_const_vcalls()) {
          for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
            CallSlots[{MD, VC.VFunc.Offset}]
                .ConstCSInfo[VC.Args]
                .addSummaryTypeTestAssumeUser(FS);
          }
        }
        for (const FunctionSummary::ConstVCall &VC :
             FS->type_checked_load_const_vcalls()) {
          for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
            CallSlots[{MD, VC.VFunc.Offset}]
                .ConstCSInfo[VC.Args]
                .addSummaryTypeCheckedLoadUser(FS);
          }
        }
      }
    }
  }

  // For each (type, offset) pair:
  bool DidVirtualConstProp = false;
  std::map<std::string, Function*> DevirtTargets;
  for (auto &S : CallSlots) {
    // Search each of the members of the type identifier for the virtual
    // function implementation at offset S.first.ByteOffset, and add to
    // TargetsForSlot.
    std::vector<VirtualCallTarget> TargetsForSlot;
    WholeProgramDevirtResolution *Res = nullptr;
    const std::set<TypeMemberInfo> &TypeMemberInfos = TypeIdMap[S.first.TypeID];
    if (ExportSummary && isa<MDString>(S.first.TypeID) &&
        TypeMemberInfos.size())
      // For any type id used on a global's type metadata, create the type id
      // summary resolution regardless of whether we can devirtualize, so that
      // lower type tests knows the type id is not Unsat. If it was not used on
      // a global's type metadata, the TypeIdMap entry set will be empty, and
      // we don't want to create an entry (with the default Unknown type
      // resolution), which can prevent detection of the Unsat.
      Res = &ExportSummary
                 ->getOrInsertTypeIdSummary(
                     cast<MDString>(S.first.TypeID)->getString())
                 .WPDRes[S.first.ByteOffset];
    if (tryFindVirtualCallTargets(TargetsForSlot, TypeMemberInfos,
                                  S.first.ByteOffset)) {

      if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) {
        DidVirtualConstProp |=
            tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);

        tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
      }

      // Collect functions devirtualized at least for one call site for stats.
      if (RemarksEnabled)
        for (const auto &T : TargetsForSlot)
          if (T.WasDevirt)
            DevirtTargets[std::string(T.Fn->getName())] = T.Fn;
    }

    // CFI-specific: if we are exporting and any llvm.type.checked.load
    // intrinsics were *not* devirtualized, we need to add the resulting
    // llvm.type.test intrinsics to the function summaries so that the
    // LowerTypeTests pass will export them.
    if (ExportSummary && isa<MDString>(S.first.TypeID)) {
      auto GUID =
          GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
      for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
        FS->addTypeTest(GUID);
      for (auto &CCS : S.second.ConstCSInfo)
        for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers)
          FS->addTypeTest(GUID);
    }
  }

  if (RemarksEnabled) {
    // Generate remarks for each devirtualized function.
    for (const auto &DT : DevirtTargets) {
      Function *F = DT.second;

      using namespace ore;
      OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
                        << "devirtualized "
                        << NV("FunctionName", DT.first));
    }
  }

  removeRedundantTypeTests();

  // Rebuild each global we touched as part of virtual constant propagation to
  // include the before and after bytes.
  if (DidVirtualConstProp)
    for (VTableBits &B : Bits)
      rebuildGlobal(B);

  // We have lowered or deleted the type instrinsics, so we will no
  // longer have enough information to reason about the liveness of virtual
  // function pointers in GlobalDCE.
  for (GlobalVariable &GV : M.globals())
    GV.eraseMetadata(LLVMContext::MD_vcall_visibility);

  return true;
}

void DevirtIndex::run() {
  if (ExportSummary.typeIdCompatibleVtableMap().empty())
    return;

  DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID;
  for (auto &P : ExportSummary.typeIdCompatibleVtableMap()) {
    NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first);
  }

  // Collect information from summary about which calls to try to devirtualize.
  for (auto &P : ExportSummary) {
    for (auto &S : P.second.SummaryList) {
      auto *FS = dyn_cast<FunctionSummary>(S.get());
      if (!FS)
        continue;
      // FIXME: Only add live functions.
      for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
        for (StringRef Name : NameByGUID[VF.GUID]) {
          CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
        }
      }
      for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
        for (StringRef Name : NameByGUID[VF.GUID]) {
          CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
        }
      }
      for (const FunctionSummary::ConstVCall &VC :
           FS->type_test_assume_const_vcalls()) {
        for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
          CallSlots[{Name, VC.VFunc.Offset}]
              .ConstCSInfo[VC.Args]
              .addSummaryTypeTestAssumeUser(FS);
        }
      }
      for (const FunctionSummary::ConstVCall &VC :
           FS->type_checked_load_const_vcalls()) {
        for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
          CallSlots[{Name, VC.VFunc.Offset}]
              .ConstCSInfo[VC.Args]
              .addSummaryTypeCheckedLoadUser(FS);
        }
      }
    }
  }

  std::set<ValueInfo> DevirtTargets;
  // For each (type, offset) pair:
  for (auto &S : CallSlots) {
    // Search each of the members of the type identifier for the virtual
    // function implementation at offset S.first.ByteOffset, and add to
    // TargetsForSlot.
    std::vector<ValueInfo> TargetsForSlot;
    auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID);
    assert(TidSummary);
    // Create the type id summary resolution regardlness of whether we can
    // devirtualize, so that lower type tests knows the type id is used on
    // a global and not Unsat.
    WholeProgramDevirtResolution *Res =
        &ExportSummary.getOrInsertTypeIdSummary(S.first.TypeID)
             .WPDRes[S.first.ByteOffset];
    if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary,
                                  S.first.ByteOffset)) {

      if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res,
                               DevirtTargets))
        continue;
    }
  }

  // Optionally have the thin link print message for each devirtualized
  // function.
  if (PrintSummaryDevirt)
    for (const auto &DT : DevirtTargets)
      errs() << "Devirtualized call to " << DT << "\n";
}