aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Transforms/IPO/SampleProfile.cpp
blob: a6a419bfe74299bb74ce7ea71bdc2aa28d388bca (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
//===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the SampleProfileLoader transformation. This pass
// reads a profile file generated by a sampling profiler (e.g. Linux Perf -
// http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
// profile information in the given profile.
//
// This pass generates branch weight annotations on the IR:
//
// - prof: Represents branch weights. This annotation is added to branches
//      to indicate the weights of each edge coming out of the branch.
//      The weight of each edge is the weight of the target block for
//      that edge. The weight of a block B is computed as the maximum
//      number of samples found in B.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/SampleProfile.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/PriorityQueue.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/Analysis/InlineAdvisor.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/ReplayInlineAdvisor.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/ProfileData/SampleProf.h"
#include "llvm/ProfileData/SampleProfReader.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/GenericDomTree.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/SampleContextTracker.h"
#include "llvm/Transforms/IPO/SampleProfileProbe.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Utils/CallPromotionUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <limits>
#include <map>
#include <memory>
#include <queue>
#include <string>
#include <system_error>
#include <utility>
#include <vector>

using namespace llvm;
using namespace sampleprof;
using ProfileCount = Function::ProfileCount;
#define DEBUG_TYPE "sample-profile"
#define CSINLINE_DEBUG DEBUG_TYPE "-inline"

STATISTIC(NumCSInlined,
          "Number of functions inlined with context sensitive profile");
STATISTIC(NumCSNotInlined,
          "Number of functions not inlined with context sensitive profile");
STATISTIC(NumMismatchedProfile,
          "Number of functions with CFG mismatched profile");
STATISTIC(NumMatchedProfile, "Number of functions with CFG matched profile");
STATISTIC(NumDuplicatedInlinesite,
          "Number of inlined callsites with a partial distribution factor");

STATISTIC(NumCSInlinedHitMinLimit,
          "Number of functions with FDO inline stopped due to min size limit");
STATISTIC(NumCSInlinedHitMaxLimit,
          "Number of functions with FDO inline stopped due to max size limit");
STATISTIC(
    NumCSInlinedHitGrowthLimit,
    "Number of functions with FDO inline stopped due to growth size limit");

// Command line option to specify the file to read samples from. This is
// mainly used for debugging.
static cl::opt<std::string> SampleProfileFile(
    "sample-profile-file", cl::init(""), cl::value_desc("filename"),
    cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);

// The named file contains a set of transformations that may have been applied
// to the symbol names between the program from which the sample data was
// collected and the current program's symbols.
static cl::opt<std::string> SampleProfileRemappingFile(
    "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
    cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden);

static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
    "sample-profile-max-propagate-iterations", cl::init(100),
    cl::desc("Maximum number of iterations to go through when propagating "
             "sample block/edge weights through the CFG."));

static cl::opt<unsigned> SampleProfileRecordCoverage(
    "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
    cl::desc("Emit a warning if less than N% of records in the input profile "
             "are matched to the IR."));

static cl::opt<unsigned> SampleProfileSampleCoverage(
    "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
    cl::desc("Emit a warning if less than N% of samples in the input profile "
             "are matched to the IR."));

static cl::opt<bool> NoWarnSampleUnused(
    "no-warn-sample-unused", cl::init(false), cl::Hidden,
    cl::desc("Use this option to turn off/on warnings about function with "
             "samples but without debug information to use those samples. "));

static cl::opt<bool> ProfileSampleAccurate(
    "profile-sample-accurate", cl::Hidden, cl::init(false),
    cl::desc("If the sample profile is accurate, we will mark all un-sampled "
             "callsite and function as having 0 samples. Otherwise, treat "
             "un-sampled callsites and functions conservatively as unknown. "));

static cl::opt<bool> ProfileAccurateForSymsInList(
    "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore,
    cl::init(true),
    cl::desc("For symbols in profile symbol list, regard their profiles to "
             "be accurate. It may be overriden by profile-sample-accurate. "));

static cl::opt<bool> ProfileMergeInlinee(
    "sample-profile-merge-inlinee", cl::Hidden, cl::init(true),
    cl::desc("Merge past inlinee's profile to outline version if sample "
             "profile loader decided not to inline a call site. It will "
             "only be enabled when top-down order of profile loading is "
             "enabled. "));

static cl::opt<bool> ProfileTopDownLoad(
    "sample-profile-top-down-load", cl::Hidden, cl::init(true),
    cl::desc("Do profile annotation and inlining for functions in top-down "
             "order of call graph during sample profile loading. It only "
             "works for new pass manager. "));

static cl::opt<bool> UseProfileIndirectCallEdges(
    "use-profile-indirect-call-edges", cl::init(true), cl::Hidden,
    cl::desc("Considering indirect call samples from profile when top-down "
             "processing functions. Only CSSPGO is supported."));

static cl::opt<bool> UseProfileTopDownOrder(
    "use-profile-top-down-order", cl::init(false), cl::Hidden,
    cl::desc("Process functions in one SCC in a top-down order "
             "based on the input profile."));

static cl::opt<bool> ProfileSizeInline(
    "sample-profile-inline-size", cl::Hidden, cl::init(false),
    cl::desc("Inline cold call sites in profile loader if it's beneficial "
             "for code size."));

static cl::opt<int> ProfileInlineGrowthLimit(
    "sample-profile-inline-growth-limit", cl::Hidden, cl::init(12),
    cl::desc("The size growth ratio limit for proirity-based sample profile "
             "loader inlining."));

static cl::opt<int> ProfileInlineLimitMin(
    "sample-profile-inline-limit-min", cl::Hidden, cl::init(100),
    cl::desc("The lower bound of size growth limit for "
             "proirity-based sample profile loader inlining."));

static cl::opt<int> ProfileInlineLimitMax(
    "sample-profile-inline-limit-max", cl::Hidden, cl::init(10000),
    cl::desc("The upper bound of size growth limit for "
             "proirity-based sample profile loader inlining."));

static cl::opt<int> ProfileICPThreshold(
    "sample-profile-icp-threshold", cl::Hidden, cl::init(5),
    cl::desc(
        "Relative hotness threshold for indirect "
        "call promotion in proirity-based sample profile loader inlining."));

static cl::opt<int> SampleHotCallSiteThreshold(
    "sample-profile-hot-inline-threshold", cl::Hidden, cl::init(3000),
    cl::desc("Hot callsite threshold for proirity-based sample profile loader "
             "inlining."));

static cl::opt<bool> CallsitePrioritizedInline(
    "sample-profile-prioritized-inline", cl::Hidden, cl::ZeroOrMore,
    cl::init(false),
    cl::desc("Use call site prioritized inlining for sample profile loader."
             "Currently only CSSPGO is supported."));

static cl::opt<int> SampleColdCallSiteThreshold(
    "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45),
    cl::desc("Threshold for inlining cold callsites"));

static cl::opt<std::string> ProfileInlineReplayFile(
    "sample-profile-inline-replay", cl::init(""), cl::value_desc("filename"),
    cl::desc(
        "Optimization remarks file containing inline remarks to be replayed "
        "by inlining from sample profile loader."),
    cl::Hidden);

namespace {

using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
using EdgeWeightMap = DenseMap<Edge, uint64_t>;
using BlockEdgeMap =
    DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;

class SampleProfileLoader;

class SampleCoverageTracker {
public:
  SampleCoverageTracker(SampleProfileLoader &SPL) : SPLoader(SPL){};

  bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
                       uint32_t Discriminator, uint64_t Samples);
  unsigned computeCoverage(unsigned Used, unsigned Total) const;
  unsigned countUsedRecords(const FunctionSamples *FS,
                            ProfileSummaryInfo *PSI) const;
  unsigned countBodyRecords(const FunctionSamples *FS,
                            ProfileSummaryInfo *PSI) const;
  uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
  uint64_t countBodySamples(const FunctionSamples *FS,
                            ProfileSummaryInfo *PSI) const;

  void clear() {
    SampleCoverage.clear();
    TotalUsedSamples = 0;
  }

private:
  using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
  using FunctionSamplesCoverageMap =
      DenseMap<const FunctionSamples *, BodySampleCoverageMap>;

  /// Coverage map for sampling records.
  ///
  /// This map keeps a record of sampling records that have been matched to
  /// an IR instruction. This is used to detect some form of staleness in
  /// profiles (see flag -sample-profile-check-coverage).
  ///
  /// Each entry in the map corresponds to a FunctionSamples instance.  This is
  /// another map that counts how many times the sample record at the
  /// given location has been used.
  FunctionSamplesCoverageMap SampleCoverage;

  /// Number of samples used from the profile.
  ///
  /// When a sampling record is used for the first time, the samples from
  /// that record are added to this accumulator.  Coverage is later computed
  /// based on the total number of samples available in this function and
  /// its callsites.
  ///
  /// Note that this accumulator tracks samples used from a single function
  /// and all the inlined callsites. Strictly, we should have a map of counters
  /// keyed by FunctionSamples pointers, but these stats are cleared after
  /// every function, so we just need to keep a single counter.
  uint64_t TotalUsedSamples = 0;

  SampleProfileLoader &SPLoader;
};

class GUIDToFuncNameMapper {
public:
  GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader,
                        DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap)
      : CurrentReader(Reader), CurrentModule(M),
      CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) {
    if (!CurrentReader.useMD5())
      return;

    for (const auto &F : CurrentModule) {
      StringRef OrigName = F.getName();
      CurrentGUIDToFuncNameMap.insert(
          {Function::getGUID(OrigName), OrigName});

      // Local to global var promotion used by optimization like thinlto
      // will rename the var and add suffix like ".llvm.xxx" to the
      // original local name. In sample profile, the suffixes of function
      // names are all stripped. Since it is possible that the mapper is
      // built in post-thin-link phase and var promotion has been done,
      // we need to add the substring of function name without the suffix
      // into the GUIDToFuncNameMap.
      StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
      if (CanonName != OrigName)
        CurrentGUIDToFuncNameMap.insert(
            {Function::getGUID(CanonName), CanonName});
    }

    // Update GUIDToFuncNameMap for each function including inlinees.
    SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap);
  }

  ~GUIDToFuncNameMapper() {
    if (!CurrentReader.useMD5())
      return;

    CurrentGUIDToFuncNameMap.clear();

    // Reset GUIDToFuncNameMap for of each function as they're no
    // longer valid at this point.
    SetGUIDToFuncNameMapForAll(nullptr);
  }

private:
  void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) {
    std::queue<FunctionSamples *> FSToUpdate;
    for (auto &IFS : CurrentReader.getProfiles()) {
      FSToUpdate.push(&IFS.second);
    }

    while (!FSToUpdate.empty()) {
      FunctionSamples *FS = FSToUpdate.front();
      FSToUpdate.pop();
      FS->GUIDToFuncNameMap = Map;
      for (const auto &ICS : FS->getCallsiteSamples()) {
        const FunctionSamplesMap &FSMap = ICS.second;
        for (auto &IFS : FSMap) {
          FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second);
          FSToUpdate.push(&FS);
        }
      }
    }
  }

  SampleProfileReader &CurrentReader;
  Module &CurrentModule;
  DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap;
};

// Inline candidate used by iterative callsite prioritized inliner
struct InlineCandidate {
  CallBase *CallInstr;
  const FunctionSamples *CalleeSamples;
  // Prorated callsite count, which will be used to guide inlining. For example,
  // if a callsite is duplicated in LTO prelink, then in LTO postlink the two
  // copies will get their own distribution factors and their prorated counts
  // will be used to decide if they should be inlined independently.
  uint64_t CallsiteCount;
  // Call site distribution factor to prorate the profile samples for a
  // duplicated callsite. Default value is 1.0.
  float CallsiteDistribution;
};

// Inline candidate comparer using call site weight
struct CandidateComparer {
  bool operator()(const InlineCandidate &LHS, const InlineCandidate &RHS) {
    if (LHS.CallsiteCount != RHS.CallsiteCount)
      return LHS.CallsiteCount < RHS.CallsiteCount;

    // Tie breaker using GUID so we have stable/deterministic inlining order
    assert(LHS.CalleeSamples && RHS.CalleeSamples &&
           "Expect non-null FunctionSamples");
    return LHS.CalleeSamples->getGUID(LHS.CalleeSamples->getName()) <
           RHS.CalleeSamples->getGUID(RHS.CalleeSamples->getName());
  }
};

using CandidateQueue =
    PriorityQueue<InlineCandidate, std::vector<InlineCandidate>,
                  CandidateComparer>;

/// Sample profile pass.
///
/// This pass reads profile data from the file specified by
/// -sample-profile-file and annotates every affected function with the
/// profile information found in that file.
class SampleProfileLoader {
public:
  SampleProfileLoader(
      StringRef Name, StringRef RemapName, ThinOrFullLTOPhase LTOPhase,
      std::function<AssumptionCache &(Function &)> GetAssumptionCache,
      std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo,
      std::function<const TargetLibraryInfo &(Function &)> GetTLI)
      : GetAC(std::move(GetAssumptionCache)),
        GetTTI(std::move(GetTargetTransformInfo)), GetTLI(std::move(GetTLI)),
        CoverageTracker(*this), Filename(std::string(Name)),
        RemappingFilename(std::string(RemapName)), LTOPhase(LTOPhase) {}

  bool doInitialization(Module &M, FunctionAnalysisManager *FAM = nullptr);
  bool runOnModule(Module &M, ModuleAnalysisManager *AM,
                   ProfileSummaryInfo *_PSI, CallGraph *CG);

  void dump() { Reader->dump(); }

protected:
  friend class SampleCoverageTracker;

  bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
  unsigned getFunctionLoc(Function &F);
  bool emitAnnotations(Function &F);
  ErrorOr<uint64_t> getInstWeight(const Instruction &I);
  ErrorOr<uint64_t> getProbeWeight(const Instruction &I);
  ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
  const FunctionSamples *findCalleeFunctionSamples(const CallBase &I) const;
  std::vector<const FunctionSamples *>
  findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
  mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap;
  const FunctionSamples *findFunctionSamples(const Instruction &I) const;
  // Attempt to promote indirect call and also inline the promoted call
  bool tryPromoteAndInlineCandidate(
      Function &F, InlineCandidate &Candidate, uint64_t SumOrigin,
      uint64_t &Sum, DenseSet<Instruction *> &PromotedInsns,
      SmallVector<CallBase *, 8> *InlinedCallSites = nullptr);
  bool inlineHotFunctions(Function &F,
                          DenseSet<GlobalValue::GUID> &InlinedGUIDs);
  InlineCost shouldInlineCandidate(InlineCandidate &Candidate);
  bool getInlineCandidate(InlineCandidate *NewCandidate, CallBase *CB);
  bool
  tryInlineCandidate(InlineCandidate &Candidate,
                     SmallVector<CallBase *, 8> *InlinedCallSites = nullptr);
  bool
  inlineHotFunctionsWithPriority(Function &F,
                                 DenseSet<GlobalValue::GUID> &InlinedGUIDs);
  // Inline cold/small functions in addition to hot ones
  bool shouldInlineColdCallee(CallBase &CallInst);
  void emitOptimizationRemarksForInlineCandidates(
      const SmallVectorImpl<CallBase *> &Candidates, const Function &F,
      bool Hot);
  void printEdgeWeight(raw_ostream &OS, Edge E);
  void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
  void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
  bool computeBlockWeights(Function &F);
  void findEquivalenceClasses(Function &F);
  template <bool IsPostDom>
  void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
                           DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);

  void propagateWeights(Function &F);
  uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
  void buildEdges(Function &F);
  std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG);
  void addCallGraphEdges(CallGraph &CG, const FunctionSamples &Samples);
  void replaceCallGraphEdges(CallGraph &CG, StringMap<Function *> &SymbolMap);
  bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
  void computeDominanceAndLoopInfo(Function &F);
  void clearFunctionData();
  bool callsiteIsHot(const FunctionSamples *CallsiteFS,
                     ProfileSummaryInfo *PSI);

  /// Map basic blocks to their computed weights.
  ///
  /// The weight of a basic block is defined to be the maximum
  /// of all the instruction weights in that block.
  BlockWeightMap BlockWeights;

  /// Map edges to their computed weights.
  ///
  /// Edge weights are computed by propagating basic block weights in
  /// SampleProfile::propagateWeights.
  EdgeWeightMap EdgeWeights;

  /// Set of visited blocks during propagation.
  SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;

  /// Set of visited edges during propagation.
  SmallSet<Edge, 32> VisitedEdges;

  /// Equivalence classes for block weights.
  ///
  /// Two blocks BB1 and BB2 are in the same equivalence class if they
  /// dominate and post-dominate each other, and they are in the same loop
  /// nest. When this happens, the two blocks are guaranteed to execute
  /// the same number of times.
  EquivalenceClassMap EquivalenceClass;

  /// Map from function name to Function *. Used to find the function from
  /// the function name. If the function name contains suffix, additional
  /// entry is added to map from the stripped name to the function if there
  /// is one-to-one mapping.
  StringMap<Function *> SymbolMap;

  /// Dominance, post-dominance and loop information.
  std::unique_ptr<DominatorTree> DT;
  std::unique_ptr<PostDominatorTree> PDT;
  std::unique_ptr<LoopInfo> LI;

  std::function<AssumptionCache &(Function &)> GetAC;
  std::function<TargetTransformInfo &(Function &)> GetTTI;
  std::function<const TargetLibraryInfo &(Function &)> GetTLI;

  /// Predecessors for each basic block in the CFG.
  BlockEdgeMap Predecessors;

  /// Successors for each basic block in the CFG.
  BlockEdgeMap Successors;

  SampleCoverageTracker CoverageTracker;

  /// Profile reader object.
  std::unique_ptr<SampleProfileReader> Reader;

  /// Profile tracker for different context.
  std::unique_ptr<SampleContextTracker> ContextTracker;

  /// Samples collected for the body of this function.
  FunctionSamples *Samples = nullptr;

  /// Name of the profile file to load.
  std::string Filename;

  /// Name of the profile remapping file to load.
  std::string RemappingFilename;

  /// Flag indicating whether the profile input loaded successfully.
  bool ProfileIsValid = false;

  /// Flag indicating whether input profile is context-sensitive
  bool ProfileIsCS = false;

  /// Flag indicating which LTO/ThinLTO phase the pass is invoked in.
  ///
  /// We need to know the LTO phase because for example in ThinLTOPrelink
  /// phase, in annotation, we should not promote indirect calls. Instead,
  /// we will mark GUIDs that needs to be annotated to the function.
  ThinOrFullLTOPhase LTOPhase;

  /// Profile Summary Info computed from sample profile.
  ProfileSummaryInfo *PSI = nullptr;

  /// Profle Symbol list tells whether a function name appears in the binary
  /// used to generate the current profile.
  std::unique_ptr<ProfileSymbolList> PSL;

  /// Total number of samples collected in this profile.
  ///
  /// This is the sum of all the samples collected in all the functions executed
  /// at runtime.
  uint64_t TotalCollectedSamples = 0;

  /// Optimization Remark Emitter used to emit diagnostic remarks.
  OptimizationRemarkEmitter *ORE = nullptr;

  // Information recorded when we declined to inline a call site
  // because we have determined it is too cold is accumulated for
  // each callee function. Initially this is just the entry count.
  struct NotInlinedProfileInfo {
    uint64_t entryCount;
  };
  DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo;

  // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
  // all the function symbols defined or declared in current module.
  DenseMap<uint64_t, StringRef> GUIDToFuncNameMap;

  // All the Names used in FunctionSamples including outline function
  // names, inline instance names and call target names.
  StringSet<> NamesInProfile;

  // For symbol in profile symbol list, whether to regard their profiles
  // to be accurate. It is mainly decided by existance of profile symbol
  // list and -profile-accurate-for-symsinlist flag, but it can be
  // overriden by -profile-sample-accurate or profile-sample-accurate
  // attribute.
  bool ProfAccForSymsInList;

  // External inline advisor used to replay inline decision from remarks.
  std::unique_ptr<ReplayInlineAdvisor> ExternalInlineAdvisor;

  // A pseudo probe helper to correlate the imported sample counts.
  std::unique_ptr<PseudoProbeManager> ProbeManager;
};

class SampleProfileLoaderLegacyPass : public ModulePass {
public:
  // Class identification, replacement for typeinfo
  static char ID;

  SampleProfileLoaderLegacyPass(
      StringRef Name = SampleProfileFile,
      ThinOrFullLTOPhase LTOPhase = ThinOrFullLTOPhase::None)
      : ModulePass(ID), SampleLoader(
                            Name, SampleProfileRemappingFile, LTOPhase,
                            [&](Function &F) -> AssumptionCache & {
                              return ACT->getAssumptionCache(F);
                            },
                            [&](Function &F) -> TargetTransformInfo & {
                              return TTIWP->getTTI(F);
                            },
                            [&](Function &F) -> TargetLibraryInfo & {
                              return TLIWP->getTLI(F);
                            }) {
    initializeSampleProfileLoaderLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  void dump() { SampleLoader.dump(); }

  bool doInitialization(Module &M) override {
    return SampleLoader.doInitialization(M);
  }

  StringRef getPassName() const override { return "Sample profile pass"; }
  bool runOnModule(Module &M) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addRequired<ProfileSummaryInfoWrapperPass>();
  }

private:
  SampleProfileLoader SampleLoader;
  AssumptionCacheTracker *ACT = nullptr;
  TargetTransformInfoWrapperPass *TTIWP = nullptr;
  TargetLibraryInfoWrapperPass *TLIWP = nullptr;
};

} // end anonymous namespace

/// Return true if the given callsite is hot wrt to hot cutoff threshold.
///
/// Functions that were inlined in the original binary will be represented
/// in the inline stack in the sample profile. If the profile shows that
/// the original inline decision was "good" (i.e., the callsite is executed
/// frequently), then we will recreate the inline decision and apply the
/// profile from the inlined callsite.
///
/// To decide whether an inlined callsite is hot, we compare the callsite
/// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
/// regarded as hot if the count is above the cutoff value.
///
/// When ProfileAccurateForSymsInList is enabled and profile symbol list
/// is present, functions in the profile symbol list but without profile will
/// be regarded as cold and much less inlining will happen in CGSCC inlining
/// pass, so we tend to lower the hot criteria here to allow more early
/// inlining to happen for warm callsites and it is helpful for performance.
bool SampleProfileLoader::callsiteIsHot(const FunctionSamples *CallsiteFS,
                                        ProfileSummaryInfo *PSI) {
  if (!CallsiteFS)
    return false; // The callsite was not inlined in the original binary.

  assert(PSI && "PSI is expected to be non null");
  uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
  if (ProfAccForSymsInList)
    return !PSI->isColdCount(CallsiteTotalSamples);
  else
    return PSI->isHotCount(CallsiteTotalSamples);
}

/// Mark as used the sample record for the given function samples at
/// (LineOffset, Discriminator).
///
/// \returns true if this is the first time we mark the given record.
bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
                                            uint32_t LineOffset,
                                            uint32_t Discriminator,
                                            uint64_t Samples) {
  LineLocation Loc(LineOffset, Discriminator);
  unsigned &Count = SampleCoverage[FS][Loc];
  bool FirstTime = (++Count == 1);
  if (FirstTime)
    TotalUsedSamples += Samples;
  return FirstTime;
}

/// Return the number of sample records that were applied from this profile.
///
/// This count does not include records from cold inlined callsites.
unsigned
SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
                                        ProfileSummaryInfo *PSI) const {
  auto I = SampleCoverage.find(FS);

  // The size of the coverage map for FS represents the number of records
  // that were marked used at least once.
  unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;

  // If there are inlined callsites in this function, count the samples found
  // in the respective bodies. However, do not bother counting callees with 0
  // total samples, these are callees that were never invoked at runtime.
  for (const auto &I : FS->getCallsiteSamples())
    for (const auto &J : I.second) {
      const FunctionSamples *CalleeSamples = &J.second;
      if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
        Count += countUsedRecords(CalleeSamples, PSI);
    }

  return Count;
}

/// Return the number of sample records in the body of this profile.
///
/// This count does not include records from cold inlined callsites.
unsigned
SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
                                        ProfileSummaryInfo *PSI) const {
  unsigned Count = FS->getBodySamples().size();

  // Only count records in hot callsites.
  for (const auto &I : FS->getCallsiteSamples())
    for (const auto &J : I.second) {
      const FunctionSamples *CalleeSamples = &J.second;
      if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
        Count += countBodyRecords(CalleeSamples, PSI);
    }

  return Count;
}

/// Return the number of samples collected in the body of this profile.
///
/// This count does not include samples from cold inlined callsites.
uint64_t
SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
                                        ProfileSummaryInfo *PSI) const {
  uint64_t Total = 0;
  for (const auto &I : FS->getBodySamples())
    Total += I.second.getSamples();

  // Only count samples in hot callsites.
  for (const auto &I : FS->getCallsiteSamples())
    for (const auto &J : I.second) {
      const FunctionSamples *CalleeSamples = &J.second;
      if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
        Total += countBodySamples(CalleeSamples, PSI);
    }

  return Total;
}

/// Return the fraction of sample records used in this profile.
///
/// The returned value is an unsigned integer in the range 0-100 indicating
/// the percentage of sample records that were used while applying this
/// profile to the associated function.
unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
                                                unsigned Total) const {
  assert(Used <= Total &&
         "number of used records cannot exceed the total number of records");
  return Total > 0 ? Used * 100 / Total : 100;
}

/// Clear all the per-function data used to load samples and propagate weights.
void SampleProfileLoader::clearFunctionData() {
  BlockWeights.clear();
  EdgeWeights.clear();
  VisitedBlocks.clear();
  VisitedEdges.clear();
  EquivalenceClass.clear();
  DT = nullptr;
  PDT = nullptr;
  LI = nullptr;
  Predecessors.clear();
  Successors.clear();
  CoverageTracker.clear();
}

#ifndef NDEBUG
/// Print the weight of edge \p E on stream \p OS.
///
/// \param OS  Stream to emit the output to.
/// \param E  Edge to print.
void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
  OS << "weight[" << E.first->getName() << "->" << E.second->getName()
     << "]: " << EdgeWeights[E] << "\n";
}

/// Print the equivalence class of block \p BB on stream \p OS.
///
/// \param OS  Stream to emit the output to.
/// \param BB  Block to print.
void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
                                                const BasicBlock *BB) {
  const BasicBlock *Equiv = EquivalenceClass[BB];
  OS << "equivalence[" << BB->getName()
     << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
}

/// Print the weight of block \p BB on stream \p OS.
///
/// \param OS  Stream to emit the output to.
/// \param BB  Block to print.
void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
                                           const BasicBlock *BB) const {
  const auto &I = BlockWeights.find(BB);
  uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
  OS << "weight[" << BB->getName() << "]: " << W << "\n";
}
#endif

/// Get the weight for an instruction.
///
/// The "weight" of an instruction \p Inst is the number of samples
/// collected on that instruction at runtime. To retrieve it, we
/// need to compute the line number of \p Inst relative to the start of its
/// function. We use HeaderLineno to compute the offset. We then
/// look up the samples collected for \p Inst using BodySamples.
///
/// \param Inst Instruction to query.
///
/// \returns the weight of \p Inst.
ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
  if (FunctionSamples::ProfileIsProbeBased)
    return getProbeWeight(Inst);

  const DebugLoc &DLoc = Inst.getDebugLoc();
  if (!DLoc)
    return std::error_code();

  const FunctionSamples *FS = findFunctionSamples(Inst);
  if (!FS)
    return std::error_code();

  // Ignore all intrinsics, phinodes and branch instructions.
  // Branch and phinodes instruction usually contains debug info from sources outside of
  // the residing basic block, thus we ignore them during annotation.
  if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst))
    return std::error_code();

  // If a direct call/invoke instruction is inlined in profile
  // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
  // it means that the inlined callsite has no sample, thus the call
  // instruction should have 0 count.
  if (!ProfileIsCS)
    if (const auto *CB = dyn_cast<CallBase>(&Inst))
      if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB))
        return 0;

  const DILocation *DIL = DLoc;
  uint32_t LineOffset = FunctionSamples::getOffset(DIL);
  uint32_t Discriminator = DIL->getBaseDiscriminator();
  ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
  if (R) {
    bool FirstMark =
        CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
    if (FirstMark) {
      ORE->emit([&]() {
        OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
        Remark << "Applied " << ore::NV("NumSamples", *R);
        Remark << " samples from profile (offset: ";
        Remark << ore::NV("LineOffset", LineOffset);
        if (Discriminator) {
          Remark << ".";
          Remark << ore::NV("Discriminator", Discriminator);
        }
        Remark << ")";
        return Remark;
      });
    }
    LLVM_DEBUG(dbgs() << "    " << DLoc.getLine() << "."
                      << DIL->getBaseDiscriminator() << ":" << Inst
                      << " (line offset: " << LineOffset << "."
                      << DIL->getBaseDiscriminator() << " - weight: " << R.get()
                      << ")\n");
  }
  return R;
}

ErrorOr<uint64_t> SampleProfileLoader::getProbeWeight(const Instruction &Inst) {
  assert(FunctionSamples::ProfileIsProbeBased &&
         "Profile is not pseudo probe based");
  Optional<PseudoProbe> Probe = extractProbe(Inst);
  if (!Probe)
    return std::error_code();

  const FunctionSamples *FS = findFunctionSamples(Inst);
  if (!FS)
    return std::error_code();

  // If a direct call/invoke instruction is inlined in profile
  // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
  // it means that the inlined callsite has no sample, thus the call
  // instruction should have 0 count.
  if (const auto *CB = dyn_cast<CallBase>(&Inst))
    if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB))
      return 0;

  const ErrorOr<uint64_t> &R = FS->findSamplesAt(Probe->Id, 0);
  if (R) {
    uint64_t Samples = R.get() * Probe->Factor;
    bool FirstMark = CoverageTracker.markSamplesUsed(FS, Probe->Id, 0, Samples);
    if (FirstMark) {
      ORE->emit([&]() {
        OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
        Remark << "Applied " << ore::NV("NumSamples", Samples);
        Remark << " samples from profile (ProbeId=";
        Remark << ore::NV("ProbeId", Probe->Id);
        Remark << ", Factor=";
        Remark << ore::NV("Factor", Probe->Factor);
        Remark << ", OriginalSamples=";
        Remark << ore::NV("OriginalSamples", R.get());
        Remark << ")";
        return Remark;
      });
    }
    LLVM_DEBUG(dbgs() << "    " << Probe->Id << ":" << Inst
                      << " - weight: " << R.get() << " - factor: "
                      << format("%0.2f", Probe->Factor) << ")\n");
    return Samples;
  }
  return R;
}

/// Compute the weight of a basic block.
///
/// The weight of basic block \p BB is the maximum weight of all the
/// instructions in BB.
///
/// \param BB The basic block to query.
///
/// \returns the weight for \p BB.
ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
  uint64_t Max = 0;
  bool HasWeight = false;
  for (auto &I : BB->getInstList()) {
    const ErrorOr<uint64_t> &R = getInstWeight(I);
    if (R) {
      Max = std::max(Max, R.get());
      HasWeight = true;
    }
  }
  return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
}

/// Compute and store the weights of every basic block.
///
/// This populates the BlockWeights map by computing
/// the weights of every basic block in the CFG.
///
/// \param F The function to query.
bool SampleProfileLoader::computeBlockWeights(Function &F) {
  bool Changed = false;
  LLVM_DEBUG(dbgs() << "Block weights\n");
  for (const auto &BB : F) {
    ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
    if (Weight) {
      BlockWeights[&BB] = Weight.get();
      VisitedBlocks.insert(&BB);
      Changed = true;
    }
    LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
  }

  return Changed;
}

/// Get the FunctionSamples for a call instruction.
///
/// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
/// instance in which that call instruction is calling to. It contains
/// all samples that resides in the inlined instance. We first find the
/// inlined instance in which the call instruction is from, then we
/// traverse its children to find the callsite with the matching
/// location.
///
/// \param Inst Call/Invoke instruction to query.
///
/// \returns The FunctionSamples pointer to the inlined instance.
const FunctionSamples *
SampleProfileLoader::findCalleeFunctionSamples(const CallBase &Inst) const {
  const DILocation *DIL = Inst.getDebugLoc();
  if (!DIL) {
    return nullptr;
  }

  StringRef CalleeName;
  if (Function *Callee = Inst.getCalledFunction())
    CalleeName = FunctionSamples::getCanonicalFnName(*Callee);

  if (ProfileIsCS)
    return ContextTracker->getCalleeContextSamplesFor(Inst, CalleeName);

  const FunctionSamples *FS = findFunctionSamples(Inst);
  if (FS == nullptr)
    return nullptr;

  return FS->findFunctionSamplesAt(FunctionSamples::getCallSiteIdentifier(DIL),
                                   CalleeName, Reader->getRemapper());
}

/// Returns a vector of FunctionSamples that are the indirect call targets
/// of \p Inst. The vector is sorted by the total number of samples. Stores
/// the total call count of the indirect call in \p Sum.
std::vector<const FunctionSamples *>
SampleProfileLoader::findIndirectCallFunctionSamples(
    const Instruction &Inst, uint64_t &Sum) const {
  const DILocation *DIL = Inst.getDebugLoc();
  std::vector<const FunctionSamples *> R;

  if (!DIL) {
    return R;
  }

  auto FSCompare = [](const FunctionSamples *L, const FunctionSamples *R) {
    assert(L && R && "Expect non-null FunctionSamples");
    if (L->getEntrySamples() != R->getEntrySamples())
      return L->getEntrySamples() > R->getEntrySamples();
    return FunctionSamples::getGUID(L->getName()) <
           FunctionSamples::getGUID(R->getName());
  };

  if (ProfileIsCS) {
    auto CalleeSamples =
        ContextTracker->getIndirectCalleeContextSamplesFor(DIL);
    if (CalleeSamples.empty())
      return R;

    // For CSSPGO, we only use target context profile's entry count
    // as that already includes both inlined callee and non-inlined ones..
    Sum = 0;
    for (const auto *const FS : CalleeSamples) {
      Sum += FS->getEntrySamples();
      R.push_back(FS);
    }
    llvm::sort(R, FSCompare);
    return R;
  }

  const FunctionSamples *FS = findFunctionSamples(Inst);
  if (FS == nullptr)
    return R;

  auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL);
  auto T = FS->findCallTargetMapAt(CallSite);
  Sum = 0;
  if (T)
    for (const auto &T_C : T.get())
      Sum += T_C.second;
  if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(CallSite)) {
    if (M->empty())
      return R;
    for (const auto &NameFS : *M) {
      Sum += NameFS.second.getEntrySamples();
      R.push_back(&NameFS.second);
    }
    llvm::sort(R, FSCompare);
  }
  return R;
}

/// Get the FunctionSamples for an instruction.
///
/// The FunctionSamples of an instruction \p Inst is the inlined instance
/// in which that instruction is coming from. We traverse the inline stack
/// of that instruction, and match it with the tree nodes in the profile.
///
/// \param Inst Instruction to query.
///
/// \returns the FunctionSamples pointer to the inlined instance.
const FunctionSamples *
SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
  if (FunctionSamples::ProfileIsProbeBased) {
    Optional<PseudoProbe> Probe = extractProbe(Inst);
    if (!Probe)
      return nullptr;
  }

  const DILocation *DIL = Inst.getDebugLoc();
  if (!DIL)
    return Samples;

  auto it = DILocation2SampleMap.try_emplace(DIL,nullptr);
  if (it.second) {
    if (ProfileIsCS)
      it.first->second = ContextTracker->getContextSamplesFor(DIL);
    else
      it.first->second =
          Samples->findFunctionSamples(DIL, Reader->getRemapper());
  }
  return it.first->second;
}

/// Attempt to promote indirect call and also inline the promoted call.
///
/// \param F  Caller function.
/// \param Candidate  ICP and inline candidate.
/// \param Sum  Sum of target counts for indirect call.
/// \param PromotedInsns  Map to keep track of indirect call already processed.
/// \param Candidate  ICP and inline candidate.
/// \param InlinedCallSite  Output vector for new call sites exposed after
/// inlining.
bool SampleProfileLoader::tryPromoteAndInlineCandidate(
    Function &F, InlineCandidate &Candidate, uint64_t SumOrigin, uint64_t &Sum,
    DenseSet<Instruction *> &PromotedInsns,
    SmallVector<CallBase *, 8> *InlinedCallSite) {
  const char *Reason = "Callee function not available";
  // R->getValue() != &F is to prevent promoting a recursive call.
  // If it is a recursive call, we do not inline it as it could bloat
  // the code exponentially. There is way to better handle this, e.g.
  // clone the caller first, and inline the cloned caller if it is
  // recursive. As llvm does not inline recursive calls, we will
  // simply ignore it instead of handling it explicitly.
  auto R = SymbolMap.find(Candidate.CalleeSamples->getFuncName());
  if (R != SymbolMap.end() && R->getValue() &&
      !R->getValue()->isDeclaration() && R->getValue()->getSubprogram() &&
      R->getValue()->hasFnAttribute("use-sample-profile") &&
      R->getValue() != &F &&
      isLegalToPromote(*Candidate.CallInstr, R->getValue(), &Reason)) {
    auto *DI =
        &pgo::promoteIndirectCall(*Candidate.CallInstr, R->getValue(),
                                  Candidate.CallsiteCount, Sum, false, ORE);
    if (DI) {
      Sum -= Candidate.CallsiteCount;
      // Prorate the indirect callsite distribution.
      // Do not update the promoted direct callsite distribution at this
      // point since the original distribution combined with the callee
      // profile will be used to prorate callsites from the callee if
      // inlined. Once not inlined, the direct callsite distribution should
      // be prorated so that the it will reflect the real callsite counts.
      setProbeDistributionFactor(*Candidate.CallInstr,
                                 Candidate.CallsiteDistribution * Sum /
                                     SumOrigin);
      PromotedInsns.insert(Candidate.CallInstr);
      Candidate.CallInstr = DI;
      if (isa<CallInst>(DI) || isa<InvokeInst>(DI)) {
        bool Inlined = tryInlineCandidate(Candidate, InlinedCallSite);
        if (!Inlined) {
          // Prorate the direct callsite distribution so that it reflects real
          // callsite counts.
          setProbeDistributionFactor(*DI, Candidate.CallsiteDistribution *
                                              Candidate.CallsiteCount /
                                              SumOrigin);
        }
        return Inlined;
      }
    }
  } else {
    LLVM_DEBUG(dbgs() << "\nFailed to promote indirect call to "
                      << Candidate.CalleeSamples->getFuncName() << " because "
                      << Reason << "\n");
  }
  return false;
}

bool SampleProfileLoader::shouldInlineColdCallee(CallBase &CallInst) {
  if (!ProfileSizeInline)
    return false;

  Function *Callee = CallInst.getCalledFunction();
  if (Callee == nullptr)
    return false;

  InlineCost Cost = getInlineCost(CallInst, getInlineParams(), GetTTI(*Callee),
                                  GetAC, GetTLI);

  if (Cost.isNever())
    return false;

  if (Cost.isAlways())
    return true;

  return Cost.getCost() <= SampleColdCallSiteThreshold;
}

void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates(
    const SmallVectorImpl<CallBase *> &Candidates, const Function &F,
    bool Hot) {
  for (auto I : Candidates) {
    Function *CalledFunction = I->getCalledFunction();
    if (CalledFunction) {
      ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineAttempt",
                                           I->getDebugLoc(), I->getParent())
                << "previous inlining reattempted for "
                << (Hot ? "hotness: '" : "size: '")
                << ore::NV("Callee", CalledFunction) << "' into '"
                << ore::NV("Caller", &F) << "'");
    }
  }
}

/// Iteratively inline hot callsites of a function.
///
/// Iteratively traverse all callsites of the function \p F, and find if
/// the corresponding inlined instance exists and is hot in profile. If
/// it is hot enough, inline the callsites and adds new callsites of the
/// callee into the caller. If the call is an indirect call, first promote
/// it to direct call. Each indirect call is limited with a single target.
///
/// \param F function to perform iterative inlining.
/// \param InlinedGUIDs a set to be updated to include all GUIDs that are
///     inlined in the profiled binary.
///
/// \returns True if there is any inline happened.
bool SampleProfileLoader::inlineHotFunctions(
    Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
  DenseSet<Instruction *> PromotedInsns;

  // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure
  // Profile symbol list is ignored when profile-sample-accurate is on.
  assert((!ProfAccForSymsInList ||
          (!ProfileSampleAccurate &&
           !F.hasFnAttribute("profile-sample-accurate"))) &&
         "ProfAccForSymsInList should be false when profile-sample-accurate "
         "is enabled");

  DenseMap<CallBase *, const FunctionSamples *> LocalNotInlinedCallSites;
  bool Changed = false;
  bool LocalChanged = true;
  while (LocalChanged) {
    LocalChanged = false;
    SmallVector<CallBase *, 10> CIS;
    for (auto &BB : F) {
      bool Hot = false;
      SmallVector<CallBase *, 10> AllCandidates;
      SmallVector<CallBase *, 10> ColdCandidates;
      for (auto &I : BB.getInstList()) {
        const FunctionSamples *FS = nullptr;
        if (auto *CB = dyn_cast<CallBase>(&I)) {
          if (!isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(*CB))) {
            assert((!FunctionSamples::UseMD5 || FS->GUIDToFuncNameMap) &&
                   "GUIDToFuncNameMap has to be populated");
            AllCandidates.push_back(CB);
            if (FS->getEntrySamples() > 0 || ProfileIsCS)
              LocalNotInlinedCallSites.try_emplace(CB, FS);
            if (callsiteIsHot(FS, PSI))
              Hot = true;
            else if (shouldInlineColdCallee(*CB))
              ColdCandidates.push_back(CB);
          }
        }
      }
      if (Hot || ExternalInlineAdvisor) {
        CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end());
        emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true);
      } else {
        CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end());
        emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false);
      }
    }
    for (CallBase *I : CIS) {
      Function *CalledFunction = I->getCalledFunction();
      InlineCandidate Candidate = {
          I,
          LocalNotInlinedCallSites.count(I) ? LocalNotInlinedCallSites[I]
                                            : nullptr,
          0 /* dummy count */, 1.0 /* dummy distribution factor */};
      // Do not inline recursive calls.
      if (CalledFunction == &F)
        continue;
      if (I->isIndirectCall()) {
        if (PromotedInsns.count(I))
          continue;
        uint64_t Sum;
        for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
          uint64_t SumOrigin = Sum;
          if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) {
            FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
                                     PSI->getOrCompHotCountThreshold());
            continue;
          }
          if (!callsiteIsHot(FS, PSI))
            continue;

          Candidate = {I, FS, FS->getEntrySamples(), 1.0};
          if (tryPromoteAndInlineCandidate(F, Candidate, SumOrigin, Sum,
                                           PromotedInsns)) {
            LocalNotInlinedCallSites.erase(I);
            LocalChanged = true;
          }
        }
      } else if (CalledFunction && CalledFunction->getSubprogram() &&
                 !CalledFunction->isDeclaration()) {
        if (tryInlineCandidate(Candidate)) {
          LocalNotInlinedCallSites.erase(I);
          LocalChanged = true;
        }
      } else if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) {
        findCalleeFunctionSamples(*I)->findInlinedFunctions(
            InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
      }
    }
    Changed |= LocalChanged;
  }

  // For CS profile, profile for not inlined context will be merged when
  // base profile is being trieved
  if (ProfileIsCS)
    return Changed;

  // Accumulate not inlined callsite information into notInlinedSamples
  for (const auto &Pair : LocalNotInlinedCallSites) {
    CallBase *I = Pair.getFirst();
    Function *Callee = I->getCalledFunction();
    if (!Callee || Callee->isDeclaration())
      continue;

    ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "NotInline",
                                         I->getDebugLoc(), I->getParent())
              << "previous inlining not repeated: '"
              << ore::NV("Callee", Callee) << "' into '"
              << ore::NV("Caller", &F) << "'");

    ++NumCSNotInlined;
    const FunctionSamples *FS = Pair.getSecond();
    if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) {
      continue;
    }

    if (ProfileMergeInlinee) {
      // A function call can be replicated by optimizations like callsite
      // splitting or jump threading and the replicates end up sharing the
      // sample nested callee profile instead of slicing the original inlinee's
      // profile. We want to do merge exactly once by filtering out callee
      // profiles with a non-zero head sample count.
      if (FS->getHeadSamples() == 0) {
        // Use entry samples as head samples during the merge, as inlinees
        // don't have head samples.
        const_cast<FunctionSamples *>(FS)->addHeadSamples(
            FS->getEntrySamples());

        // Note that we have to do the merge right after processing function.
        // This allows OutlineFS's profile to be used for annotation during
        // top-down processing of functions' annotation.
        FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee);
        OutlineFS->merge(*FS);
      }
    } else {
      auto pair =
          notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0});
      pair.first->second.entryCount += FS->getEntrySamples();
    }
  }
  return Changed;
}

bool SampleProfileLoader::tryInlineCandidate(
    InlineCandidate &Candidate, SmallVector<CallBase *, 8> *InlinedCallSites) {

  CallBase &CB = *Candidate.CallInstr;
  Function *CalledFunction = CB.getCalledFunction();
  assert(CalledFunction && "Expect a callee with definition");
  DebugLoc DLoc = CB.getDebugLoc();
  BasicBlock *BB = CB.getParent();

  InlineCost Cost = shouldInlineCandidate(Candidate);
  if (Cost.isNever()) {
    ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineFail", DLoc, BB)
              << "incompatible inlining");
    return false;
  }

  if (!Cost)
    return false;

  InlineFunctionInfo IFI(nullptr, GetAC);
  if (InlineFunction(CB, IFI).isSuccess()) {
    // The call to InlineFunction erases I, so we can't pass it here.
    emitInlinedInto(*ORE, DLoc, BB, *CalledFunction, *BB->getParent(), Cost,
                    true, CSINLINE_DEBUG);

    // Now populate the list of newly exposed call sites.
    if (InlinedCallSites) {
      InlinedCallSites->clear();
      for (auto &I : IFI.InlinedCallSites)
        InlinedCallSites->push_back(I);
    }

    if (ProfileIsCS)
      ContextTracker->markContextSamplesInlined(Candidate.CalleeSamples);
    ++NumCSInlined;

    // Prorate inlined probes for a duplicated inlining callsite which probably
    // has a distribution less than 100%. Samples for an inlinee should be
    // distributed among the copies of the original callsite based on each
    // callsite's distribution factor for counts accuracy. Note that an inlined
    // probe may come with its own distribution factor if it has been duplicated
    // in the inlinee body. The two factor are multiplied to reflect the
    // aggregation of duplication.
    if (Candidate.CallsiteDistribution < 1) {
      for (auto &I : IFI.InlinedCallSites) {
        if (Optional<PseudoProbe> Probe = extractProbe(*I))
          setProbeDistributionFactor(*I, Probe->Factor *
                                             Candidate.CallsiteDistribution);
      }
      NumDuplicatedInlinesite++;
    }

    return true;
  }
  return false;
}

bool SampleProfileLoader::getInlineCandidate(InlineCandidate *NewCandidate,
                                             CallBase *CB) {
  assert(CB && "Expect non-null call instruction");

  if (isa<IntrinsicInst>(CB))
    return false;

  // Find the callee's profile. For indirect call, find hottest target profile.
  const FunctionSamples *CalleeSamples = findCalleeFunctionSamples(*CB);
  if (!CalleeSamples)
    return false;

  float Factor = 1.0;
  if (Optional<PseudoProbe> Probe = extractProbe(*CB))
    Factor = Probe->Factor;

  uint64_t CallsiteCount = 0;
  ErrorOr<uint64_t> Weight = getBlockWeight(CB->getParent());
  if (Weight)
    CallsiteCount = Weight.get();
  if (CalleeSamples)
    CallsiteCount = std::max(
        CallsiteCount, uint64_t(CalleeSamples->getEntrySamples() * Factor));

  *NewCandidate = {CB, CalleeSamples, CallsiteCount, Factor};
  return true;
}

InlineCost
SampleProfileLoader::shouldInlineCandidate(InlineCandidate &Candidate) {
  std::unique_ptr<InlineAdvice> Advice = nullptr;
  if (ExternalInlineAdvisor) {
    Advice = ExternalInlineAdvisor->getAdvice(*Candidate.CallInstr);
    if (!Advice->isInliningRecommended()) {
      Advice->recordUnattemptedInlining();
      return InlineCost::getNever("not previously inlined");
    }
    Advice->recordInlining();
    return InlineCost::getAlways("previously inlined");
  }

  // Adjust threshold based on call site hotness, only do this for callsite
  // prioritized inliner because otherwise cost-benefit check is done earlier.
  int SampleThreshold = SampleColdCallSiteThreshold;
  if (CallsitePrioritizedInline) {
    if (Candidate.CallsiteCount > PSI->getHotCountThreshold())
      SampleThreshold = SampleHotCallSiteThreshold;
    else if (!ProfileSizeInline)
      return InlineCost::getNever("cold callsite");
  }

  Function *Callee = Candidate.CallInstr->getCalledFunction();
  assert(Callee && "Expect a definition for inline candidate of direct call");

  InlineParams Params = getInlineParams();
  Params.ComputeFullInlineCost = true;
  // Checks if there is anything in the reachable portion of the callee at
  // this callsite that makes this inlining potentially illegal. Need to
  // set ComputeFullInlineCost, otherwise getInlineCost may return early
  // when cost exceeds threshold without checking all IRs in the callee.
  // The acutal cost does not matter because we only checks isNever() to
  // see if it is legal to inline the callsite.
  InlineCost Cost = getInlineCost(*Candidate.CallInstr, Callee, Params,
                                  GetTTI(*Callee), GetAC, GetTLI);

  // Honor always inline and never inline from call analyzer
  if (Cost.isNever() || Cost.isAlways())
    return Cost;

  // For old FDO inliner, we inline the call site as long as cost is not
  // "Never". The cost-benefit check is done earlier.
  if (!CallsitePrioritizedInline) {
    return InlineCost::get(Cost.getCost(), INT_MAX);
  }

  // Otherwise only use the cost from call analyzer, but overwite threshold with
  // Sample PGO threshold.
  return InlineCost::get(Cost.getCost(), SampleThreshold);
}

bool SampleProfileLoader::inlineHotFunctionsWithPriority(
    Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
  DenseSet<Instruction *> PromotedInsns;
  assert(ProfileIsCS && "Prioritiy based inliner only works with CSSPGO now");

  // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure
  // Profile symbol list is ignored when profile-sample-accurate is on.
  assert((!ProfAccForSymsInList ||
          (!ProfileSampleAccurate &&
           !F.hasFnAttribute("profile-sample-accurate"))) &&
         "ProfAccForSymsInList should be false when profile-sample-accurate "
         "is enabled");

  // Populating worklist with initial call sites from root inliner, along
  // with call site weights.
  CandidateQueue CQueue;
  InlineCandidate NewCandidate;
  for (auto &BB : F) {
    for (auto &I : BB.getInstList()) {
      auto *CB = dyn_cast<CallBase>(&I);
      if (!CB)
        continue;
      if (getInlineCandidate(&NewCandidate, CB))
        CQueue.push(NewCandidate);
    }
  }

  // Cap the size growth from profile guided inlining. This is needed even
  // though cost of each inline candidate already accounts for callee size,
  // because with top-down inlining, we can grow inliner size significantly
  // with large number of smaller inlinees each pass the cost check.
  assert(ProfileInlineLimitMax >= ProfileInlineLimitMin &&
         "Max inline size limit should not be smaller than min inline size "
         "limit.");
  unsigned SizeLimit = F.getInstructionCount() * ProfileInlineGrowthLimit;
  SizeLimit = std::min(SizeLimit, (unsigned)ProfileInlineLimitMax);
  SizeLimit = std::max(SizeLimit, (unsigned)ProfileInlineLimitMin);
  if (ExternalInlineAdvisor)
    SizeLimit = std::numeric_limits<unsigned>::max();

  // Perform iterative BFS call site prioritized inlining
  bool Changed = false;
  while (!CQueue.empty() && F.getInstructionCount() < SizeLimit) {
    InlineCandidate Candidate = CQueue.top();
    CQueue.pop();
    CallBase *I = Candidate.CallInstr;
    Function *CalledFunction = I->getCalledFunction();

    if (CalledFunction == &F)
      continue;
    if (I->isIndirectCall()) {
      if (PromotedInsns.count(I))
        continue;
      uint64_t Sum;
      auto CalleeSamples = findIndirectCallFunctionSamples(*I, Sum);
      uint64_t SumOrigin = Sum;
      Sum *= Candidate.CallsiteDistribution;
      for (const auto *FS : CalleeSamples) {
        // TODO: Consider disable pre-lTO ICP for MonoLTO as well
        if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) {
          FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
                                   PSI->getOrCompHotCountThreshold());
          continue;
        }
        uint64_t EntryCountDistributed =
            FS->getEntrySamples() * Candidate.CallsiteDistribution;
        // In addition to regular inline cost check, we also need to make sure
        // ICP isn't introducing excessive speculative checks even if individual
        // target looks beneficial to promote and inline. That means we should
        // only do ICP when there's a small number dominant targets.
        if (EntryCountDistributed < SumOrigin / ProfileICPThreshold)
          break;
        // TODO: Fix CallAnalyzer to handle all indirect calls.
        // For indirect call, we don't run CallAnalyzer to get InlineCost
        // before actual inlining. This is because we could see two different
        // types from the same definition, which makes CallAnalyzer choke as
        // it's expecting matching parameter type on both caller and callee
        // side. See example from PR18962 for the triggering cases (the bug was
        // fixed, but we generate different types).
        if (!PSI->isHotCount(EntryCountDistributed))
          break;
        SmallVector<CallBase *, 8> InlinedCallSites;
        // Attach function profile for promoted indirect callee, and update
        // call site count for the promoted inline candidate too.
        Candidate = {I, FS, EntryCountDistributed,
                     Candidate.CallsiteDistribution};
        if (tryPromoteAndInlineCandidate(F, Candidate, SumOrigin, Sum,
                                         PromotedInsns, &InlinedCallSites)) {
          for (auto *CB : InlinedCallSites) {
            if (getInlineCandidate(&NewCandidate, CB))
              CQueue.emplace(NewCandidate);
          }
          Changed = true;
        }
      }
    } else if (CalledFunction && CalledFunction->getSubprogram() &&
               !CalledFunction->isDeclaration()) {
      SmallVector<CallBase *, 8> InlinedCallSites;
      if (tryInlineCandidate(Candidate, &InlinedCallSites)) {
        for (auto *CB : InlinedCallSites) {
          if (getInlineCandidate(&NewCandidate, CB))
            CQueue.emplace(NewCandidate);
        }
        Changed = true;
      }
    } else if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) {
      findCalleeFunctionSamples(*I)->findInlinedFunctions(
          InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
    }
  }

  if (!CQueue.empty()) {
    if (SizeLimit == (unsigned)ProfileInlineLimitMax)
      ++NumCSInlinedHitMaxLimit;
    else if (SizeLimit == (unsigned)ProfileInlineLimitMin)
      ++NumCSInlinedHitMinLimit;
    else
      ++NumCSInlinedHitGrowthLimit;
  }

  return Changed;
}

/// Find equivalence classes for the given block.
///
/// This finds all the blocks that are guaranteed to execute the same
/// number of times as \p BB1. To do this, it traverses all the
/// descendants of \p BB1 in the dominator or post-dominator tree.
///
/// A block BB2 will be in the same equivalence class as \p BB1 if
/// the following holds:
///
/// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
///    is a descendant of \p BB1 in the dominator tree, then BB2 should
///    dominate BB1 in the post-dominator tree.
///
/// 2- Both BB2 and \p BB1 must be in the same loop.
///
/// For every block BB2 that meets those two requirements, we set BB2's
/// equivalence class to \p BB1.
///
/// \param BB1  Block to check.
/// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
/// \param DomTree  Opposite dominator tree. If \p Descendants is filled
///                 with blocks from \p BB1's dominator tree, then
///                 this is the post-dominator tree, and vice versa.
template <bool IsPostDom>
void SampleProfileLoader::findEquivalencesFor(
    BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
    DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
  const BasicBlock *EC = EquivalenceClass[BB1];
  uint64_t Weight = BlockWeights[EC];
  for (const auto *BB2 : Descendants) {
    bool IsDomParent = DomTree->dominates(BB2, BB1);
    bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
    if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
      EquivalenceClass[BB2] = EC;
      // If BB2 is visited, then the entire EC should be marked as visited.
      if (VisitedBlocks.count(BB2)) {
        VisitedBlocks.insert(EC);
      }

      // If BB2 is heavier than BB1, make BB2 have the same weight
      // as BB1.
      //
      // Note that we don't worry about the opposite situation here
      // (when BB2 is lighter than BB1). We will deal with this
      // during the propagation phase. Right now, we just want to
      // make sure that BB1 has the largest weight of all the
      // members of its equivalence set.
      Weight = std::max(Weight, BlockWeights[BB2]);
    }
  }
  if (EC == &EC->getParent()->getEntryBlock()) {
    BlockWeights[EC] = Samples->getHeadSamples() + 1;
  } else {
    BlockWeights[EC] = Weight;
  }
}

/// Find equivalence classes.
///
/// Since samples may be missing from blocks, we can fill in the gaps by setting
/// the weights of all the blocks in the same equivalence class to the same
/// weight. To compute the concept of equivalence, we use dominance and loop
/// information. Two blocks B1 and B2 are in the same equivalence class if B1
/// dominates B2, B2 post-dominates B1 and both are in the same loop.
///
/// \param F The function to query.
void SampleProfileLoader::findEquivalenceClasses(Function &F) {
  SmallVector<BasicBlock *, 8> DominatedBBs;
  LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
  // Find equivalence sets based on dominance and post-dominance information.
  for (auto &BB : F) {
    BasicBlock *BB1 = &BB;

    // Compute BB1's equivalence class once.
    if (EquivalenceClass.count(BB1)) {
      LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
      continue;
    }

    // By default, blocks are in their own equivalence class.
    EquivalenceClass[BB1] = BB1;

    // Traverse all the blocks dominated by BB1. We are looking for
    // every basic block BB2 such that:
    //
    // 1- BB1 dominates BB2.
    // 2- BB2 post-dominates BB1.
    // 3- BB1 and BB2 are in the same loop nest.
    //
    // If all those conditions hold, it means that BB2 is executed
    // as many times as BB1, so they are placed in the same equivalence
    // class by making BB2's equivalence class be BB1.
    DominatedBBs.clear();
    DT->getDescendants(BB1, DominatedBBs);
    findEquivalencesFor(BB1, DominatedBBs, PDT.get());

    LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
  }

  // Assign weights to equivalence classes.
  //
  // All the basic blocks in the same equivalence class will execute
  // the same number of times. Since we know that the head block in
  // each equivalence class has the largest weight, assign that weight
  // to all the blocks in that equivalence class.
  LLVM_DEBUG(
      dbgs() << "\nAssign the same weight to all blocks in the same class\n");
  for (auto &BI : F) {
    const BasicBlock *BB = &BI;
    const BasicBlock *EquivBB = EquivalenceClass[BB];
    if (BB != EquivBB)
      BlockWeights[BB] = BlockWeights[EquivBB];
    LLVM_DEBUG(printBlockWeight(dbgs(), BB));
  }
}

/// Visit the given edge to decide if it has a valid weight.
///
/// If \p E has not been visited before, we copy to \p UnknownEdge
/// and increment the count of unknown edges.
///
/// \param E  Edge to visit.
/// \param NumUnknownEdges  Current number of unknown edges.
/// \param UnknownEdge  Set if E has not been visited before.
///
/// \returns E's weight, if known. Otherwise, return 0.
uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
                                        Edge *UnknownEdge) {
  if (!VisitedEdges.count(E)) {
    (*NumUnknownEdges)++;
    *UnknownEdge = E;
    return 0;
  }

  return EdgeWeights[E];
}

/// Propagate weights through incoming/outgoing edges.
///
/// If the weight of a basic block is known, and there is only one edge
/// with an unknown weight, we can calculate the weight of that edge.
///
/// Similarly, if all the edges have a known count, we can calculate the
/// count of the basic block, if needed.
///
/// \param F  Function to process.
/// \param UpdateBlockCount  Whether we should update basic block counts that
///                          has already been annotated.
///
/// \returns  True if new weights were assigned to edges or blocks.
bool SampleProfileLoader::propagateThroughEdges(Function &F,
                                                bool UpdateBlockCount) {
  bool Changed = false;
  LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
  for (const auto &BI : F) {
    const BasicBlock *BB = &BI;
    const BasicBlock *EC = EquivalenceClass[BB];

    // Visit all the predecessor and successor edges to determine
    // which ones have a weight assigned already. Note that it doesn't
    // matter that we only keep track of a single unknown edge. The
    // only case we are interested in handling is when only a single
    // edge is unknown (see setEdgeOrBlockWeight).
    for (unsigned i = 0; i < 2; i++) {
      uint64_t TotalWeight = 0;
      unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
      Edge UnknownEdge, SelfReferentialEdge, SingleEdge;

      if (i == 0) {
        // First, visit all predecessor edges.
        NumTotalEdges = Predecessors[BB].size();
        for (auto *Pred : Predecessors[BB]) {
          Edge E = std::make_pair(Pred, BB);
          TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
          if (E.first == E.second)
            SelfReferentialEdge = E;
        }
        if (NumTotalEdges == 1) {
          SingleEdge = std::make_pair(Predecessors[BB][0], BB);
        }
      } else {
        // On the second round, visit all successor edges.
        NumTotalEdges = Successors[BB].size();
        for (auto *Succ : Successors[BB]) {
          Edge E = std::make_pair(BB, Succ);
          TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
        }
        if (NumTotalEdges == 1) {
          SingleEdge = std::make_pair(BB, Successors[BB][0]);
        }
      }

      // After visiting all the edges, there are three cases that we
      // can handle immediately:
      //
      // - All the edge weights are known (i.e., NumUnknownEdges == 0).
      //   In this case, we simply check that the sum of all the edges
      //   is the same as BB's weight. If not, we change BB's weight
      //   to match. Additionally, if BB had not been visited before,
      //   we mark it visited.
      //
      // - Only one edge is unknown and BB has already been visited.
      //   In this case, we can compute the weight of the edge by
      //   subtracting the total block weight from all the known
      //   edge weights. If the edges weight more than BB, then the
      //   edge of the last remaining edge is set to zero.
      //
      // - There exists a self-referential edge and the weight of BB is
      //   known. In this case, this edge can be based on BB's weight.
      //   We add up all the other known edges and set the weight on
      //   the self-referential edge as we did in the previous case.
      //
      // In any other case, we must continue iterating. Eventually,
      // all edges will get a weight, or iteration will stop when
      // it reaches SampleProfileMaxPropagateIterations.
      if (NumUnknownEdges <= 1) {
        uint64_t &BBWeight = BlockWeights[EC];
        if (NumUnknownEdges == 0) {
          if (!VisitedBlocks.count(EC)) {
            // If we already know the weight of all edges, the weight of the
            // basic block can be computed. It should be no larger than the sum
            // of all edge weights.
            if (TotalWeight > BBWeight) {
              BBWeight = TotalWeight;
              Changed = true;
              LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
                                << " known. Set weight for block: ";
                         printBlockWeight(dbgs(), BB););
            }
          } else if (NumTotalEdges == 1 &&
                     EdgeWeights[SingleEdge] < BlockWeights[EC]) {
            // If there is only one edge for the visited basic block, use the
            // block weight to adjust edge weight if edge weight is smaller.
            EdgeWeights[SingleEdge] = BlockWeights[EC];
            Changed = true;
          }
        } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
          // If there is a single unknown edge and the block has been
          // visited, then we can compute E's weight.
          if (BBWeight >= TotalWeight)
            EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
          else
            EdgeWeights[UnknownEdge] = 0;
          const BasicBlock *OtherEC;
          if (i == 0)
            OtherEC = EquivalenceClass[UnknownEdge.first];
          else
            OtherEC = EquivalenceClass[UnknownEdge.second];
          // Edge weights should never exceed the BB weights it connects.
          if (VisitedBlocks.count(OtherEC) &&
              EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
            EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
          VisitedEdges.insert(UnknownEdge);
          Changed = true;
          LLVM_DEBUG(dbgs() << "Set weight for edge: ";
                     printEdgeWeight(dbgs(), UnknownEdge));
        }
      } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
        // If a block Weights 0, all its in/out edges should weight 0.
        if (i == 0) {
          for (auto *Pred : Predecessors[BB]) {
            Edge E = std::make_pair(Pred, BB);
            EdgeWeights[E] = 0;
            VisitedEdges.insert(E);
          }
        } else {
          for (auto *Succ : Successors[BB]) {
            Edge E = std::make_pair(BB, Succ);
            EdgeWeights[E] = 0;
            VisitedEdges.insert(E);
          }
        }
      } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
        uint64_t &BBWeight = BlockWeights[BB];
        // We have a self-referential edge and the weight of BB is known.
        if (BBWeight >= TotalWeight)
          EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
        else
          EdgeWeights[SelfReferentialEdge] = 0;
        VisitedEdges.insert(SelfReferentialEdge);
        Changed = true;
        LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
                   printEdgeWeight(dbgs(), SelfReferentialEdge));
      }
      if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
        BlockWeights[EC] = TotalWeight;
        VisitedBlocks.insert(EC);
        Changed = true;
      }
    }
  }

  return Changed;
}

/// Build in/out edge lists for each basic block in the CFG.
///
/// We are interested in unique edges. If a block B1 has multiple
/// edges to another block B2, we only add a single B1->B2 edge.
void SampleProfileLoader::buildEdges(Function &F) {
  for (auto &BI : F) {
    BasicBlock *B1 = &BI;

    // Add predecessors for B1.
    SmallPtrSet<BasicBlock *, 16> Visited;
    if (!Predecessors[B1].empty())
      llvm_unreachable("Found a stale predecessors list in a basic block.");
    for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
      BasicBlock *B2 = *PI;
      if (Visited.insert(B2).second)
        Predecessors[B1].push_back(B2);
    }

    // Add successors for B1.
    Visited.clear();
    if (!Successors[B1].empty())
      llvm_unreachable("Found a stale successors list in a basic block.");
    for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
      BasicBlock *B2 = *SI;
      if (Visited.insert(B2).second)
        Successors[B1].push_back(B2);
    }
  }
}

/// Returns the sorted CallTargetMap \p M by count in descending order.
static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets(
    const SampleRecord::CallTargetMap & M) {
  SmallVector<InstrProfValueData, 2> R;
  for (const auto &I : SampleRecord::SortCallTargets(M)) {
    R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second});
  }
  return R;
}

/// Propagate weights into edges
///
/// The following rules are applied to every block BB in the CFG:
///
/// - If BB has a single predecessor/successor, then the weight
///   of that edge is the weight of the block.
///
/// - If all incoming or outgoing edges are known except one, and the
///   weight of the block is already known, the weight of the unknown
///   edge will be the weight of the block minus the sum of all the known
///   edges. If the sum of all the known edges is larger than BB's weight,
///   we set the unknown edge weight to zero.
///
/// - If there is a self-referential edge, and the weight of the block is
///   known, the weight for that edge is set to the weight of the block
///   minus the weight of the other incoming edges to that block (if
///   known).
void SampleProfileLoader::propagateWeights(Function &F) {
  bool Changed = true;
  unsigned I = 0;

  // If BB weight is larger than its corresponding loop's header BB weight,
  // use the BB weight to replace the loop header BB weight.
  for (auto &BI : F) {
    BasicBlock *BB = &BI;
    Loop *L = LI->getLoopFor(BB);
    if (!L) {
      continue;
    }
    BasicBlock *Header = L->getHeader();
    if (Header && BlockWeights[BB] > BlockWeights[Header]) {
      BlockWeights[Header] = BlockWeights[BB];
    }
  }

  // Before propagation starts, build, for each block, a list of
  // unique predecessors and successors. This is necessary to handle
  // identical edges in multiway branches. Since we visit all blocks and all
  // edges of the CFG, it is cleaner to build these lists once at the start
  // of the pass.
  buildEdges(F);

  // Propagate until we converge or we go past the iteration limit.
  while (Changed && I++ < SampleProfileMaxPropagateIterations) {
    Changed = propagateThroughEdges(F, false);
  }

  // The first propagation propagates BB counts from annotated BBs to unknown
  // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
  // to propagate edge weights.
  VisitedEdges.clear();
  Changed = true;
  while (Changed && I++ < SampleProfileMaxPropagateIterations) {
    Changed = propagateThroughEdges(F, false);
  }

  // The 3rd propagation pass allows adjust annotated BB weights that are
  // obviously wrong.
  Changed = true;
  while (Changed && I++ < SampleProfileMaxPropagateIterations) {
    Changed = propagateThroughEdges(F, true);
  }

  // Generate MD_prof metadata for every branch instruction using the
  // edge weights computed during propagation.
  LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
  LLVMContext &Ctx = F.getContext();
  MDBuilder MDB(Ctx);
  for (auto &BI : F) {
    BasicBlock *BB = &BI;

    if (BlockWeights[BB]) {
      for (auto &I : BB->getInstList()) {
        if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
          continue;
        if (!cast<CallBase>(I).getCalledFunction()) {
          const DebugLoc &DLoc = I.getDebugLoc();
          if (!DLoc)
            continue;
          const DILocation *DIL = DLoc;
          const FunctionSamples *FS = findFunctionSamples(I);
          if (!FS)
            continue;
          auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL);
          auto T = FS->findCallTargetMapAt(CallSite);
          if (!T || T.get().empty())
            continue;
          // Prorate the callsite counts to reflect what is already done to the
          // callsite, such as ICP or calliste cloning.
          if (FunctionSamples::ProfileIsProbeBased) {
            if (Optional<PseudoProbe> Probe = extractProbe(I)) {
              if (Probe->Factor < 1)
                T = SampleRecord::adjustCallTargets(T.get(), Probe->Factor);
            }
          }
          SmallVector<InstrProfValueData, 2> SortedCallTargets =
              GetSortedValueDataFromCallTargets(T.get());
          uint64_t Sum;
          findIndirectCallFunctionSamples(I, Sum);
          annotateValueSite(*I.getParent()->getParent()->getParent(), I,
                            SortedCallTargets, Sum, IPVK_IndirectCallTarget,
                            SortedCallTargets.size());
        } else if (!isa<IntrinsicInst>(&I)) {
          I.setMetadata(LLVMContext::MD_prof,
                        MDB.createBranchWeights(
                            {static_cast<uint32_t>(BlockWeights[BB])}));
        }
      }
    }
    Instruction *TI = BB->getTerminator();
    if (TI->getNumSuccessors() == 1)
      continue;
    if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
      continue;

    DebugLoc BranchLoc = TI->getDebugLoc();
    LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
                      << ((BranchLoc) ? Twine(BranchLoc.getLine())
                                      : Twine("<UNKNOWN LOCATION>"))
                      << ".\n");
    SmallVector<uint32_t, 4> Weights;
    uint32_t MaxWeight = 0;
    Instruction *MaxDestInst;
    for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
      BasicBlock *Succ = TI->getSuccessor(I);
      Edge E = std::make_pair(BB, Succ);
      uint64_t Weight = EdgeWeights[E];
      LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
      // Use uint32_t saturated arithmetic to adjust the incoming weights,
      // if needed. Sample counts in profiles are 64-bit unsigned values,
      // but internally branch weights are expressed as 32-bit values.
      if (Weight > std::numeric_limits<uint32_t>::max()) {
        LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
        Weight = std::numeric_limits<uint32_t>::max();
      }
      // Weight is added by one to avoid propagation errors introduced by
      // 0 weights.
      Weights.push_back(static_cast<uint32_t>(Weight + 1));
      if (Weight != 0) {
        if (Weight > MaxWeight) {
          MaxWeight = Weight;
          MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
        }
      }
    }

    uint64_t TempWeight;
    // Only set weights if there is at least one non-zero weight.
    // In any other case, let the analyzer set weights.
    // Do not set weights if the weights are present. In ThinLTO, the profile
    // annotation is done twice. If the first annotation already set the
    // weights, the second pass does not need to set it.
    if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
      LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
      TI->setMetadata(LLVMContext::MD_prof,
                      MDB.createBranchWeights(Weights));
      ORE->emit([&]() {
        return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
               << "most popular destination for conditional branches at "
               << ore::NV("CondBranchesLoc", BranchLoc);
      });
    } else {
      LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
    }
  }
}

/// Get the line number for the function header.
///
/// This looks up function \p F in the current compilation unit and
/// retrieves the line number where the function is defined. This is
/// line 0 for all the samples read from the profile file. Every line
/// number is relative to this line.
///
/// \param F  Function object to query.
///
/// \returns the line number where \p F is defined. If it returns 0,
///          it means that there is no debug information available for \p F.
unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
  if (DISubprogram *S = F.getSubprogram())
    return S->getLine();

  if (NoWarnSampleUnused)
    return 0;

  // If the start of \p F is missing, emit a diagnostic to inform the user
  // about the missed opportunity.
  F.getContext().diagnose(DiagnosticInfoSampleProfile(
      "No debug information found in function " + F.getName() +
          ": Function profile not used",
      DS_Warning));
  return 0;
}

void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
  DT.reset(new DominatorTree);
  DT->recalculate(F);

  PDT.reset(new PostDominatorTree(F));

  LI.reset(new LoopInfo);
  LI->analyze(*DT);
}

/// Generate branch weight metadata for all branches in \p F.
///
/// Branch weights are computed out of instruction samples using a
/// propagation heuristic. Propagation proceeds in 3 phases:
///
/// 1- Assignment of block weights. All the basic blocks in the function
///    are initial assigned the same weight as their most frequently
///    executed instruction.
///
/// 2- Creation of equivalence classes. Since samples may be missing from
///    blocks, we can fill in the gaps by setting the weights of all the
///    blocks in the same equivalence class to the same weight. To compute
///    the concept of equivalence, we use dominance and loop information.
///    Two blocks B1 and B2 are in the same equivalence class if B1
///    dominates B2, B2 post-dominates B1 and both are in the same loop.
///
/// 3- Propagation of block weights into edges. This uses a simple
///    propagation heuristic. The following rules are applied to every
///    block BB in the CFG:
///
///    - If BB has a single predecessor/successor, then the weight
///      of that edge is the weight of the block.
///
///    - If all the edges are known except one, and the weight of the
///      block is already known, the weight of the unknown edge will
///      be the weight of the block minus the sum of all the known
///      edges. If the sum of all the known edges is larger than BB's weight,
///      we set the unknown edge weight to zero.
///
///    - If there is a self-referential edge, and the weight of the block is
///      known, the weight for that edge is set to the weight of the block
///      minus the weight of the other incoming edges to that block (if
///      known).
///
/// Since this propagation is not guaranteed to finalize for every CFG, we
/// only allow it to proceed for a limited number of iterations (controlled
/// by -sample-profile-max-propagate-iterations).
///
/// FIXME: Try to replace this propagation heuristic with a scheme
/// that is guaranteed to finalize. A work-list approach similar to
/// the standard value propagation algorithm used by SSA-CCP might
/// work here.
///
/// Once all the branch weights are computed, we emit the MD_prof
/// metadata on BB using the computed values for each of its branches.
///
/// \param F The function to query.
///
/// \returns true if \p F was modified. Returns false, otherwise.
bool SampleProfileLoader::emitAnnotations(Function &F) {
  bool Changed = false;

  if (FunctionSamples::ProfileIsProbeBased) {
    if (!ProbeManager->profileIsValid(F, *Samples)) {
      LLVM_DEBUG(
          dbgs() << "Profile is invalid due to CFG mismatch for Function "
                 << F.getName());
      ++NumMismatchedProfile;
      return false;
    }
    ++NumMatchedProfile;
  } else {
    if (getFunctionLoc(F) == 0)
      return false;

    LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
                      << F.getName() << ": " << getFunctionLoc(F) << "\n");
  }

  DenseSet<GlobalValue::GUID> InlinedGUIDs;
  if (ProfileIsCS && CallsitePrioritizedInline)
    Changed |= inlineHotFunctionsWithPriority(F, InlinedGUIDs);
  else
    Changed |= inlineHotFunctions(F, InlinedGUIDs);

  // Compute basic block weights.
  Changed |= computeBlockWeights(F);

  if (Changed) {
    // Add an entry count to the function using the samples gathered at the
    // function entry.
    // Sets the GUIDs that are inlined in the profiled binary. This is used
    // for ThinLink to make correct liveness analysis, and also make the IR
    // match the profiled binary before annotation.
    F.setEntryCount(
        ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
        &InlinedGUIDs);

    // Compute dominance and loop info needed for propagation.
    computeDominanceAndLoopInfo(F);

    // Find equivalence classes.
    findEquivalenceClasses(F);

    // Propagate weights to all edges.
    propagateWeights(F);
  }

  // If coverage checking was requested, compute it now.
  if (SampleProfileRecordCoverage) {
    unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
    unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
    unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
    if (Coverage < SampleProfileRecordCoverage) {
      F.getContext().diagnose(DiagnosticInfoSampleProfile(
          F.getSubprogram()->getFilename(), getFunctionLoc(F),
          Twine(Used) + " of " + Twine(Total) + " available profile records (" +
              Twine(Coverage) + "%) were applied",
          DS_Warning));
    }
  }

  if (SampleProfileSampleCoverage) {
    uint64_t Used = CoverageTracker.getTotalUsedSamples();
    uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
    unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
    if (Coverage < SampleProfileSampleCoverage) {
      F.getContext().diagnose(DiagnosticInfoSampleProfile(
          F.getSubprogram()->getFilename(), getFunctionLoc(F),
          Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
              Twine(Coverage) + "%) were applied",
          DS_Warning));
    }
  }
  return Changed;
}

char SampleProfileLoaderLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
                      "Sample Profile loader", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
                    "Sample Profile loader", false, false)

// Add inlined profile call edges to the call graph.
void SampleProfileLoader::addCallGraphEdges(CallGraph &CG,
                                            const FunctionSamples &Samples) {
  Function *Caller = SymbolMap.lookup(Samples.getFuncName());
  if (!Caller || Caller->isDeclaration())
    return;

  // Skip non-inlined call edges which are not important since top down inlining
  // for non-CS profile is to get more precise profile matching, not to enable
  // more inlining.

  for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) {
    for (const auto &InlinedSamples : CallsiteSamples.second) {
      Function *Callee = SymbolMap.lookup(InlinedSamples.first);
      if (Callee && !Callee->isDeclaration())
        CG[Caller]->addCalledFunction(nullptr, CG[Callee]);
      addCallGraphEdges(CG, InlinedSamples.second);
    }
  }
}

// Replace call graph edges with dynamic call edges from the profile.
void SampleProfileLoader::replaceCallGraphEdges(
    CallGraph &CG, StringMap<Function *> &SymbolMap) {
  // Remove static call edges from the call graph except for the ones from the
  // root which make the call graph connected.
  for (const auto &Node : CG)
    if (Node.second.get() != CG.getExternalCallingNode())
      Node.second->removeAllCalledFunctions();

  // Add profile call edges to the call graph.
  if (ProfileIsCS) {
    ContextTracker->addCallGraphEdges(CG, SymbolMap);
  } else {
    for (const auto &Samples : Reader->getProfiles())
      addCallGraphEdges(CG, Samples.second);
  }
}

std::vector<Function *>
SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) {
  std::vector<Function *> FunctionOrderList;
  FunctionOrderList.reserve(M.size());

  if (!ProfileTopDownLoad || CG == nullptr) {
    if (ProfileMergeInlinee) {
      // Disable ProfileMergeInlinee if profile is not loaded in top down order,
      // because the profile for a function may be used for the profile
      // annotation of its outline copy before the profile merging of its
      // non-inlined inline instances, and that is not the way how
      // ProfileMergeInlinee is supposed to work.
      ProfileMergeInlinee = false;
    }

    for (Function &F : M)
      if (!F.isDeclaration() && F.hasFnAttribute("use-sample-profile"))
        FunctionOrderList.push_back(&F);
    return FunctionOrderList;
  }

  assert(&CG->getModule() == &M);

  // Add indirect call edges from profile to augment the static call graph.
  // Functions will be processed in a top-down order defined by the static call
  // graph. Adjusting the order by considering indirect call edges from the
  // profile (which don't exist in the static call graph) can enable the
  // inlining of indirect call targets by processing the caller before them.
  // TODO: enable this for non-CS profile and fix the counts returning logic to
  // have a full support for indirect calls.
  if (UseProfileIndirectCallEdges && ProfileIsCS) {
    for (auto &Entry : *CG) {
      const auto *F = Entry.first;
      if (!F || F->isDeclaration() || !F->hasFnAttribute("use-sample-profile"))
        continue;
      auto &AllContexts = ContextTracker->getAllContextSamplesFor(F->getName());
      if (AllContexts.empty())
        continue;

      for (const auto &BB : *F) {
        for (const auto &I : BB.getInstList()) {
          const auto *CB = dyn_cast<CallBase>(&I);
          if (!CB || !CB->isIndirectCall())
            continue;
          const DebugLoc &DLoc = I.getDebugLoc();
          if (!DLoc)
            continue;
          auto CallSite = FunctionSamples::getCallSiteIdentifier(DLoc);
          for (FunctionSamples *Samples : AllContexts) {
            if (auto CallTargets = Samples->findCallTargetMapAt(CallSite)) {
              for (const auto &Target : CallTargets.get()) {
                Function *Callee = SymbolMap.lookup(Target.first());
                if (Callee && !Callee->isDeclaration())
                  Entry.second->addCalledFunction(nullptr, (*CG)[Callee]);
              }
            }
          }
        }
      }
    }
  }

  // Compute a top-down order the profile which is used to sort functions in
  // one SCC later. The static processing order computed for an SCC may not
  // reflect the call contexts in the context-sensitive profile, thus may cause
  // potential inlining to be overlooked. The function order in one SCC is being
  // adjusted to a top-down order based on the profile to favor more inlining.
  DenseMap<Function *, uint64_t> ProfileOrderMap;
  if (UseProfileTopDownOrder ||
      (ProfileIsCS && !UseProfileTopDownOrder.getNumOccurrences())) {
    // Create a static call graph. The call edges are not important since they
    // will be replaced by dynamic edges from the profile.
    CallGraph ProfileCG(M);
    replaceCallGraphEdges(ProfileCG, SymbolMap);
    scc_iterator<CallGraph *> CGI = scc_begin(&ProfileCG);
    uint64_t I = 0;
    while (!CGI.isAtEnd()) {
      for (CallGraphNode *Node : *CGI) {
        if (auto *F = Node->getFunction())
          ProfileOrderMap[F] = ++I;
      }
      ++CGI;
    }
  }

  scc_iterator<CallGraph *> CGI = scc_begin(CG);
  while (!CGI.isAtEnd()) {
    uint64_t Start = FunctionOrderList.size();
    for (CallGraphNode *Node : *CGI) {
      auto *F = Node->getFunction();
      if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile"))
        FunctionOrderList.push_back(F);
    }

    // Sort nodes in SCC based on the profile top-down order.
    if (!ProfileOrderMap.empty()) {
      std::stable_sort(FunctionOrderList.begin() + Start,
                       FunctionOrderList.end(),
                       [&ProfileOrderMap](Function *Left, Function *Right) {
                         return ProfileOrderMap[Left] < ProfileOrderMap[Right];
                       });
    }

    ++CGI;
  }

  LLVM_DEBUG({
    dbgs() << "Function processing order:\n";
    for (auto F : reverse(FunctionOrderList)) {
      dbgs() << F->getName() << "\n";
    }
  });

  std::reverse(FunctionOrderList.begin(), FunctionOrderList.end());
  return FunctionOrderList;
}

bool SampleProfileLoader::doInitialization(Module &M,
                                           FunctionAnalysisManager *FAM) {
  auto &Ctx = M.getContext();

  auto ReaderOrErr =
      SampleProfileReader::create(Filename, Ctx, RemappingFilename);
  if (std::error_code EC = ReaderOrErr.getError()) {
    std::string Msg = "Could not open profile: " + EC.message();
    Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
    return false;
  }
  Reader = std::move(ReaderOrErr.get());
  Reader->setSkipFlatProf(LTOPhase == ThinOrFullLTOPhase::ThinLTOPostLink);
  Reader->collectFuncsFrom(M);
  if (std::error_code EC = Reader->read()) {
    std::string Msg = "profile reading failed: " + EC.message();
    Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
    return false;
  }

  PSL = Reader->getProfileSymbolList();

  // While profile-sample-accurate is on, ignore symbol list.
  ProfAccForSymsInList =
      ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate;
  if (ProfAccForSymsInList) {
    NamesInProfile.clear();
    if (auto NameTable = Reader->getNameTable())
      NamesInProfile.insert(NameTable->begin(), NameTable->end());
  }

  if (FAM && !ProfileInlineReplayFile.empty()) {
    ExternalInlineAdvisor = std::make_unique<ReplayInlineAdvisor>(
        M, *FAM, Ctx, /*OriginalAdvisor=*/nullptr, ProfileInlineReplayFile,
        /*EmitRemarks=*/false);
    if (!ExternalInlineAdvisor->areReplayRemarksLoaded())
      ExternalInlineAdvisor.reset();
  }

  // Apply tweaks if context-sensitive profile is available.
  if (Reader->profileIsCS()) {
    ProfileIsCS = true;
    FunctionSamples::ProfileIsCS = true;

    // Enable priority-base inliner and size inline by default for CSSPGO.
    if (!ProfileSizeInline.getNumOccurrences())
      ProfileSizeInline = true;
    if (!CallsitePrioritizedInline.getNumOccurrences())
      CallsitePrioritizedInline = true;

    // Tracker for profiles under different context
    ContextTracker =
        std::make_unique<SampleContextTracker>(Reader->getProfiles());
  }

  // Load pseudo probe descriptors for probe-based function samples.
  if (Reader->profileIsProbeBased()) {
    ProbeManager = std::make_unique<PseudoProbeManager>(M);
    if (!ProbeManager->moduleIsProbed(M)) {
      const char *Msg =
          "Pseudo-probe-based profile requires SampleProfileProbePass";
      Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
      return false;
    }
  }

  return true;
}

ModulePass *llvm::createSampleProfileLoaderPass() {
  return new SampleProfileLoaderLegacyPass();
}

ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
  return new SampleProfileLoaderLegacyPass(Name);
}

bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
                                      ProfileSummaryInfo *_PSI, CallGraph *CG) {
  GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap);

  PSI = _PSI;
  if (M.getProfileSummary(/* IsCS */ false) == nullptr) {
    M.setProfileSummary(Reader->getSummary().getMD(M.getContext()),
                        ProfileSummary::PSK_Sample);
    PSI->refresh();
  }
  // Compute the total number of samples collected in this profile.
  for (const auto &I : Reader->getProfiles())
    TotalCollectedSamples += I.second.getTotalSamples();

  auto Remapper = Reader->getRemapper();
  // Populate the symbol map.
  for (const auto &N_F : M.getValueSymbolTable()) {
    StringRef OrigName = N_F.getKey();
    Function *F = dyn_cast<Function>(N_F.getValue());
    if (F == nullptr)
      continue;
    SymbolMap[OrigName] = F;
    auto pos = OrigName.find('.');
    if (pos != StringRef::npos) {
      StringRef NewName = OrigName.substr(0, pos);
      auto r = SymbolMap.insert(std::make_pair(NewName, F));
      // Failiing to insert means there is already an entry in SymbolMap,
      // thus there are multiple functions that are mapped to the same
      // stripped name. In this case of name conflicting, set the value
      // to nullptr to avoid confusion.
      if (!r.second)
        r.first->second = nullptr;
      OrigName = NewName;
    }
    // Insert the remapped names into SymbolMap.
    if (Remapper) {
      if (auto MapName = Remapper->lookUpNameInProfile(OrigName)) {
        if (*MapName == OrigName)
          continue;
        SymbolMap.insert(std::make_pair(*MapName, F));
      }
    }
  }

  bool retval = false;
  for (auto F : buildFunctionOrder(M, CG)) {
    assert(!F->isDeclaration());
    clearFunctionData();
    retval |= runOnFunction(*F, AM);
  }

  // Account for cold calls not inlined....
  if (!ProfileIsCS)
    for (const std::pair<Function *, NotInlinedProfileInfo> &pair :
         notInlinedCallInfo)
      updateProfileCallee(pair.first, pair.second.entryCount);

  return retval;
}

bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
  ACT = &getAnalysis<AssumptionCacheTracker>();
  TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
  TLIWP = &getAnalysis<TargetLibraryInfoWrapperPass>();
  ProfileSummaryInfo *PSI =
      &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
  return SampleLoader.runOnModule(M, nullptr, PSI, nullptr);
}

bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
  LLVM_DEBUG(dbgs() << "\n\nProcessing Function " << F.getName() << "\n");
  DILocation2SampleMap.clear();
  // By default the entry count is initialized to -1, which will be treated
  // conservatively by getEntryCount as the same as unknown (None). This is
  // to avoid newly added code to be treated as cold. If we have samples
  // this will be overwritten in emitAnnotations.
  uint64_t initialEntryCount = -1;

  ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL;
  if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) {
    // initialize all the function entry counts to 0. It means all the
    // functions without profile will be regarded as cold.
    initialEntryCount = 0;
    // profile-sample-accurate is a user assertion which has a higher precedence
    // than symbol list. When profile-sample-accurate is on, ignore symbol list.
    ProfAccForSymsInList = false;
  }

  // PSL -- profile symbol list include all the symbols in sampled binary.
  // If ProfileAccurateForSymsInList is enabled, PSL is used to treat
  // old functions without samples being cold, without having to worry
  // about new and hot functions being mistakenly treated as cold.
  if (ProfAccForSymsInList) {
    // Initialize the entry count to 0 for functions in the list.
    if (PSL->contains(F.getName()))
      initialEntryCount = 0;

    // Function in the symbol list but without sample will be regarded as
    // cold. To minimize the potential negative performance impact it could
    // have, we want to be a little conservative here saying if a function
    // shows up in the profile, no matter as outline function, inline instance
    // or call targets, treat the function as not being cold. This will handle
    // the cases such as most callsites of a function are inlined in sampled
    // binary but not inlined in current build (because of source code drift,
    // imprecise debug information, or the callsites are all cold individually
    // but not cold accumulatively...), so the outline function showing up as
    // cold in sampled binary will actually not be cold after current build.
    StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
    if (NamesInProfile.count(CanonName))
      initialEntryCount = -1;
  }

  // Initialize entry count when the function has no existing entry
  // count value.
  if (!F.getEntryCount().hasValue())
    F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real));
  std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
  if (AM) {
    auto &FAM =
        AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
            .getManager();
    ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
  } else {
    OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F);
    ORE = OwnedORE.get();
  }

  if (ProfileIsCS)
    Samples = ContextTracker->getBaseSamplesFor(F);
  else
    Samples = Reader->getSamplesFor(F);

  if (Samples && !Samples->empty())
    return emitAnnotations(F);
  return false;
}

PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
                                               ModuleAnalysisManager &AM) {
  FunctionAnalysisManager &FAM =
      AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();

  auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
    return FAM.getResult<AssumptionAnalysis>(F);
  };
  auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
    return FAM.getResult<TargetIRAnalysis>(F);
  };
  auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
    return FAM.getResult<TargetLibraryAnalysis>(F);
  };

  SampleProfileLoader SampleLoader(
      ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
      ProfileRemappingFileName.empty() ? SampleProfileRemappingFile
                                       : ProfileRemappingFileName,
      LTOPhase, GetAssumptionCache, GetTTI, GetTLI);

  if (!SampleLoader.doInitialization(M, &FAM))
    return PreservedAnalyses::all();

  ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
  CallGraph &CG = AM.getResult<CallGraphAnalysis>(M);
  if (!SampleLoader.runOnModule(M, &AM, PSI, &CG))
    return PreservedAnalyses::all();

  return PreservedAnalyses::none();
}