aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Transforms/IPO/OpenMPOpt.cpp
blob: a5ba6edb9a0089354c5ac58db5208dd46b3fbcd7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
//===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// OpenMP specific optimizations:
//
// - Deduplication of runtime calls, e.g., omp_get_thread_num.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/OpenMPOpt.h"

#include "llvm/ADT/EnumeratedArray.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Frontend/OpenMP/OMPConstants.h"
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/Attributor.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/CallGraphUpdater.h"
#include "llvm/Transforms/Utils/CodeExtractor.h"

using namespace llvm;
using namespace omp;

#define DEBUG_TYPE "openmp-opt"

static cl::opt<bool> DisableOpenMPOptimizations(
    "openmp-opt-disable", cl::ZeroOrMore,
    cl::desc("Disable OpenMP specific optimizations."), cl::Hidden,
    cl::init(false));

static cl::opt<bool> EnableParallelRegionMerging(
    "openmp-opt-enable-merging", cl::ZeroOrMore,
    cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden,
    cl::init(false));

static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false),
                                    cl::Hidden);
static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels",
                                        cl::init(false), cl::Hidden);

static cl::opt<bool> HideMemoryTransferLatency(
    "openmp-hide-memory-transfer-latency",
    cl::desc("[WIP] Tries to hide the latency of host to device memory"
             " transfers"),
    cl::Hidden, cl::init(false));

STATISTIC(NumOpenMPRuntimeCallsDeduplicated,
          "Number of OpenMP runtime calls deduplicated");
STATISTIC(NumOpenMPParallelRegionsDeleted,
          "Number of OpenMP parallel regions deleted");
STATISTIC(NumOpenMPRuntimeFunctionsIdentified,
          "Number of OpenMP runtime functions identified");
STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified,
          "Number of OpenMP runtime function uses identified");
STATISTIC(NumOpenMPTargetRegionKernels,
          "Number of OpenMP target region entry points (=kernels) identified");
STATISTIC(
    NumOpenMPParallelRegionsReplacedInGPUStateMachine,
    "Number of OpenMP parallel regions replaced with ID in GPU state machines");
STATISTIC(NumOpenMPParallelRegionsMerged,
          "Number of OpenMP parallel regions merged");

#if !defined(NDEBUG)
static constexpr auto TAG = "[" DEBUG_TYPE "]";
#endif

namespace {

struct AAICVTracker;

/// OpenMP specific information. For now, stores RFIs and ICVs also needed for
/// Attributor runs.
struct OMPInformationCache : public InformationCache {
  OMPInformationCache(Module &M, AnalysisGetter &AG,
                      BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC,
                      SmallPtrSetImpl<Kernel> &Kernels)
      : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M),
        Kernels(Kernels) {

    OMPBuilder.initialize();
    initializeRuntimeFunctions();
    initializeInternalControlVars();
  }

  /// Generic information that describes an internal control variable.
  struct InternalControlVarInfo {
    /// The kind, as described by InternalControlVar enum.
    InternalControlVar Kind;

    /// The name of the ICV.
    StringRef Name;

    /// Environment variable associated with this ICV.
    StringRef EnvVarName;

    /// Initial value kind.
    ICVInitValue InitKind;

    /// Initial value.
    ConstantInt *InitValue;

    /// Setter RTL function associated with this ICV.
    RuntimeFunction Setter;

    /// Getter RTL function associated with this ICV.
    RuntimeFunction Getter;

    /// RTL Function corresponding to the override clause of this ICV
    RuntimeFunction Clause;
  };

  /// Generic information that describes a runtime function
  struct RuntimeFunctionInfo {

    /// The kind, as described by the RuntimeFunction enum.
    RuntimeFunction Kind;

    /// The name of the function.
    StringRef Name;

    /// Flag to indicate a variadic function.
    bool IsVarArg;

    /// The return type of the function.
    Type *ReturnType;

    /// The argument types of the function.
    SmallVector<Type *, 8> ArgumentTypes;

    /// The declaration if available.
    Function *Declaration = nullptr;

    /// Uses of this runtime function per function containing the use.
    using UseVector = SmallVector<Use *, 16>;

    /// Clear UsesMap for runtime function.
    void clearUsesMap() { UsesMap.clear(); }

    /// Boolean conversion that is true if the runtime function was found.
    operator bool() const { return Declaration; }

    /// Return the vector of uses in function \p F.
    UseVector &getOrCreateUseVector(Function *F) {
      std::shared_ptr<UseVector> &UV = UsesMap[F];
      if (!UV)
        UV = std::make_shared<UseVector>();
      return *UV;
    }

    /// Return the vector of uses in function \p F or `nullptr` if there are
    /// none.
    const UseVector *getUseVector(Function &F) const {
      auto I = UsesMap.find(&F);
      if (I != UsesMap.end())
        return I->second.get();
      return nullptr;
    }

    /// Return how many functions contain uses of this runtime function.
    size_t getNumFunctionsWithUses() const { return UsesMap.size(); }

    /// Return the number of arguments (or the minimal number for variadic
    /// functions).
    size_t getNumArgs() const { return ArgumentTypes.size(); }

    /// Run the callback \p CB on each use and forget the use if the result is
    /// true. The callback will be fed the function in which the use was
    /// encountered as second argument.
    void foreachUse(SmallVectorImpl<Function *> &SCC,
                    function_ref<bool(Use &, Function &)> CB) {
      for (Function *F : SCC)
        foreachUse(CB, F);
    }

    /// Run the callback \p CB on each use within the function \p F and forget
    /// the use if the result is true.
    void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) {
      SmallVector<unsigned, 8> ToBeDeleted;
      ToBeDeleted.clear();

      unsigned Idx = 0;
      UseVector &UV = getOrCreateUseVector(F);

      for (Use *U : UV) {
        if (CB(*U, *F))
          ToBeDeleted.push_back(Idx);
        ++Idx;
      }

      // Remove the to-be-deleted indices in reverse order as prior
      // modifications will not modify the smaller indices.
      while (!ToBeDeleted.empty()) {
        unsigned Idx = ToBeDeleted.pop_back_val();
        UV[Idx] = UV.back();
        UV.pop_back();
      }
    }

  private:
    /// Map from functions to all uses of this runtime function contained in
    /// them.
    DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap;
  };

  /// An OpenMP-IR-Builder instance
  OpenMPIRBuilder OMPBuilder;

  /// Map from runtime function kind to the runtime function description.
  EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction,
                  RuntimeFunction::OMPRTL___last>
      RFIs;

  /// Map from ICV kind to the ICV description.
  EnumeratedArray<InternalControlVarInfo, InternalControlVar,
                  InternalControlVar::ICV___last>
      ICVs;

  /// Helper to initialize all internal control variable information for those
  /// defined in OMPKinds.def.
  void initializeInternalControlVars() {
#define ICV_RT_SET(_Name, RTL)                                                 \
  {                                                                            \
    auto &ICV = ICVs[_Name];                                                   \
    ICV.Setter = RTL;                                                          \
  }
#define ICV_RT_GET(Name, RTL)                                                  \
  {                                                                            \
    auto &ICV = ICVs[Name];                                                    \
    ICV.Getter = RTL;                                                          \
  }
#define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init)                           \
  {                                                                            \
    auto &ICV = ICVs[Enum];                                                    \
    ICV.Name = _Name;                                                          \
    ICV.Kind = Enum;                                                           \
    ICV.InitKind = Init;                                                       \
    ICV.EnvVarName = _EnvVarName;                                              \
    switch (ICV.InitKind) {                                                    \
    case ICV_IMPLEMENTATION_DEFINED:                                           \
      ICV.InitValue = nullptr;                                                 \
      break;                                                                   \
    case ICV_ZERO:                                                             \
      ICV.InitValue = ConstantInt::get(                                        \
          Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0);                \
      break;                                                                   \
    case ICV_FALSE:                                                            \
      ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext());    \
      break;                                                                   \
    case ICV_LAST:                                                             \
      break;                                                                   \
    }                                                                          \
  }
#include "llvm/Frontend/OpenMP/OMPKinds.def"
  }

  /// Returns true if the function declaration \p F matches the runtime
  /// function types, that is, return type \p RTFRetType, and argument types
  /// \p RTFArgTypes.
  static bool declMatchesRTFTypes(Function *F, Type *RTFRetType,
                                  SmallVector<Type *, 8> &RTFArgTypes) {
    // TODO: We should output information to the user (under debug output
    //       and via remarks).

    if (!F)
      return false;
    if (F->getReturnType() != RTFRetType)
      return false;
    if (F->arg_size() != RTFArgTypes.size())
      return false;

    auto RTFTyIt = RTFArgTypes.begin();
    for (Argument &Arg : F->args()) {
      if (Arg.getType() != *RTFTyIt)
        return false;

      ++RTFTyIt;
    }

    return true;
  }

  // Helper to collect all uses of the declaration in the UsesMap.
  unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) {
    unsigned NumUses = 0;
    if (!RFI.Declaration)
      return NumUses;
    OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration);

    if (CollectStats) {
      NumOpenMPRuntimeFunctionsIdentified += 1;
      NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses();
    }

    // TODO: We directly convert uses into proper calls and unknown uses.
    for (Use &U : RFI.Declaration->uses()) {
      if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) {
        if (ModuleSlice.count(UserI->getFunction())) {
          RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U);
          ++NumUses;
        }
      } else {
        RFI.getOrCreateUseVector(nullptr).push_back(&U);
        ++NumUses;
      }
    }
    return NumUses;
  }

  // Helper function to recollect uses of a runtime function.
  void recollectUsesForFunction(RuntimeFunction RTF) {
    auto &RFI = RFIs[RTF];
    RFI.clearUsesMap();
    collectUses(RFI, /*CollectStats*/ false);
  }

  // Helper function to recollect uses of all runtime functions.
  void recollectUses() {
    for (int Idx = 0; Idx < RFIs.size(); ++Idx)
      recollectUsesForFunction(static_cast<RuntimeFunction>(Idx));
  }

  /// Helper to initialize all runtime function information for those defined
  /// in OpenMPKinds.def.
  void initializeRuntimeFunctions() {
    Module &M = *((*ModuleSlice.begin())->getParent());

    // Helper macros for handling __VA_ARGS__ in OMP_RTL
#define OMP_TYPE(VarName, ...)                                                 \
  Type *VarName = OMPBuilder.VarName;                                          \
  (void)VarName;

#define OMP_ARRAY_TYPE(VarName, ...)                                           \
  ArrayType *VarName##Ty = OMPBuilder.VarName##Ty;                             \
  (void)VarName##Ty;                                                           \
  PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy;                     \
  (void)VarName##PtrTy;

#define OMP_FUNCTION_TYPE(VarName, ...)                                        \
  FunctionType *VarName = OMPBuilder.VarName;                                  \
  (void)VarName;                                                               \
  PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr;                         \
  (void)VarName##Ptr;

#define OMP_STRUCT_TYPE(VarName, ...)                                          \
  StructType *VarName = OMPBuilder.VarName;                                    \
  (void)VarName;                                                               \
  PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr;                         \
  (void)VarName##Ptr;

#define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...)                     \
  {                                                                            \
    SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__});                           \
    Function *F = M.getFunction(_Name);                                        \
    if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) {           \
      auto &RFI = RFIs[_Enum];                                                 \
      RFI.Kind = _Enum;                                                        \
      RFI.Name = _Name;                                                        \
      RFI.IsVarArg = _IsVarArg;                                                \
      RFI.ReturnType = OMPBuilder._ReturnType;                                 \
      RFI.ArgumentTypes = std::move(ArgsTypes);                                \
      RFI.Declaration = F;                                                     \
      unsigned NumUses = collectUses(RFI);                                     \
      (void)NumUses;                                                           \
      LLVM_DEBUG({                                                             \
        dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not")           \
               << " found\n";                                                  \
        if (RFI.Declaration)                                                   \
          dbgs() << TAG << "-> got " << NumUses << " uses in "                 \
                 << RFI.getNumFunctionsWithUses()                              \
                 << " different functions.\n";                                 \
      });                                                                      \
    }                                                                          \
  }
#include "llvm/Frontend/OpenMP/OMPKinds.def"

    // TODO: We should attach the attributes defined in OMPKinds.def.
  }

  /// Collection of known kernels (\see Kernel) in the module.
  SmallPtrSetImpl<Kernel> &Kernels;
};

/// Used to map the values physically (in the IR) stored in an offload
/// array, to a vector in memory.
struct OffloadArray {
  /// Physical array (in the IR).
  AllocaInst *Array = nullptr;
  /// Mapped values.
  SmallVector<Value *, 8> StoredValues;
  /// Last stores made in the offload array.
  SmallVector<StoreInst *, 8> LastAccesses;

  OffloadArray() = default;

  /// Initializes the OffloadArray with the values stored in \p Array before
  /// instruction \p Before is reached. Returns false if the initialization
  /// fails.
  /// This MUST be used immediately after the construction of the object.
  bool initialize(AllocaInst &Array, Instruction &Before) {
    if (!Array.getAllocatedType()->isArrayTy())
      return false;

    if (!getValues(Array, Before))
      return false;

    this->Array = &Array;
    return true;
  }

  static const unsigned DeviceIDArgNum = 1;
  static const unsigned BasePtrsArgNum = 3;
  static const unsigned PtrsArgNum = 4;
  static const unsigned SizesArgNum = 5;

private:
  /// Traverses the BasicBlock where \p Array is, collecting the stores made to
  /// \p Array, leaving StoredValues with the values stored before the
  /// instruction \p Before is reached.
  bool getValues(AllocaInst &Array, Instruction &Before) {
    // Initialize container.
    const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements();
    StoredValues.assign(NumValues, nullptr);
    LastAccesses.assign(NumValues, nullptr);

    // TODO: This assumes the instruction \p Before is in the same
    //  BasicBlock as Array. Make it general, for any control flow graph.
    BasicBlock *BB = Array.getParent();
    if (BB != Before.getParent())
      return false;

    const DataLayout &DL = Array.getModule()->getDataLayout();
    const unsigned int PointerSize = DL.getPointerSize();

    for (Instruction &I : *BB) {
      if (&I == &Before)
        break;

      if (!isa<StoreInst>(&I))
        continue;

      auto *S = cast<StoreInst>(&I);
      int64_t Offset = -1;
      auto *Dst =
          GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL);
      if (Dst == &Array) {
        int64_t Idx = Offset / PointerSize;
        StoredValues[Idx] = getUnderlyingObject(S->getValueOperand());
        LastAccesses[Idx] = S;
      }
    }

    return isFilled();
  }

  /// Returns true if all values in StoredValues and
  /// LastAccesses are not nullptrs.
  bool isFilled() {
    const unsigned NumValues = StoredValues.size();
    for (unsigned I = 0; I < NumValues; ++I) {
      if (!StoredValues[I] || !LastAccesses[I])
        return false;
    }

    return true;
  }
};

struct OpenMPOpt {

  using OptimizationRemarkGetter =
      function_ref<OptimizationRemarkEmitter &(Function *)>;

  OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater,
            OptimizationRemarkGetter OREGetter,
            OMPInformationCache &OMPInfoCache, Attributor &A)
      : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater),
        OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {}

  /// Check if any remarks are enabled for openmp-opt
  bool remarksEnabled() {
    auto &Ctx = M.getContext();
    return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE);
  }

  /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice.
  bool run() {
    if (SCC.empty())
      return false;

    bool Changed = false;

    LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size()
                      << " functions in a slice with "
                      << OMPInfoCache.ModuleSlice.size() << " functions\n");

    if (PrintICVValues)
      printICVs();
    if (PrintOpenMPKernels)
      printKernels();

    Changed |= rewriteDeviceCodeStateMachine();

    Changed |= runAttributor();

    // Recollect uses, in case Attributor deleted any.
    OMPInfoCache.recollectUses();

    Changed |= deleteParallelRegions();
    if (HideMemoryTransferLatency)
      Changed |= hideMemTransfersLatency();
    if (remarksEnabled())
      analysisGlobalization();
    Changed |= deduplicateRuntimeCalls();
    if (EnableParallelRegionMerging) {
      if (mergeParallelRegions()) {
        deduplicateRuntimeCalls();
        Changed = true;
      }
    }

    return Changed;
  }

  /// Print initial ICV values for testing.
  /// FIXME: This should be done from the Attributor once it is added.
  void printICVs() const {
    InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel,
                                 ICV_proc_bind};

    for (Function *F : OMPInfoCache.ModuleSlice) {
      for (auto ICV : ICVs) {
        auto ICVInfo = OMPInfoCache.ICVs[ICV];
        auto Remark = [&](OptimizationRemark OR) {
          return OR << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name)
                    << " Value: "
                    << (ICVInfo.InitValue
                            ? ICVInfo.InitValue->getValue().toString(10, true)
                            : "IMPLEMENTATION_DEFINED");
        };

        emitRemarkOnFunction(F, "OpenMPICVTracker", Remark);
      }
    }
  }

  /// Print OpenMP GPU kernels for testing.
  void printKernels() const {
    for (Function *F : SCC) {
      if (!OMPInfoCache.Kernels.count(F))
        continue;

      auto Remark = [&](OptimizationRemark OR) {
        return OR << "OpenMP GPU kernel "
                  << ore::NV("OpenMPGPUKernel", F->getName()) << "\n";
      };

      emitRemarkOnFunction(F, "OpenMPGPU", Remark);
    }
  }

  /// Return the call if \p U is a callee use in a regular call. If \p RFI is
  /// given it has to be the callee or a nullptr is returned.
  static CallInst *getCallIfRegularCall(
      Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
    CallInst *CI = dyn_cast<CallInst>(U.getUser());
    if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() &&
        (!RFI || CI->getCalledFunction() == RFI->Declaration))
      return CI;
    return nullptr;
  }

  /// Return the call if \p V is a regular call. If \p RFI is given it has to be
  /// the callee or a nullptr is returned.
  static CallInst *getCallIfRegularCall(
      Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
    CallInst *CI = dyn_cast<CallInst>(&V);
    if (CI && !CI->hasOperandBundles() &&
        (!RFI || CI->getCalledFunction() == RFI->Declaration))
      return CI;
    return nullptr;
  }

private:
  /// Merge parallel regions when it is safe.
  bool mergeParallelRegions() {
    const unsigned CallbackCalleeOperand = 2;
    const unsigned CallbackFirstArgOperand = 3;
    using InsertPointTy = OpenMPIRBuilder::InsertPointTy;

    // Check if there are any __kmpc_fork_call calls to merge.
    OMPInformationCache::RuntimeFunctionInfo &RFI =
        OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call];

    if (!RFI.Declaration)
      return false;

    // Unmergable calls that prevent merging a parallel region.
    OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = {
        OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind],
        OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads],
    };

    bool Changed = false;
    LoopInfo *LI = nullptr;
    DominatorTree *DT = nullptr;

    SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap;

    BasicBlock *StartBB = nullptr, *EndBB = nullptr;
    auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
                         BasicBlock &ContinuationIP) {
      BasicBlock *CGStartBB = CodeGenIP.getBlock();
      BasicBlock *CGEndBB =
          SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI);
      assert(StartBB != nullptr && "StartBB should not be null");
      CGStartBB->getTerminator()->setSuccessor(0, StartBB);
      assert(EndBB != nullptr && "EndBB should not be null");
      EndBB->getTerminator()->setSuccessor(0, CGEndBB);
    };

    auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &,
                      Value &Inner, Value *&ReplacementValue) -> InsertPointTy {
      ReplacementValue = &Inner;
      return CodeGenIP;
    };

    auto FiniCB = [&](InsertPointTy CodeGenIP) {};

    /// Create a sequential execution region within a merged parallel region,
    /// encapsulated in a master construct with a barrier for synchronization.
    auto CreateSequentialRegion = [&](Function *OuterFn,
                                      BasicBlock *OuterPredBB,
                                      Instruction *SeqStartI,
                                      Instruction *SeqEndI) {
      // Isolate the instructions of the sequential region to a separate
      // block.
      BasicBlock *ParentBB = SeqStartI->getParent();
      BasicBlock *SeqEndBB =
          SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI);
      BasicBlock *SeqAfterBB =
          SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI);
      BasicBlock *SeqStartBB =
          SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged");

      assert(ParentBB->getUniqueSuccessor() == SeqStartBB &&
             "Expected a different CFG");
      const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc();
      ParentBB->getTerminator()->eraseFromParent();

      auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
                           BasicBlock &ContinuationIP) {
        BasicBlock *CGStartBB = CodeGenIP.getBlock();
        BasicBlock *CGEndBB =
            SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI);
        assert(SeqStartBB != nullptr && "SeqStartBB should not be null");
        CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB);
        assert(SeqEndBB != nullptr && "SeqEndBB should not be null");
        SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB);
      };
      auto FiniCB = [&](InsertPointTy CodeGenIP) {};

      // Find outputs from the sequential region to outside users and
      // broadcast their values to them.
      for (Instruction &I : *SeqStartBB) {
        SmallPtrSet<Instruction *, 4> OutsideUsers;
        for (User *Usr : I.users()) {
          Instruction &UsrI = *cast<Instruction>(Usr);
          // Ignore outputs to LT intrinsics, code extraction for the merged
          // parallel region will fix them.
          if (UsrI.isLifetimeStartOrEnd())
            continue;

          if (UsrI.getParent() != SeqStartBB)
            OutsideUsers.insert(&UsrI);
        }

        if (OutsideUsers.empty())
          continue;

        // Emit an alloca in the outer region to store the broadcasted
        // value.
        const DataLayout &DL = M.getDataLayout();
        AllocaInst *AllocaI = new AllocaInst(
            I.getType(), DL.getAllocaAddrSpace(), nullptr,
            I.getName() + ".seq.output.alloc", &OuterFn->front().front());

        // Emit a store instruction in the sequential BB to update the
        // value.
        new StoreInst(&I, AllocaI, SeqStartBB->getTerminator());

        // Emit a load instruction and replace the use of the output value
        // with it.
        for (Instruction *UsrI : OutsideUsers) {
          LoadInst *LoadI = new LoadInst(I.getType(), AllocaI,
                                         I.getName() + ".seq.output.load", UsrI);
          UsrI->replaceUsesOfWith(&I, LoadI);
        }
      }

      OpenMPIRBuilder::LocationDescription Loc(
          InsertPointTy(ParentBB, ParentBB->end()), DL);
      InsertPointTy SeqAfterIP =
          OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB);

      OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel);

      BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock());

      LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn
                        << "\n");
    };

    // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all
    // contained in BB and only separated by instructions that can be
    // redundantly executed in parallel. The block BB is split before the first
    // call (in MergableCIs) and after the last so the entire region we merge
    // into a single parallel region is contained in a single basic block
    // without any other instructions. We use the OpenMPIRBuilder to outline
    // that block and call the resulting function via __kmpc_fork_call.
    auto Merge = [&](SmallVectorImpl<CallInst *> &MergableCIs, BasicBlock *BB) {
      // TODO: Change the interface to allow single CIs expanded, e.g, to
      // include an outer loop.
      assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs");

      auto Remark = [&](OptimizationRemark OR) {
        OR << "Parallel region at "
           << ore::NV("OpenMPParallelMergeFront",
                      MergableCIs.front()->getDebugLoc())
           << " merged with parallel regions at ";
        for (auto *CI : llvm::drop_begin(MergableCIs)) {
          OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc());
          if (CI != MergableCIs.back())
            OR << ", ";
        }
        return OR;
      };

      emitRemark<OptimizationRemark>(MergableCIs.front(),
                                     "OpenMPParallelRegionMerging", Remark);

      Function *OriginalFn = BB->getParent();
      LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size()
                        << " parallel regions in " << OriginalFn->getName()
                        << "\n");

      // Isolate the calls to merge in a separate block.
      EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI);
      BasicBlock *AfterBB =
          SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI);
      StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr,
                           "omp.par.merged");

      assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG");
      const DebugLoc DL = BB->getTerminator()->getDebugLoc();
      BB->getTerminator()->eraseFromParent();

      // Create sequential regions for sequential instructions that are
      // in-between mergable parallel regions.
      for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1;
           It != End; ++It) {
        Instruction *ForkCI = *It;
        Instruction *NextForkCI = *(It + 1);

        // Continue if there are not in-between instructions.
        if (ForkCI->getNextNode() == NextForkCI)
          continue;

        CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(),
                               NextForkCI->getPrevNode());
      }

      OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()),
                                               DL);
      IRBuilder<>::InsertPoint AllocaIP(
          &OriginalFn->getEntryBlock(),
          OriginalFn->getEntryBlock().getFirstInsertionPt());
      // Create the merged parallel region with default proc binding, to
      // avoid overriding binding settings, and without explicit cancellation.
      InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel(
          Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr,
          OMP_PROC_BIND_default, /* IsCancellable */ false);
      BranchInst::Create(AfterBB, AfterIP.getBlock());

      // Perform the actual outlining.
      OMPInfoCache.OMPBuilder.finalize(/* AllowExtractorSinking */ true);

      Function *OutlinedFn = MergableCIs.front()->getCaller();

      // Replace the __kmpc_fork_call calls with direct calls to the outlined
      // callbacks.
      SmallVector<Value *, 8> Args;
      for (auto *CI : MergableCIs) {
        Value *Callee =
            CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts();
        FunctionType *FT =
            cast<FunctionType>(Callee->getType()->getPointerElementType());
        Args.clear();
        Args.push_back(OutlinedFn->getArg(0));
        Args.push_back(OutlinedFn->getArg(1));
        for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands();
             U < E; ++U)
          Args.push_back(CI->getArgOperand(U));

        CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI);
        if (CI->getDebugLoc())
          NewCI->setDebugLoc(CI->getDebugLoc());

        // Forward parameter attributes from the callback to the callee.
        for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands();
             U < E; ++U)
          for (const Attribute &A : CI->getAttributes().getParamAttributes(U))
            NewCI->addParamAttr(
                U - (CallbackFirstArgOperand - CallbackCalleeOperand), A);

        // Emit an explicit barrier to replace the implicit fork-join barrier.
        if (CI != MergableCIs.back()) {
          // TODO: Remove barrier if the merged parallel region includes the
          // 'nowait' clause.
          OMPInfoCache.OMPBuilder.createBarrier(
              InsertPointTy(NewCI->getParent(),
                            NewCI->getNextNode()->getIterator()),
              OMPD_parallel);
        }

        auto Remark = [&](OptimizationRemark OR) {
          return OR << "Parallel region at "
                    << ore::NV("OpenMPParallelMerge", CI->getDebugLoc())
                    << " merged with "
                    << ore::NV("OpenMPParallelMergeFront",
                               MergableCIs.front()->getDebugLoc());
        };
        if (CI != MergableCIs.front())
          emitRemark<OptimizationRemark>(CI, "OpenMPParallelRegionMerging",
                                         Remark);

        CI->eraseFromParent();
      }

      assert(OutlinedFn != OriginalFn && "Outlining failed");
      CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn);
      CGUpdater.reanalyzeFunction(*OriginalFn);

      NumOpenMPParallelRegionsMerged += MergableCIs.size();

      return true;
    };

    // Helper function that identifes sequences of
    // __kmpc_fork_call uses in a basic block.
    auto DetectPRsCB = [&](Use &U, Function &F) {
      CallInst *CI = getCallIfRegularCall(U, &RFI);
      BB2PRMap[CI->getParent()].insert(CI);

      return false;
    };

    BB2PRMap.clear();
    RFI.foreachUse(SCC, DetectPRsCB);
    SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector;
    // Find mergable parallel regions within a basic block that are
    // safe to merge, that is any in-between instructions can safely
    // execute in parallel after merging.
    // TODO: support merging across basic-blocks.
    for (auto &It : BB2PRMap) {
      auto &CIs = It.getSecond();
      if (CIs.size() < 2)
        continue;

      BasicBlock *BB = It.getFirst();
      SmallVector<CallInst *, 4> MergableCIs;

      /// Returns true if the instruction is mergable, false otherwise.
      /// A terminator instruction is unmergable by definition since merging
      /// works within a BB. Instructions before the mergable region are
      /// mergable if they are not calls to OpenMP runtime functions that may
      /// set different execution parameters for subsequent parallel regions.
      /// Instructions in-between parallel regions are mergable if they are not
      /// calls to any non-intrinsic function since that may call a non-mergable
      /// OpenMP runtime function.
      auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) {
        // We do not merge across BBs, hence return false (unmergable) if the
        // instruction is a terminator.
        if (I.isTerminator())
          return false;

        if (!isa<CallInst>(&I))
          return true;

        CallInst *CI = cast<CallInst>(&I);
        if (IsBeforeMergableRegion) {
          Function *CalledFunction = CI->getCalledFunction();
          if (!CalledFunction)
            return false;
          // Return false (unmergable) if the call before the parallel
          // region calls an explicit affinity (proc_bind) or number of
          // threads (num_threads) compiler-generated function. Those settings
          // may be incompatible with following parallel regions.
          // TODO: ICV tracking to detect compatibility.
          for (const auto &RFI : UnmergableCallsInfo) {
            if (CalledFunction == RFI.Declaration)
              return false;
          }
        } else {
          // Return false (unmergable) if there is a call instruction
          // in-between parallel regions when it is not an intrinsic. It
          // may call an unmergable OpenMP runtime function in its callpath.
          // TODO: Keep track of possible OpenMP calls in the callpath.
          if (!isa<IntrinsicInst>(CI))
            return false;
        }

        return true;
      };
      // Find maximal number of parallel region CIs that are safe to merge.
      for (auto It = BB->begin(), End = BB->end(); It != End;) {
        Instruction &I = *It;
        ++It;

        if (CIs.count(&I)) {
          MergableCIs.push_back(cast<CallInst>(&I));
          continue;
        }

        // Continue expanding if the instruction is mergable.
        if (IsMergable(I, MergableCIs.empty()))
          continue;

        // Forward the instruction iterator to skip the next parallel region
        // since there is an unmergable instruction which can affect it.
        for (; It != End; ++It) {
          Instruction &SkipI = *It;
          if (CIs.count(&SkipI)) {
            LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI
                              << " due to " << I << "\n");
            ++It;
            break;
          }
        }

        // Store mergable regions found.
        if (MergableCIs.size() > 1) {
          MergableCIsVector.push_back(MergableCIs);
          LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size()
                            << " parallel regions in block " << BB->getName()
                            << " of function " << BB->getParent()->getName()
                            << "\n";);
        }

        MergableCIs.clear();
      }

      if (!MergableCIsVector.empty()) {
        Changed = true;

        for (auto &MergableCIs : MergableCIsVector)
          Merge(MergableCIs, BB);
      }
    }

    if (Changed) {
      /// Re-collect use for fork calls, emitted barrier calls, and
      /// any emitted master/end_master calls.
      OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call);
      OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier);
      OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master);
      OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master);
    }

    return Changed;
  }

  /// Try to delete parallel regions if possible.
  bool deleteParallelRegions() {
    const unsigned CallbackCalleeOperand = 2;

    OMPInformationCache::RuntimeFunctionInfo &RFI =
        OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call];

    if (!RFI.Declaration)
      return false;

    bool Changed = false;
    auto DeleteCallCB = [&](Use &U, Function &) {
      CallInst *CI = getCallIfRegularCall(U);
      if (!CI)
        return false;
      auto *Fn = dyn_cast<Function>(
          CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts());
      if (!Fn)
        return false;
      if (!Fn->onlyReadsMemory())
        return false;
      if (!Fn->hasFnAttribute(Attribute::WillReturn))
        return false;

      LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in "
                        << CI->getCaller()->getName() << "\n");

      auto Remark = [&](OptimizationRemark OR) {
        return OR << "Parallel region in "
                  << ore::NV("OpenMPParallelDelete", CI->getCaller()->getName())
                  << " deleted";
      };
      emitRemark<OptimizationRemark>(CI, "OpenMPParallelRegionDeletion",
                                     Remark);

      CGUpdater.removeCallSite(*CI);
      CI->eraseFromParent();
      Changed = true;
      ++NumOpenMPParallelRegionsDeleted;
      return true;
    };

    RFI.foreachUse(SCC, DeleteCallCB);

    return Changed;
  }

  /// Try to eliminate runtime calls by reusing existing ones.
  bool deduplicateRuntimeCalls() {
    bool Changed = false;

    RuntimeFunction DeduplicableRuntimeCallIDs[] = {
        OMPRTL_omp_get_num_threads,
        OMPRTL_omp_in_parallel,
        OMPRTL_omp_get_cancellation,
        OMPRTL_omp_get_thread_limit,
        OMPRTL_omp_get_supported_active_levels,
        OMPRTL_omp_get_level,
        OMPRTL_omp_get_ancestor_thread_num,
        OMPRTL_omp_get_team_size,
        OMPRTL_omp_get_active_level,
        OMPRTL_omp_in_final,
        OMPRTL_omp_get_proc_bind,
        OMPRTL_omp_get_num_places,
        OMPRTL_omp_get_num_procs,
        OMPRTL_omp_get_place_num,
        OMPRTL_omp_get_partition_num_places,
        OMPRTL_omp_get_partition_place_nums};

    // Global-tid is handled separately.
    SmallSetVector<Value *, 16> GTIdArgs;
    collectGlobalThreadIdArguments(GTIdArgs);
    LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size()
                      << " global thread ID arguments\n");

    for (Function *F : SCC) {
      for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs)
        Changed |= deduplicateRuntimeCalls(
            *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]);

      // __kmpc_global_thread_num is special as we can replace it with an
      // argument in enough cases to make it worth trying.
      Value *GTIdArg = nullptr;
      for (Argument &Arg : F->args())
        if (GTIdArgs.count(&Arg)) {
          GTIdArg = &Arg;
          break;
        }
      Changed |= deduplicateRuntimeCalls(
          *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg);
    }

    return Changed;
  }

  /// Tries to hide the latency of runtime calls that involve host to
  /// device memory transfers by splitting them into their "issue" and "wait"
  /// versions. The "issue" is moved upwards as much as possible. The "wait" is
  /// moved downards as much as possible. The "issue" issues the memory transfer
  /// asynchronously, returning a handle. The "wait" waits in the returned
  /// handle for the memory transfer to finish.
  bool hideMemTransfersLatency() {
    auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper];
    bool Changed = false;
    auto SplitMemTransfers = [&](Use &U, Function &Decl) {
      auto *RTCall = getCallIfRegularCall(U, &RFI);
      if (!RTCall)
        return false;

      OffloadArray OffloadArrays[3];
      if (!getValuesInOffloadArrays(*RTCall, OffloadArrays))
        return false;

      LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays));

      // TODO: Check if can be moved upwards.
      bool WasSplit = false;
      Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall);
      if (WaitMovementPoint)
        WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint);

      Changed |= WasSplit;
      return WasSplit;
    };
    RFI.foreachUse(SCC, SplitMemTransfers);

    return Changed;
  }

  void analysisGlobalization() {
    RuntimeFunction GlobalizationRuntimeIDs[] = {
        OMPRTL___kmpc_data_sharing_coalesced_push_stack,
        OMPRTL___kmpc_data_sharing_push_stack};

    for (const auto GlobalizationCallID : GlobalizationRuntimeIDs) {
      auto &RFI = OMPInfoCache.RFIs[GlobalizationCallID];

      auto CheckGlobalization = [&](Use &U, Function &Decl) {
        if (CallInst *CI = getCallIfRegularCall(U, &RFI)) {
          auto Remark = [&](OptimizationRemarkAnalysis ORA) {
            return ORA
                   << "Found thread data sharing on the GPU. "
                   << "Expect degraded performance due to data globalization.";
          };
          emitRemark<OptimizationRemarkAnalysis>(CI, "OpenMPGlobalization",
                                                 Remark);
        }

        return false;
      };

      RFI.foreachUse(SCC, CheckGlobalization);
    }
  }

  /// Maps the values stored in the offload arrays passed as arguments to
  /// \p RuntimeCall into the offload arrays in \p OAs.
  bool getValuesInOffloadArrays(CallInst &RuntimeCall,
                                MutableArrayRef<OffloadArray> OAs) {
    assert(OAs.size() == 3 && "Need space for three offload arrays!");

    // A runtime call that involves memory offloading looks something like:
    // call void @__tgt_target_data_begin_mapper(arg0, arg1,
    //   i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes,
    // ...)
    // So, the idea is to access the allocas that allocate space for these
    // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes.
    // Therefore:
    // i8** %offload_baseptrs.
    Value *BasePtrsArg =
        RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum);
    // i8** %offload_ptrs.
    Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum);
    // i8** %offload_sizes.
    Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum);

    // Get values stored in **offload_baseptrs.
    auto *V = getUnderlyingObject(BasePtrsArg);
    if (!isa<AllocaInst>(V))
      return false;
    auto *BasePtrsArray = cast<AllocaInst>(V);
    if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall))
      return false;

    // Get values stored in **offload_baseptrs.
    V = getUnderlyingObject(PtrsArg);
    if (!isa<AllocaInst>(V))
      return false;
    auto *PtrsArray = cast<AllocaInst>(V);
    if (!OAs[1].initialize(*PtrsArray, RuntimeCall))
      return false;

    // Get values stored in **offload_sizes.
    V = getUnderlyingObject(SizesArg);
    // If it's a [constant] global array don't analyze it.
    if (isa<GlobalValue>(V))
      return isa<Constant>(V);
    if (!isa<AllocaInst>(V))
      return false;

    auto *SizesArray = cast<AllocaInst>(V);
    if (!OAs[2].initialize(*SizesArray, RuntimeCall))
      return false;

    return true;
  }

  /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG.
  /// For now this is a way to test that the function getValuesInOffloadArrays
  /// is working properly.
  /// TODO: Move this to a unittest when unittests are available for OpenMPOpt.
  void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) {
    assert(OAs.size() == 3 && "There are three offload arrays to debug!");

    LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n");
    std::string ValuesStr;
    raw_string_ostream Printer(ValuesStr);
    std::string Separator = " --- ";

    for (auto *BP : OAs[0].StoredValues) {
      BP->print(Printer);
      Printer << Separator;
    }
    LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n");
    ValuesStr.clear();

    for (auto *P : OAs[1].StoredValues) {
      P->print(Printer);
      Printer << Separator;
    }
    LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n");
    ValuesStr.clear();

    for (auto *S : OAs[2].StoredValues) {
      S->print(Printer);
      Printer << Separator;
    }
    LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n");
  }

  /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be
  /// moved. Returns nullptr if the movement is not possible, or not worth it.
  Instruction *canBeMovedDownwards(CallInst &RuntimeCall) {
    // FIXME: This traverses only the BasicBlock where RuntimeCall is.
    //  Make it traverse the CFG.

    Instruction *CurrentI = &RuntimeCall;
    bool IsWorthIt = false;
    while ((CurrentI = CurrentI->getNextNode())) {

      // TODO: Once we detect the regions to be offloaded we should use the
      //  alias analysis manager to check if CurrentI may modify one of
      //  the offloaded regions.
      if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) {
        if (IsWorthIt)
          return CurrentI;

        return nullptr;
      }

      // FIXME: For now if we move it over anything without side effect
      //  is worth it.
      IsWorthIt = true;
    }

    // Return end of BasicBlock.
    return RuntimeCall.getParent()->getTerminator();
  }

  /// Splits \p RuntimeCall into its "issue" and "wait" counterparts.
  bool splitTargetDataBeginRTC(CallInst &RuntimeCall,
                               Instruction &WaitMovementPoint) {
    // Create stack allocated handle (__tgt_async_info) at the beginning of the
    // function. Used for storing information of the async transfer, allowing to
    // wait on it later.
    auto &IRBuilder = OMPInfoCache.OMPBuilder;
    auto *F = RuntimeCall.getCaller();
    Instruction *FirstInst = &(F->getEntryBlock().front());
    AllocaInst *Handle = new AllocaInst(
        IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst);

    // Add "issue" runtime call declaration:
    // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32,
    //   i8**, i8**, i64*, i64*)
    FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction(
        M, OMPRTL___tgt_target_data_begin_mapper_issue);

    // Change RuntimeCall call site for its asynchronous version.
    SmallVector<Value *, 16> Args;
    for (auto &Arg : RuntimeCall.args())
      Args.push_back(Arg.get());
    Args.push_back(Handle);

    CallInst *IssueCallsite =
        CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall);
    RuntimeCall.eraseFromParent();

    // Add "wait" runtime call declaration:
    // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info)
    FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction(
        M, OMPRTL___tgt_target_data_begin_mapper_wait);

    Value *WaitParams[2] = {
        IssueCallsite->getArgOperand(
            OffloadArray::DeviceIDArgNum), // device_id.
        Handle                             // handle to wait on.
    };
    CallInst::Create(WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint);

    return true;
  }

  static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent,
                                    bool GlobalOnly, bool &SingleChoice) {
    if (CurrentIdent == NextIdent)
      return CurrentIdent;

    // TODO: Figure out how to actually combine multiple debug locations. For
    //       now we just keep an existing one if there is a single choice.
    if (!GlobalOnly || isa<GlobalValue>(NextIdent)) {
      SingleChoice = !CurrentIdent;
      return NextIdent;
    }
    return nullptr;
  }

  /// Return an `struct ident_t*` value that represents the ones used in the
  /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not
  /// return a local `struct ident_t*`. For now, if we cannot find a suitable
  /// return value we create one from scratch. We also do not yet combine
  /// information, e.g., the source locations, see combinedIdentStruct.
  Value *
  getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI,
                                 Function &F, bool GlobalOnly) {
    bool SingleChoice = true;
    Value *Ident = nullptr;
    auto CombineIdentStruct = [&](Use &U, Function &Caller) {
      CallInst *CI = getCallIfRegularCall(U, &RFI);
      if (!CI || &F != &Caller)
        return false;
      Ident = combinedIdentStruct(Ident, CI->getArgOperand(0),
                                  /* GlobalOnly */ true, SingleChoice);
      return false;
    };
    RFI.foreachUse(SCC, CombineIdentStruct);

    if (!Ident || !SingleChoice) {
      // The IRBuilder uses the insertion block to get to the module, this is
      // unfortunate but we work around it for now.
      if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock())
        OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy(
            &F.getEntryBlock(), F.getEntryBlock().begin()));
      // Create a fallback location if non was found.
      // TODO: Use the debug locations of the calls instead.
      Constant *Loc = OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr();
      Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc);
    }
    return Ident;
  }

  /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or
  /// \p ReplVal if given.
  bool deduplicateRuntimeCalls(Function &F,
                               OMPInformationCache::RuntimeFunctionInfo &RFI,
                               Value *ReplVal = nullptr) {
    auto *UV = RFI.getUseVector(F);
    if (!UV || UV->size() + (ReplVal != nullptr) < 2)
      return false;

    LLVM_DEBUG(
        dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name
               << (ReplVal ? " with an existing value\n" : "\n") << "\n");

    assert((!ReplVal || (isa<Argument>(ReplVal) &&
                         cast<Argument>(ReplVal)->getParent() == &F)) &&
           "Unexpected replacement value!");

    // TODO: Use dominance to find a good position instead.
    auto CanBeMoved = [this](CallBase &CB) {
      unsigned NumArgs = CB.getNumArgOperands();
      if (NumArgs == 0)
        return true;
      if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr)
        return false;
      for (unsigned u = 1; u < NumArgs; ++u)
        if (isa<Instruction>(CB.getArgOperand(u)))
          return false;
      return true;
    };

    if (!ReplVal) {
      for (Use *U : *UV)
        if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) {
          if (!CanBeMoved(*CI))
            continue;

          auto Remark = [&](OptimizationRemark OR) {
            auto newLoc = &*F.getEntryBlock().getFirstInsertionPt();
            return OR << "OpenMP runtime call "
                      << ore::NV("OpenMPOptRuntime", RFI.Name) << " moved to "
                      << ore::NV("OpenMPRuntimeMoves", newLoc->getDebugLoc());
          };
          emitRemark<OptimizationRemark>(CI, "OpenMPRuntimeCodeMotion", Remark);

          CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt());
          ReplVal = CI;
          break;
        }
      if (!ReplVal)
        return false;
    }

    // If we use a call as a replacement value we need to make sure the ident is
    // valid at the new location. For now we just pick a global one, either
    // existing and used by one of the calls, or created from scratch.
    if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) {
      if (CI->getNumArgOperands() > 0 &&
          CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) {
        Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F,
                                                      /* GlobalOnly */ true);
        CI->setArgOperand(0, Ident);
      }
    }

    bool Changed = false;
    auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) {
      CallInst *CI = getCallIfRegularCall(U, &RFI);
      if (!CI || CI == ReplVal || &F != &Caller)
        return false;
      assert(CI->getCaller() == &F && "Unexpected call!");

      auto Remark = [&](OptimizationRemark OR) {
        return OR << "OpenMP runtime call "
                  << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated";
      };
      emitRemark<OptimizationRemark>(CI, "OpenMPRuntimeDeduplicated", Remark);

      CGUpdater.removeCallSite(*CI);
      CI->replaceAllUsesWith(ReplVal);
      CI->eraseFromParent();
      ++NumOpenMPRuntimeCallsDeduplicated;
      Changed = true;
      return true;
    };
    RFI.foreachUse(SCC, ReplaceAndDeleteCB);

    return Changed;
  }

  /// Collect arguments that represent the global thread id in \p GTIdArgs.
  void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> &GTIdArgs) {
    // TODO: Below we basically perform a fixpoint iteration with a pessimistic
    //       initialization. We could define an AbstractAttribute instead and
    //       run the Attributor here once it can be run as an SCC pass.

    // Helper to check the argument \p ArgNo at all call sites of \p F for
    // a GTId.
    auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) {
      if (!F.hasLocalLinkage())
        return false;
      for (Use &U : F.uses()) {
        if (CallInst *CI = getCallIfRegularCall(U)) {
          Value *ArgOp = CI->getArgOperand(ArgNo);
          if (CI == &RefCI || GTIdArgs.count(ArgOp) ||
              getCallIfRegularCall(
                  *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]))
            continue;
        }
        return false;
      }
      return true;
    };

    // Helper to identify uses of a GTId as GTId arguments.
    auto AddUserArgs = [&](Value &GTId) {
      for (Use &U : GTId.uses())
        if (CallInst *CI = dyn_cast<CallInst>(U.getUser()))
          if (CI->isArgOperand(&U))
            if (Function *Callee = CI->getCalledFunction())
              if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI))
                GTIdArgs.insert(Callee->getArg(U.getOperandNo()));
    };

    // The argument users of __kmpc_global_thread_num calls are GTIds.
    OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI =
        OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num];

    GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) {
      if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI))
        AddUserArgs(*CI);
      return false;
    });

    // Transitively search for more arguments by looking at the users of the
    // ones we know already. During the search the GTIdArgs vector is extended
    // so we cannot cache the size nor can we use a range based for.
    for (unsigned u = 0; u < GTIdArgs.size(); ++u)
      AddUserArgs(*GTIdArgs[u]);
  }

  /// Kernel (=GPU) optimizations and utility functions
  ///
  ///{{

  /// Check if \p F is a kernel, hence entry point for target offloading.
  bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); }

  /// Cache to remember the unique kernel for a function.
  DenseMap<Function *, Optional<Kernel>> UniqueKernelMap;

  /// Find the unique kernel that will execute \p F, if any.
  Kernel getUniqueKernelFor(Function &F);

  /// Find the unique kernel that will execute \p I, if any.
  Kernel getUniqueKernelFor(Instruction &I) {
    return getUniqueKernelFor(*I.getFunction());
  }

  /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in
  /// the cases we can avoid taking the address of a function.
  bool rewriteDeviceCodeStateMachine();

  ///
  ///}}

  /// Emit a remark generically
  ///
  /// This template function can be used to generically emit a remark. The
  /// RemarkKind should be one of the following:
  ///   - OptimizationRemark to indicate a successful optimization attempt
  ///   - OptimizationRemarkMissed to report a failed optimization attempt
  ///   - OptimizationRemarkAnalysis to provide additional information about an
  ///     optimization attempt
  ///
  /// The remark is built using a callback function provided by the caller that
  /// takes a RemarkKind as input and returns a RemarkKind.
  template <typename RemarkKind,
            typename RemarkCallBack = function_ref<RemarkKind(RemarkKind &&)>>
  void emitRemark(Instruction *Inst, StringRef RemarkName,
                  RemarkCallBack &&RemarkCB) const {
    Function *F = Inst->getParent()->getParent();
    auto &ORE = OREGetter(F);

    ORE.emit(
        [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, Inst)); });
  }

  /// Emit a remark on a function. Since only OptimizationRemark is supporting
  /// this, it can't be made generic.
  void
  emitRemarkOnFunction(Function *F, StringRef RemarkName,
                       function_ref<OptimizationRemark(OptimizationRemark &&)>
                           &&RemarkCB) const {
    auto &ORE = OREGetter(F);

    ORE.emit([&]() {
      return RemarkCB(OptimizationRemark(DEBUG_TYPE, RemarkName, F));
    });
  }

  /// The underlying module.
  Module &M;

  /// The SCC we are operating on.
  SmallVectorImpl<Function *> &SCC;

  /// Callback to update the call graph, the first argument is a removed call,
  /// the second an optional replacement call.
  CallGraphUpdater &CGUpdater;

  /// Callback to get an OptimizationRemarkEmitter from a Function *
  OptimizationRemarkGetter OREGetter;

  /// OpenMP-specific information cache. Also Used for Attributor runs.
  OMPInformationCache &OMPInfoCache;

  /// Attributor instance.
  Attributor &A;

  /// Helper function to run Attributor on SCC.
  bool runAttributor() {
    if (SCC.empty())
      return false;

    registerAAs();

    ChangeStatus Changed = A.run();

    LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size()
                      << " functions, result: " << Changed << ".\n");

    return Changed == ChangeStatus::CHANGED;
  }

  /// Populate the Attributor with abstract attribute opportunities in the
  /// function.
  void registerAAs() {
    if (SCC.empty())
      return;

    // Create CallSite AA for all Getters.
    for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) {
      auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)];

      auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter];

      auto CreateAA = [&](Use &U, Function &Caller) {
        CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI);
        if (!CI)
          return false;

        auto &CB = cast<CallBase>(*CI);

        IRPosition CBPos = IRPosition::callsite_function(CB);
        A.getOrCreateAAFor<AAICVTracker>(CBPos);
        return false;
      };

      GetterRFI.foreachUse(SCC, CreateAA);
    }
  }
};

Kernel OpenMPOpt::getUniqueKernelFor(Function &F) {
  if (!OMPInfoCache.ModuleSlice.count(&F))
    return nullptr;

  // Use a scope to keep the lifetime of the CachedKernel short.
  {
    Optional<Kernel> &CachedKernel = UniqueKernelMap[&F];
    if (CachedKernel)
      return *CachedKernel;

    // TODO: We should use an AA to create an (optimistic and callback
    //       call-aware) call graph. For now we stick to simple patterns that
    //       are less powerful, basically the worst fixpoint.
    if (isKernel(F)) {
      CachedKernel = Kernel(&F);
      return *CachedKernel;
    }

    CachedKernel = nullptr;
    if (!F.hasLocalLinkage()) {

      // See https://openmp.llvm.org/remarks/OptimizationRemarks.html
      auto Remark = [&](OptimizationRemark OR) {
        return OR << "[OMP100] Potentially unknown OpenMP target region caller";
      };
      emitRemarkOnFunction(&F, "OMP100", Remark);

      return nullptr;
    }
  }

  auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel {
    if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
      // Allow use in equality comparisons.
      if (Cmp->isEquality())
        return getUniqueKernelFor(*Cmp);
      return nullptr;
    }
    if (auto *CB = dyn_cast<CallBase>(U.getUser())) {
      // Allow direct calls.
      if (CB->isCallee(&U))
        return getUniqueKernelFor(*CB);
      // Allow the use in __kmpc_kernel_prepare_parallel calls.
      if (Function *Callee = CB->getCalledFunction())
        if (Callee->getName() == "__kmpc_kernel_prepare_parallel")
          return getUniqueKernelFor(*CB);
      return nullptr;
    }
    // Disallow every other use.
    return nullptr;
  };

  // TODO: In the future we want to track more than just a unique kernel.
  SmallPtrSet<Kernel, 2> PotentialKernels;
  OMPInformationCache::foreachUse(F, [&](const Use &U) {
    PotentialKernels.insert(GetUniqueKernelForUse(U));
  });

  Kernel K = nullptr;
  if (PotentialKernels.size() == 1)
    K = *PotentialKernels.begin();

  // Cache the result.
  UniqueKernelMap[&F] = K;

  return K;
}

bool OpenMPOpt::rewriteDeviceCodeStateMachine() {
  OMPInformationCache::RuntimeFunctionInfo &KernelPrepareParallelRFI =
      OMPInfoCache.RFIs[OMPRTL___kmpc_kernel_prepare_parallel];

  bool Changed = false;
  if (!KernelPrepareParallelRFI)
    return Changed;

  for (Function *F : SCC) {

    // Check if the function is uses in a __kmpc_kernel_prepare_parallel call at
    // all.
    bool UnknownUse = false;
    bool KernelPrepareUse = false;
    unsigned NumDirectCalls = 0;

    SmallVector<Use *, 2> ToBeReplacedStateMachineUses;
    OMPInformationCache::foreachUse(*F, [&](Use &U) {
      if (auto *CB = dyn_cast<CallBase>(U.getUser()))
        if (CB->isCallee(&U)) {
          ++NumDirectCalls;
          return;
        }

      if (isa<ICmpInst>(U.getUser())) {
        ToBeReplacedStateMachineUses.push_back(&U);
        return;
      }
      if (!KernelPrepareUse && OpenMPOpt::getCallIfRegularCall(
                                   *U.getUser(), &KernelPrepareParallelRFI)) {
        KernelPrepareUse = true;
        ToBeReplacedStateMachineUses.push_back(&U);
        return;
      }
      UnknownUse = true;
    });

    // Do not emit a remark if we haven't seen a __kmpc_kernel_prepare_parallel
    // use.
    if (!KernelPrepareUse)
      continue;

    {
      auto Remark = [&](OptimizationRemark OR) {
        return OR << "Found a parallel region that is called in a target "
                     "region but not part of a combined target construct nor "
                     "nesed inside a target construct without intermediate "
                     "code. This can lead to excessive register usage for "
                     "unrelated target regions in the same translation unit "
                     "due to spurious call edges assumed by ptxas.";
      };
      emitRemarkOnFunction(F, "OpenMPParallelRegionInNonSPMD", Remark);
    }

    // If this ever hits, we should investigate.
    // TODO: Checking the number of uses is not a necessary restriction and
    // should be lifted.
    if (UnknownUse || NumDirectCalls != 1 ||
        ToBeReplacedStateMachineUses.size() != 2) {
      {
        auto Remark = [&](OptimizationRemark OR) {
          return OR << "Parallel region is used in "
                    << (UnknownUse ? "unknown" : "unexpected")
                    << " ways; will not attempt to rewrite the state machine.";
        };
        emitRemarkOnFunction(F, "OpenMPParallelRegionInNonSPMD", Remark);
      }
      continue;
    }

    // Even if we have __kmpc_kernel_prepare_parallel calls, we (for now) give
    // up if the function is not called from a unique kernel.
    Kernel K = getUniqueKernelFor(*F);
    if (!K) {
      {
        auto Remark = [&](OptimizationRemark OR) {
          return OR << "Parallel region is not known to be called from a "
                       "unique single target region, maybe the surrounding "
                       "function has external linkage?; will not attempt to "
                       "rewrite the state machine use.";
        };
        emitRemarkOnFunction(F, "OpenMPParallelRegionInMultipleKernesl",
                             Remark);
      }
      continue;
    }

    // We now know F is a parallel body function called only from the kernel K.
    // We also identified the state machine uses in which we replace the
    // function pointer by a new global symbol for identification purposes. This
    // ensures only direct calls to the function are left.

    {
      auto RemarkParalleRegion = [&](OptimizationRemark OR) {
        return OR << "Specialize parallel region that is only reached from a "
                     "single target region to avoid spurious call edges and "
                     "excessive register usage in other target regions. "
                     "(parallel region ID: "
                  << ore::NV("OpenMPParallelRegion", F->getName())
                  << ", kernel ID: "
                  << ore::NV("OpenMPTargetRegion", K->getName()) << ")";
      };
      emitRemarkOnFunction(F, "OpenMPParallelRegionInNonSPMD",
                           RemarkParalleRegion);
      auto RemarkKernel = [&](OptimizationRemark OR) {
        return OR << "Target region containing the parallel region that is "
                     "specialized. (parallel region ID: "
                  << ore::NV("OpenMPParallelRegion", F->getName())
                  << ", kernel ID: "
                  << ore::NV("OpenMPTargetRegion", K->getName()) << ")";
      };
      emitRemarkOnFunction(K, "OpenMPParallelRegionInNonSPMD", RemarkKernel);
    }

    Module &M = *F->getParent();
    Type *Int8Ty = Type::getInt8Ty(M.getContext());

    auto *ID = new GlobalVariable(
        M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage,
        UndefValue::get(Int8Ty), F->getName() + ".ID");

    for (Use *U : ToBeReplacedStateMachineUses)
      U->set(ConstantExpr::getBitCast(ID, U->get()->getType()));

    ++NumOpenMPParallelRegionsReplacedInGPUStateMachine;

    Changed = true;
  }

  return Changed;
}

/// Abstract Attribute for tracking ICV values.
struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> {
  using Base = StateWrapper<BooleanState, AbstractAttribute>;
  AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {}

  void initialize(Attributor &A) override {
    Function *F = getAnchorScope();
    if (!F || !A.isFunctionIPOAmendable(*F))
      indicatePessimisticFixpoint();
  }

  /// Returns true if value is assumed to be tracked.
  bool isAssumedTracked() const { return getAssumed(); }

  /// Returns true if value is known to be tracked.
  bool isKnownTracked() const { return getAssumed(); }

  /// Create an abstract attribute biew for the position \p IRP.
  static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A);

  /// Return the value with which \p I can be replaced for specific \p ICV.
  virtual Optional<Value *> getReplacementValue(InternalControlVar ICV,
                                                const Instruction *I,
                                                Attributor &A) const {
    return None;
  }

  /// Return an assumed unique ICV value if a single candidate is found. If
  /// there cannot be one, return a nullptr. If it is not clear yet, return the
  /// Optional::NoneType.
  virtual Optional<Value *>
  getUniqueReplacementValue(InternalControlVar ICV) const = 0;

  // Currently only nthreads is being tracked.
  // this array will only grow with time.
  InternalControlVar TrackableICVs[1] = {ICV_nthreads};

  /// See AbstractAttribute::getName()
  const std::string getName() const override { return "AAICVTracker"; }

  /// See AbstractAttribute::getIdAddr()
  const char *getIdAddr() const override { return &ID; }

  /// This function should return true if the type of the \p AA is AAICVTracker
  static bool classof(const AbstractAttribute *AA) {
    return (AA->getIdAddr() == &ID);
  }

  static const char ID;
};

struct AAICVTrackerFunction : public AAICVTracker {
  AAICVTrackerFunction(const IRPosition &IRP, Attributor &A)
      : AAICVTracker(IRP, A) {}

  // FIXME: come up with better string.
  const std::string getAsStr() const override { return "ICVTrackerFunction"; }

  // FIXME: come up with some stats.
  void trackStatistics() const override {}

  /// We don't manifest anything for this AA.
  ChangeStatus manifest(Attributor &A) override {
    return ChangeStatus::UNCHANGED;
  }

  // Map of ICV to their values at specific program point.
  EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar,
                  InternalControlVar::ICV___last>
      ICVReplacementValuesMap;

  ChangeStatus updateImpl(Attributor &A) override {
    ChangeStatus HasChanged = ChangeStatus::UNCHANGED;

    Function *F = getAnchorScope();

    auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());

    for (InternalControlVar ICV : TrackableICVs) {
      auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];

      auto &ValuesMap = ICVReplacementValuesMap[ICV];
      auto TrackValues = [&](Use &U, Function &) {
        CallInst *CI = OpenMPOpt::getCallIfRegularCall(U);
        if (!CI)
          return false;

        // FIXME: handle setters with more that 1 arguments.
        /// Track new value.
        if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second)
          HasChanged = ChangeStatus::CHANGED;

        return false;
      };

      auto CallCheck = [&](Instruction &I) {
        Optional<Value *> ReplVal = getValueForCall(A, &I, ICV);
        if (ReplVal.hasValue() &&
            ValuesMap.insert(std::make_pair(&I, *ReplVal)).second)
          HasChanged = ChangeStatus::CHANGED;

        return true;
      };

      // Track all changes of an ICV.
      SetterRFI.foreachUse(TrackValues, F);

      A.checkForAllInstructions(CallCheck, *this, {Instruction::Call},
                                /* CheckBBLivenessOnly */ true);

      /// TODO: Figure out a way to avoid adding entry in
      /// ICVReplacementValuesMap
      Instruction *Entry = &F->getEntryBlock().front();
      if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry))
        ValuesMap.insert(std::make_pair(Entry, nullptr));
    }

    return HasChanged;
  }

  /// Hepler to check if \p I is a call and get the value for it if it is
  /// unique.
  Optional<Value *> getValueForCall(Attributor &A, const Instruction *I,
                                    InternalControlVar &ICV) const {

    const auto *CB = dyn_cast<CallBase>(I);
    if (!CB || CB->hasFnAttr("no_openmp") ||
        CB->hasFnAttr("no_openmp_routines"))
      return None;

    auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
    auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter];
    auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];
    Function *CalledFunction = CB->getCalledFunction();

    // Indirect call, assume ICV changes.
    if (CalledFunction == nullptr)
      return nullptr;
    if (CalledFunction == GetterRFI.Declaration)
      return None;
    if (CalledFunction == SetterRFI.Declaration) {
      if (ICVReplacementValuesMap[ICV].count(I))
        return ICVReplacementValuesMap[ICV].lookup(I);

      return nullptr;
    }

    // Since we don't know, assume it changes the ICV.
    if (CalledFunction->isDeclaration())
      return nullptr;

    const auto &ICVTrackingAA =
        A.getAAFor<AAICVTracker>(*this, IRPosition::callsite_returned(*CB));

    if (ICVTrackingAA.isAssumedTracked())
      return ICVTrackingAA.getUniqueReplacementValue(ICV);

    // If we don't know, assume it changes.
    return nullptr;
  }

  // We don't check unique value for a function, so return None.
  Optional<Value *>
  getUniqueReplacementValue(InternalControlVar ICV) const override {
    return None;
  }

  /// Return the value with which \p I can be replaced for specific \p ICV.
  Optional<Value *> getReplacementValue(InternalControlVar ICV,
                                        const Instruction *I,
                                        Attributor &A) const override {
    const auto &ValuesMap = ICVReplacementValuesMap[ICV];
    if (ValuesMap.count(I))
      return ValuesMap.lookup(I);

    SmallVector<const Instruction *, 16> Worklist;
    SmallPtrSet<const Instruction *, 16> Visited;
    Worklist.push_back(I);

    Optional<Value *> ReplVal;

    while (!Worklist.empty()) {
      const Instruction *CurrInst = Worklist.pop_back_val();
      if (!Visited.insert(CurrInst).second)
        continue;

      const BasicBlock *CurrBB = CurrInst->getParent();

      // Go up and look for all potential setters/calls that might change the
      // ICV.
      while ((CurrInst = CurrInst->getPrevNode())) {
        if (ValuesMap.count(CurrInst)) {
          Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst);
          // Unknown value, track new.
          if (!ReplVal.hasValue()) {
            ReplVal = NewReplVal;
            break;
          }

          // If we found a new value, we can't know the icv value anymore.
          if (NewReplVal.hasValue())
            if (ReplVal != NewReplVal)
              return nullptr;

          break;
        }

        Optional<Value *> NewReplVal = getValueForCall(A, CurrInst, ICV);
        if (!NewReplVal.hasValue())
          continue;

        // Unknown value, track new.
        if (!ReplVal.hasValue()) {
          ReplVal = NewReplVal;
          break;
        }

        // if (NewReplVal.hasValue())
        // We found a new value, we can't know the icv value anymore.
        if (ReplVal != NewReplVal)
          return nullptr;
      }

      // If we are in the same BB and we have a value, we are done.
      if (CurrBB == I->getParent() && ReplVal.hasValue())
        return ReplVal;

      // Go through all predecessors and add terminators for analysis.
      for (const BasicBlock *Pred : predecessors(CurrBB))
        if (const Instruction *Terminator = Pred->getTerminator())
          Worklist.push_back(Terminator);
    }

    return ReplVal;
  }
};

struct AAICVTrackerFunctionReturned : AAICVTracker {
  AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A)
      : AAICVTracker(IRP, A) {}

  // FIXME: come up with better string.
  const std::string getAsStr() const override {
    return "ICVTrackerFunctionReturned";
  }

  // FIXME: come up with some stats.
  void trackStatistics() const override {}

  /// We don't manifest anything for this AA.
  ChangeStatus manifest(Attributor &A) override {
    return ChangeStatus::UNCHANGED;
  }

  // Map of ICV to their values at specific program point.
  EnumeratedArray<Optional<Value *>, InternalControlVar,
                  InternalControlVar::ICV___last>
      ICVReplacementValuesMap;

  /// Return the value with which \p I can be replaced for specific \p ICV.
  Optional<Value *>
  getUniqueReplacementValue(InternalControlVar ICV) const override {
    return ICVReplacementValuesMap[ICV];
  }

  ChangeStatus updateImpl(Attributor &A) override {
    ChangeStatus Changed = ChangeStatus::UNCHANGED;
    const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
        *this, IRPosition::function(*getAnchorScope()));

    if (!ICVTrackingAA.isAssumedTracked())
      return indicatePessimisticFixpoint();

    for (InternalControlVar ICV : TrackableICVs) {
      Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
      Optional<Value *> UniqueICVValue;

      auto CheckReturnInst = [&](Instruction &I) {
        Optional<Value *> NewReplVal =
            ICVTrackingAA.getReplacementValue(ICV, &I, A);

        // If we found a second ICV value there is no unique returned value.
        if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal)
          return false;

        UniqueICVValue = NewReplVal;

        return true;
      };

      if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret},
                                     /* CheckBBLivenessOnly */ true))
        UniqueICVValue = nullptr;

      if (UniqueICVValue == ReplVal)
        continue;

      ReplVal = UniqueICVValue;
      Changed = ChangeStatus::CHANGED;
    }

    return Changed;
  }
};

struct AAICVTrackerCallSite : AAICVTracker {
  AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A)
      : AAICVTracker(IRP, A) {}

  void initialize(Attributor &A) override {
    Function *F = getAnchorScope();
    if (!F || !A.isFunctionIPOAmendable(*F))
      indicatePessimisticFixpoint();

    // We only initialize this AA for getters, so we need to know which ICV it
    // gets.
    auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
    for (InternalControlVar ICV : TrackableICVs) {
      auto ICVInfo = OMPInfoCache.ICVs[ICV];
      auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter];
      if (Getter.Declaration == getAssociatedFunction()) {
        AssociatedICV = ICVInfo.Kind;
        return;
      }
    }

    /// Unknown ICV.
    indicatePessimisticFixpoint();
  }

  ChangeStatus manifest(Attributor &A) override {
    if (!ReplVal.hasValue() || !ReplVal.getValue())
      return ChangeStatus::UNCHANGED;

    A.changeValueAfterManifest(*getCtxI(), **ReplVal);
    A.deleteAfterManifest(*getCtxI());

    return ChangeStatus::CHANGED;
  }

  // FIXME: come up with better string.
  const std::string getAsStr() const override { return "ICVTrackerCallSite"; }

  // FIXME: come up with some stats.
  void trackStatistics() const override {}

  InternalControlVar AssociatedICV;
  Optional<Value *> ReplVal;

  ChangeStatus updateImpl(Attributor &A) override {
    const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
        *this, IRPosition::function(*getAnchorScope()));

    // We don't have any information, so we assume it changes the ICV.
    if (!ICVTrackingAA.isAssumedTracked())
      return indicatePessimisticFixpoint();

    Optional<Value *> NewReplVal =
        ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A);

    if (ReplVal == NewReplVal)
      return ChangeStatus::UNCHANGED;

    ReplVal = NewReplVal;
    return ChangeStatus::CHANGED;
  }

  // Return the value with which associated value can be replaced for specific
  // \p ICV.
  Optional<Value *>
  getUniqueReplacementValue(InternalControlVar ICV) const override {
    return ReplVal;
  }
};

struct AAICVTrackerCallSiteReturned : AAICVTracker {
  AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A)
      : AAICVTracker(IRP, A) {}

  // FIXME: come up with better string.
  const std::string getAsStr() const override {
    return "ICVTrackerCallSiteReturned";
  }

  // FIXME: come up with some stats.
  void trackStatistics() const override {}

  /// We don't manifest anything for this AA.
  ChangeStatus manifest(Attributor &A) override {
    return ChangeStatus::UNCHANGED;
  }

  // Map of ICV to their values at specific program point.
  EnumeratedArray<Optional<Value *>, InternalControlVar,
                  InternalControlVar::ICV___last>
      ICVReplacementValuesMap;

  /// Return the value with which associated value can be replaced for specific
  /// \p ICV.
  Optional<Value *>
  getUniqueReplacementValue(InternalControlVar ICV) const override {
    return ICVReplacementValuesMap[ICV];
  }

  ChangeStatus updateImpl(Attributor &A) override {
    ChangeStatus Changed = ChangeStatus::UNCHANGED;
    const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
        *this, IRPosition::returned(*getAssociatedFunction()));

    // We don't have any information, so we assume it changes the ICV.
    if (!ICVTrackingAA.isAssumedTracked())
      return indicatePessimisticFixpoint();

    for (InternalControlVar ICV : TrackableICVs) {
      Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
      Optional<Value *> NewReplVal =
          ICVTrackingAA.getUniqueReplacementValue(ICV);

      if (ReplVal == NewReplVal)
        continue;

      ReplVal = NewReplVal;
      Changed = ChangeStatus::CHANGED;
    }
    return Changed;
  }
};
} // namespace

const char AAICVTracker::ID = 0;

AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP,
                                              Attributor &A) {
  AAICVTracker *AA = nullptr;
  switch (IRP.getPositionKind()) {
  case IRPosition::IRP_INVALID:
  case IRPosition::IRP_FLOAT:
  case IRPosition::IRP_ARGUMENT:
  case IRPosition::IRP_CALL_SITE_ARGUMENT:
    llvm_unreachable("ICVTracker can only be created for function position!");
  case IRPosition::IRP_RETURNED:
    AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A);
    break;
  case IRPosition::IRP_CALL_SITE_RETURNED:
    AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A);
    break;
  case IRPosition::IRP_CALL_SITE:
    AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A);
    break;
  case IRPosition::IRP_FUNCTION:
    AA = new (A.Allocator) AAICVTrackerFunction(IRP, A);
    break;
  }

  return *AA;
}

PreservedAnalyses OpenMPOptPass::run(LazyCallGraph::SCC &C,
                                     CGSCCAnalysisManager &AM,
                                     LazyCallGraph &CG, CGSCCUpdateResult &UR) {
  if (!containsOpenMP(*C.begin()->getFunction().getParent(), OMPInModule))
    return PreservedAnalyses::all();

  if (DisableOpenMPOptimizations)
    return PreservedAnalyses::all();

  SmallVector<Function *, 16> SCC;
  // If there are kernels in the module, we have to run on all SCC's.
  bool SCCIsInteresting = !OMPInModule.getKernels().empty();
  for (LazyCallGraph::Node &N : C) {
    Function *Fn = &N.getFunction();
    SCC.push_back(Fn);

    // Do we already know that the SCC contains kernels,
    // or that OpenMP functions are called from this SCC?
    if (SCCIsInteresting)
      continue;
    // If not, let's check that.
    SCCIsInteresting |= OMPInModule.containsOMPRuntimeCalls(Fn);
  }

  if (!SCCIsInteresting || SCC.empty())
    return PreservedAnalyses::all();

  FunctionAnalysisManager &FAM =
      AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();

  AnalysisGetter AG(FAM);

  auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & {
    return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
  };

  CallGraphUpdater CGUpdater;
  CGUpdater.initialize(CG, C, AM, UR);

  SetVector<Function *> Functions(SCC.begin(), SCC.end());
  BumpPtrAllocator Allocator;
  OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator,
                                /*CGSCC*/ Functions, OMPInModule.getKernels());

  Attributor A(Functions, InfoCache, CGUpdater);

  OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
  bool Changed = OMPOpt.run();
  if (Changed)
    return PreservedAnalyses::none();

  return PreservedAnalyses::all();
}

namespace {

struct OpenMPOptLegacyPass : public CallGraphSCCPass {
  CallGraphUpdater CGUpdater;
  OpenMPInModule OMPInModule;
  static char ID;

  OpenMPOptLegacyPass() : CallGraphSCCPass(ID) {
    initializeOpenMPOptLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    CallGraphSCCPass::getAnalysisUsage(AU);
  }

  bool doInitialization(CallGraph &CG) override {
    // Disable the pass if there is no OpenMP (runtime call) in the module.
    containsOpenMP(CG.getModule(), OMPInModule);
    return false;
  }

  bool runOnSCC(CallGraphSCC &CGSCC) override {
    if (!containsOpenMP(CGSCC.getCallGraph().getModule(), OMPInModule))
      return false;
    if (DisableOpenMPOptimizations || skipSCC(CGSCC))
      return false;

    SmallVector<Function *, 16> SCC;
    // If there are kernels in the module, we have to run on all SCC's.
    bool SCCIsInteresting = !OMPInModule.getKernels().empty();
    for (CallGraphNode *CGN : CGSCC) {
      Function *Fn = CGN->getFunction();
      if (!Fn || Fn->isDeclaration())
        continue;
      SCC.push_back(Fn);

      // Do we already know that the SCC contains kernels,
      // or that OpenMP functions are called from this SCC?
      if (SCCIsInteresting)
        continue;
      // If not, let's check that.
      SCCIsInteresting |= OMPInModule.containsOMPRuntimeCalls(Fn);
    }

    if (!SCCIsInteresting || SCC.empty())
      return false;

    CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
    CGUpdater.initialize(CG, CGSCC);

    // Maintain a map of functions to avoid rebuilding the ORE
    DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap;
    auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & {
      std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F];
      if (!ORE)
        ORE = std::make_unique<OptimizationRemarkEmitter>(F);
      return *ORE;
    };

    AnalysisGetter AG;
    SetVector<Function *> Functions(SCC.begin(), SCC.end());
    BumpPtrAllocator Allocator;
    OMPInformationCache InfoCache(
        *(Functions.back()->getParent()), AG, Allocator,
        /*CGSCC*/ Functions, OMPInModule.getKernels());

    Attributor A(Functions, InfoCache, CGUpdater);

    OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
    return OMPOpt.run();
  }

  bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); }
};

} // end anonymous namespace

void OpenMPInModule::identifyKernels(Module &M) {

  NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
  if (!MD)
    return;

  for (auto *Op : MD->operands()) {
    if (Op->getNumOperands() < 2)
      continue;
    MDString *KindID = dyn_cast<MDString>(Op->getOperand(1));
    if (!KindID || KindID->getString() != "kernel")
      continue;

    Function *KernelFn =
        mdconst::dyn_extract_or_null<Function>(Op->getOperand(0));
    if (!KernelFn)
      continue;

    ++NumOpenMPTargetRegionKernels;

    Kernels.insert(KernelFn);
  }
}

bool llvm::omp::containsOpenMP(Module &M, OpenMPInModule &OMPInModule) {
  if (OMPInModule.isKnown())
    return OMPInModule;

  auto RecordFunctionsContainingUsesOf = [&](Function *F) {
    for (User *U : F->users())
      if (auto *I = dyn_cast<Instruction>(U))
        OMPInModule.FuncsWithOMPRuntimeCalls.insert(I->getFunction());
  };

  // MSVC doesn't like long if-else chains for some reason and instead just
  // issues an error. Work around it..
  do {
#define OMP_RTL(_Enum, _Name, ...)                                             \
  if (Function *F = M.getFunction(_Name)) {                                    \
    RecordFunctionsContainingUsesOf(F);                                        \
    OMPInModule = true;                                                        \
  }
#include "llvm/Frontend/OpenMP/OMPKinds.def"
  } while (false);

  // Identify kernels once. TODO: We should split the OMPInformationCache into a
  // module and an SCC part. The kernel information, among other things, could
  // go into the module part.
  if (OMPInModule.isKnown() && OMPInModule) {
    OMPInModule.identifyKernels(M);
    return true;
  }

  return OMPInModule = false;
}

char OpenMPOptLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(OpenMPOptLegacyPass, "openmpopt",
                      "OpenMP specific optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_END(OpenMPOptLegacyPass, "openmpopt",
                    "OpenMP specific optimizations", false, false)

Pass *llvm::createOpenMPOptLegacyPass() { return new OpenMPOptLegacyPass(); }