1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
|
//===- X86Operand.h - Parsed X86 machine instruction ------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_X86_ASMPARSER_X86OPERAND_H
#define LLVM_LIB_TARGET_X86_ASMPARSER_X86OPERAND_H
#include "MCTargetDesc/X86IntelInstPrinter.h"
#include "MCTargetDesc/X86MCTargetDesc.h"
#include "X86AsmParserCommon.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/SMLoc.h"
#include <cassert>
#include <memory>
namespace llvm {
/// X86Operand - Instances of this class represent a parsed X86 machine
/// instruction.
struct X86Operand final : public MCParsedAsmOperand {
enum KindTy { Token, Register, Immediate, Memory, Prefix, DXRegister } Kind;
SMLoc StartLoc, EndLoc;
SMLoc OffsetOfLoc;
StringRef SymName;
void *OpDecl;
bool AddressOf;
bool CallOperand;
struct TokOp {
const char *Data;
unsigned Length;
};
struct RegOp {
unsigned RegNo;
};
struct PrefOp {
unsigned Prefixes;
};
struct ImmOp {
const MCExpr *Val;
bool LocalRef;
};
struct MemOp {
unsigned SegReg;
const MCExpr *Disp;
unsigned BaseReg;
unsigned DefaultBaseReg;
unsigned IndexReg;
unsigned Scale;
unsigned Size;
unsigned ModeSize;
/// If the memory operand is unsized and there are multiple instruction
/// matches, prefer the one with this size.
unsigned FrontendSize;
};
union {
struct TokOp Tok;
struct RegOp Reg;
struct ImmOp Imm;
struct MemOp Mem;
struct PrefOp Pref;
};
X86Operand(KindTy K, SMLoc Start, SMLoc End)
: Kind(K), StartLoc(Start), EndLoc(End), CallOperand(false) {}
StringRef getSymName() override { return SymName; }
void *getOpDecl() override { return OpDecl; }
/// getStartLoc - Get the location of the first token of this operand.
SMLoc getStartLoc() const override { return StartLoc; }
/// getEndLoc - Get the location of the last token of this operand.
SMLoc getEndLoc() const override { return EndLoc; }
/// getLocRange - Get the range between the first and last token of this
/// operand.
SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
/// getOffsetOfLoc - Get the location of the offset operator.
SMLoc getOffsetOfLoc() const override { return OffsetOfLoc; }
void print(raw_ostream &OS) const override {
auto PrintImmValue = [&](const MCExpr *Val, const char *VName) {
if (Val->getKind() == MCExpr::Constant) {
if (auto Imm = cast<MCConstantExpr>(Val)->getValue())
OS << VName << Imm;
} else if (Val->getKind() == MCExpr::SymbolRef) {
if (auto *SRE = dyn_cast<MCSymbolRefExpr>(Val)) {
const MCSymbol &Sym = SRE->getSymbol();
if (const char *SymNameStr = Sym.getName().data())
OS << VName << SymNameStr;
}
}
};
switch (Kind) {
case Token:
OS << Tok.Data;
break;
case Register:
OS << "Reg:" << X86IntelInstPrinter::getRegisterName(Reg.RegNo);
break;
case DXRegister:
OS << "DXReg";
break;
case Immediate:
PrintImmValue(Imm.Val, "Imm:");
break;
case Prefix:
OS << "Prefix:" << Pref.Prefixes;
break;
case Memory:
OS << "Memory: ModeSize=" << Mem.ModeSize;
if (Mem.Size)
OS << ",Size=" << Mem.Size;
if (Mem.BaseReg)
OS << ",BaseReg=" << X86IntelInstPrinter::getRegisterName(Mem.BaseReg);
if (Mem.IndexReg)
OS << ",IndexReg="
<< X86IntelInstPrinter::getRegisterName(Mem.IndexReg);
if (Mem.Scale)
OS << ",Scale=" << Mem.Scale;
if (Mem.Disp)
PrintImmValue(Mem.Disp, ",Disp=");
if (Mem.SegReg)
OS << ",SegReg=" << X86IntelInstPrinter::getRegisterName(Mem.SegReg);
break;
}
}
StringRef getToken() const {
assert(Kind == Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
void setTokenValue(StringRef Value) {
assert(Kind == Token && "Invalid access!");
Tok.Data = Value.data();
Tok.Length = Value.size();
}
unsigned getReg() const override {
assert(Kind == Register && "Invalid access!");
return Reg.RegNo;
}
unsigned getPrefix() const {
assert(Kind == Prefix && "Invalid access!");
return Pref.Prefixes;
}
const MCExpr *getImm() const {
assert(Kind == Immediate && "Invalid access!");
return Imm.Val;
}
const MCExpr *getMemDisp() const {
assert(Kind == Memory && "Invalid access!");
return Mem.Disp;
}
unsigned getMemSegReg() const {
assert(Kind == Memory && "Invalid access!");
return Mem.SegReg;
}
unsigned getMemBaseReg() const {
assert(Kind == Memory && "Invalid access!");
return Mem.BaseReg;
}
unsigned getMemDefaultBaseReg() const {
assert(Kind == Memory && "Invalid access!");
return Mem.DefaultBaseReg;
}
unsigned getMemIndexReg() const {
assert(Kind == Memory && "Invalid access!");
return Mem.IndexReg;
}
unsigned getMemScale() const {
assert(Kind == Memory && "Invalid access!");
return Mem.Scale;
}
unsigned getMemModeSize() const {
assert(Kind == Memory && "Invalid access!");
return Mem.ModeSize;
}
unsigned getMemFrontendSize() const {
assert(Kind == Memory && "Invalid access!");
return Mem.FrontendSize;
}
bool isToken() const override {return Kind == Token; }
bool isImm() const override { return Kind == Immediate; }
bool isImmSExti16i8() const {
if (!isImm())
return false;
// If this isn't a constant expr, just assume it fits and let relaxation
// handle it.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE)
return true;
// Otherwise, check the value is in a range that makes sense for this
// extension.
return isImmSExti16i8Value(CE->getValue());
}
bool isImmSExti32i8() const {
if (!isImm())
return false;
// If this isn't a constant expr, just assume it fits and let relaxation
// handle it.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE)
return true;
// Otherwise, check the value is in a range that makes sense for this
// extension.
return isImmSExti32i8Value(CE->getValue());
}
bool isImmSExti64i8() const {
if (!isImm())
return false;
// If this isn't a constant expr, just assume it fits and let relaxation
// handle it.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE)
return true;
// Otherwise, check the value is in a range that makes sense for this
// extension.
return isImmSExti64i8Value(CE->getValue());
}
bool isImmSExti64i32() const {
if (!isImm())
return false;
// If this isn't a constant expr, just assume it fits and let relaxation
// handle it.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE)
return true;
// Otherwise, check the value is in a range that makes sense for this
// extension.
return isImmSExti64i32Value(CE->getValue());
}
bool isImmUnsignedi4() const {
if (!isImm()) return false;
// If this isn't a constant expr, reject it. The immediate byte is shared
// with a register encoding. We can't have it affected by a relocation.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
return isImmUnsignedi4Value(CE->getValue());
}
bool isImmUnsignedi8() const {
if (!isImm()) return false;
// If this isn't a constant expr, just assume it fits and let relaxation
// handle it.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return true;
return isImmUnsignedi8Value(CE->getValue());
}
bool isOffsetOfLocal() const override { return isImm() && Imm.LocalRef; }
bool needAddressOf() const override { return AddressOf; }
bool isMem() const override { return Kind == Memory; }
bool isMemUnsized() const {
return Kind == Memory && Mem.Size == 0;
}
bool isMem8() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 8);
}
bool isMem16() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 16);
}
bool isMem32() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 32);
}
bool isMem64() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 64);
}
bool isMem80() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 80);
}
bool isMem128() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 128);
}
bool isMem256() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 256);
}
bool isMem512() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 512);
}
bool isSibMem() const {
return isMem() && Mem.BaseReg != X86::RIP && Mem.BaseReg != X86::EIP;
}
bool isMemIndexReg(unsigned LowR, unsigned HighR) const {
assert(Kind == Memory && "Invalid access!");
return Mem.IndexReg >= LowR && Mem.IndexReg <= HighR;
}
bool isMem64_RC128() const {
return isMem64() && isMemIndexReg(X86::XMM0, X86::XMM15);
}
bool isMem128_RC128() const {
return isMem128() && isMemIndexReg(X86::XMM0, X86::XMM15);
}
bool isMem128_RC256() const {
return isMem128() && isMemIndexReg(X86::YMM0, X86::YMM15);
}
bool isMem256_RC128() const {
return isMem256() && isMemIndexReg(X86::XMM0, X86::XMM15);
}
bool isMem256_RC256() const {
return isMem256() && isMemIndexReg(X86::YMM0, X86::YMM15);
}
bool isMem64_RC128X() const {
return isMem64() && isMemIndexReg(X86::XMM0, X86::XMM31);
}
bool isMem128_RC128X() const {
return isMem128() && isMemIndexReg(X86::XMM0, X86::XMM31);
}
bool isMem128_RC256X() const {
return isMem128() && isMemIndexReg(X86::YMM0, X86::YMM31);
}
bool isMem256_RC128X() const {
return isMem256() && isMemIndexReg(X86::XMM0, X86::XMM31);
}
bool isMem256_RC256X() const {
return isMem256() && isMemIndexReg(X86::YMM0, X86::YMM31);
}
bool isMem256_RC512() const {
return isMem256() && isMemIndexReg(X86::ZMM0, X86::ZMM31);
}
bool isMem512_RC256X() const {
return isMem512() && isMemIndexReg(X86::YMM0, X86::YMM31);
}
bool isMem512_RC512() const {
return isMem512() && isMemIndexReg(X86::ZMM0, X86::ZMM31);
}
bool isAbsMem() const {
return Kind == Memory && !getMemSegReg() && !getMemBaseReg() &&
!getMemIndexReg() && getMemScale() == 1;
}
bool isAVX512RC() const{
return isImm();
}
bool isAbsMem16() const {
return isAbsMem() && Mem.ModeSize == 16;
}
bool isSrcIdx() const {
return !getMemIndexReg() && getMemScale() == 1 &&
(getMemBaseReg() == X86::RSI || getMemBaseReg() == X86::ESI ||
getMemBaseReg() == X86::SI) && isa<MCConstantExpr>(getMemDisp()) &&
cast<MCConstantExpr>(getMemDisp())->getValue() == 0;
}
bool isSrcIdx8() const {
return isMem8() && isSrcIdx();
}
bool isSrcIdx16() const {
return isMem16() && isSrcIdx();
}
bool isSrcIdx32() const {
return isMem32() && isSrcIdx();
}
bool isSrcIdx64() const {
return isMem64() && isSrcIdx();
}
bool isDstIdx() const {
return !getMemIndexReg() && getMemScale() == 1 &&
(getMemSegReg() == 0 || getMemSegReg() == X86::ES) &&
(getMemBaseReg() == X86::RDI || getMemBaseReg() == X86::EDI ||
getMemBaseReg() == X86::DI) && isa<MCConstantExpr>(getMemDisp()) &&
cast<MCConstantExpr>(getMemDisp())->getValue() == 0;
}
bool isDstIdx8() const {
return isMem8() && isDstIdx();
}
bool isDstIdx16() const {
return isMem16() && isDstIdx();
}
bool isDstIdx32() const {
return isMem32() && isDstIdx();
}
bool isDstIdx64() const {
return isMem64() && isDstIdx();
}
bool isMemOffs() const {
return Kind == Memory && !getMemBaseReg() && !getMemIndexReg() &&
getMemScale() == 1;
}
bool isMemOffs16_8() const {
return isMemOffs() && Mem.ModeSize == 16 && (!Mem.Size || Mem.Size == 8);
}
bool isMemOffs16_16() const {
return isMemOffs() && Mem.ModeSize == 16 && (!Mem.Size || Mem.Size == 16);
}
bool isMemOffs16_32() const {
return isMemOffs() && Mem.ModeSize == 16 && (!Mem.Size || Mem.Size == 32);
}
bool isMemOffs32_8() const {
return isMemOffs() && Mem.ModeSize == 32 && (!Mem.Size || Mem.Size == 8);
}
bool isMemOffs32_16() const {
return isMemOffs() && Mem.ModeSize == 32 && (!Mem.Size || Mem.Size == 16);
}
bool isMemOffs32_32() const {
return isMemOffs() && Mem.ModeSize == 32 && (!Mem.Size || Mem.Size == 32);
}
bool isMemOffs32_64() const {
return isMemOffs() && Mem.ModeSize == 32 && (!Mem.Size || Mem.Size == 64);
}
bool isMemOffs64_8() const {
return isMemOffs() && Mem.ModeSize == 64 && (!Mem.Size || Mem.Size == 8);
}
bool isMemOffs64_16() const {
return isMemOffs() && Mem.ModeSize == 64 && (!Mem.Size || Mem.Size == 16);
}
bool isMemOffs64_32() const {
return isMemOffs() && Mem.ModeSize == 64 && (!Mem.Size || Mem.Size == 32);
}
bool isMemOffs64_64() const {
return isMemOffs() && Mem.ModeSize == 64 && (!Mem.Size || Mem.Size == 64);
}
bool isPrefix() const { return Kind == Prefix; }
bool isReg() const override { return Kind == Register; }
bool isDXReg() const { return Kind == DXRegister; }
bool isGR32orGR64() const {
return Kind == Register &&
(X86MCRegisterClasses[X86::GR32RegClassID].contains(getReg()) ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(getReg()));
}
bool isGR16orGR32orGR64() const {
return Kind == Register &&
(X86MCRegisterClasses[X86::GR16RegClassID].contains(getReg()) ||
X86MCRegisterClasses[X86::GR32RegClassID].contains(getReg()) ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(getReg()));
}
bool isVectorReg() const {
return Kind == Register &&
(X86MCRegisterClasses[X86::VR64RegClassID].contains(getReg()) ||
X86MCRegisterClasses[X86::VR128XRegClassID].contains(getReg()) ||
X86MCRegisterClasses[X86::VR256XRegClassID].contains(getReg()) ||
X86MCRegisterClasses[X86::VR512RegClassID].contains(getReg()));
}
bool isVK1Pair() const {
return Kind == Register &&
X86MCRegisterClasses[X86::VK1RegClassID].contains(getReg());
}
bool isVK2Pair() const {
return Kind == Register &&
X86MCRegisterClasses[X86::VK2RegClassID].contains(getReg());
}
bool isVK4Pair() const {
return Kind == Register &&
X86MCRegisterClasses[X86::VK4RegClassID].contains(getReg());
}
bool isVK8Pair() const {
return Kind == Register &&
X86MCRegisterClasses[X86::VK8RegClassID].contains(getReg());
}
bool isVK16Pair() const {
return Kind == Register &&
X86MCRegisterClasses[X86::VK16RegClassID].contains(getReg());
}
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
// Add as immediates when possible.
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::createImm(CE->getValue()));
else
Inst.addOperand(MCOperand::createExpr(Expr));
}
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getReg()));
}
void addGR32orGR64Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
MCRegister RegNo = getReg();
if (X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo))
RegNo = getX86SubSuperRegister(RegNo, 32);
Inst.addOperand(MCOperand::createReg(RegNo));
}
void addGR16orGR32orGR64Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
MCRegister RegNo = getReg();
if (X86MCRegisterClasses[X86::GR32RegClassID].contains(RegNo) ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo))
RegNo = getX86SubSuperRegister(RegNo, 16);
Inst.addOperand(MCOperand::createReg(RegNo));
}
void addAVX512RCOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addMaskPairOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
unsigned Reg = getReg();
switch (Reg) {
case X86::K0:
case X86::K1:
Reg = X86::K0_K1;
break;
case X86::K2:
case X86::K3:
Reg = X86::K2_K3;
break;
case X86::K4:
case X86::K5:
Reg = X86::K4_K5;
break;
case X86::K6:
case X86::K7:
Reg = X86::K6_K7;
break;
}
Inst.addOperand(MCOperand::createReg(Reg));
}
void addMemOperands(MCInst &Inst, unsigned N) const {
assert((N == 5) && "Invalid number of operands!");
if (getMemBaseReg())
Inst.addOperand(MCOperand::createReg(getMemBaseReg()));
else
Inst.addOperand(MCOperand::createReg(getMemDefaultBaseReg()));
Inst.addOperand(MCOperand::createImm(getMemScale()));
Inst.addOperand(MCOperand::createReg(getMemIndexReg()));
addExpr(Inst, getMemDisp());
Inst.addOperand(MCOperand::createReg(getMemSegReg()));
}
void addAbsMemOperands(MCInst &Inst, unsigned N) const {
assert((N == 1) && "Invalid number of operands!");
// Add as immediates when possible.
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemDisp()))
Inst.addOperand(MCOperand::createImm(CE->getValue()));
else
Inst.addOperand(MCOperand::createExpr(getMemDisp()));
}
void addSrcIdxOperands(MCInst &Inst, unsigned N) const {
assert((N == 2) && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getMemBaseReg()));
Inst.addOperand(MCOperand::createReg(getMemSegReg()));
}
void addDstIdxOperands(MCInst &Inst, unsigned N) const {
assert((N == 1) && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getMemBaseReg()));
}
void addMemOffsOperands(MCInst &Inst, unsigned N) const {
assert((N == 2) && "Invalid number of operands!");
// Add as immediates when possible.
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemDisp()))
Inst.addOperand(MCOperand::createImm(CE->getValue()));
else
Inst.addOperand(MCOperand::createExpr(getMemDisp()));
Inst.addOperand(MCOperand::createReg(getMemSegReg()));
}
static std::unique_ptr<X86Operand> CreateToken(StringRef Str, SMLoc Loc) {
SMLoc EndLoc = SMLoc::getFromPointer(Loc.getPointer() + Str.size());
auto Res = std::make_unique<X86Operand>(Token, Loc, EndLoc);
Res->Tok.Data = Str.data();
Res->Tok.Length = Str.size();
return Res;
}
static std::unique_ptr<X86Operand>
CreateReg(unsigned RegNo, SMLoc StartLoc, SMLoc EndLoc,
bool AddressOf = false, SMLoc OffsetOfLoc = SMLoc(),
StringRef SymName = StringRef(), void *OpDecl = nullptr) {
auto Res = std::make_unique<X86Operand>(Register, StartLoc, EndLoc);
Res->Reg.RegNo = RegNo;
Res->AddressOf = AddressOf;
Res->OffsetOfLoc = OffsetOfLoc;
Res->SymName = SymName;
Res->OpDecl = OpDecl;
return Res;
}
static std::unique_ptr<X86Operand>
CreateDXReg(SMLoc StartLoc, SMLoc EndLoc) {
return std::make_unique<X86Operand>(DXRegister, StartLoc, EndLoc);
}
static std::unique_ptr<X86Operand>
CreatePrefix(unsigned Prefixes, SMLoc StartLoc, SMLoc EndLoc) {
auto Res = std::make_unique<X86Operand>(Prefix, StartLoc, EndLoc);
Res->Pref.Prefixes = Prefixes;
return Res;
}
static std::unique_ptr<X86Operand> CreateImm(const MCExpr *Val,
SMLoc StartLoc, SMLoc EndLoc,
StringRef SymName = StringRef(),
void *OpDecl = nullptr,
bool GlobalRef = true) {
auto Res = std::make_unique<X86Operand>(Immediate, StartLoc, EndLoc);
Res->Imm.Val = Val;
Res->Imm.LocalRef = !GlobalRef;
Res->SymName = SymName;
Res->OpDecl = OpDecl;
Res->AddressOf = true;
return Res;
}
/// Create an absolute memory operand.
static std::unique_ptr<X86Operand>
CreateMem(unsigned ModeSize, const MCExpr *Disp, SMLoc StartLoc, SMLoc EndLoc,
unsigned Size = 0, StringRef SymName = StringRef(),
void *OpDecl = nullptr, unsigned FrontendSize = 0) {
auto Res = std::make_unique<X86Operand>(Memory, StartLoc, EndLoc);
Res->Mem.SegReg = 0;
Res->Mem.Disp = Disp;
Res->Mem.BaseReg = 0;
Res->Mem.DefaultBaseReg = 0;
Res->Mem.IndexReg = 0;
Res->Mem.Scale = 1;
Res->Mem.Size = Size;
Res->Mem.ModeSize = ModeSize;
Res->Mem.FrontendSize = FrontendSize;
Res->SymName = SymName;
Res->OpDecl = OpDecl;
Res->AddressOf = false;
return Res;
}
/// Create a generalized memory operand.
static std::unique_ptr<X86Operand>
CreateMem(unsigned ModeSize, unsigned SegReg, const MCExpr *Disp,
unsigned BaseReg, unsigned IndexReg, unsigned Scale, SMLoc StartLoc,
SMLoc EndLoc, unsigned Size = 0,
unsigned DefaultBaseReg = X86::NoRegister,
StringRef SymName = StringRef(), void *OpDecl = nullptr,
unsigned FrontendSize = 0) {
// We should never just have a displacement, that should be parsed as an
// absolute memory operand.
assert((SegReg || BaseReg || IndexReg || DefaultBaseReg) &&
"Invalid memory operand!");
// The scale should always be one of {1,2,4,8}.
assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) &&
"Invalid scale!");
auto Res = std::make_unique<X86Operand>(Memory, StartLoc, EndLoc);
Res->Mem.SegReg = SegReg;
Res->Mem.Disp = Disp;
Res->Mem.BaseReg = BaseReg;
Res->Mem.DefaultBaseReg = DefaultBaseReg;
Res->Mem.IndexReg = IndexReg;
Res->Mem.Scale = Scale;
Res->Mem.Size = Size;
Res->Mem.ModeSize = ModeSize;
Res->Mem.FrontendSize = FrontendSize;
Res->SymName = SymName;
Res->OpDecl = OpDecl;
Res->AddressOf = false;
return Res;
}
};
} // end namespace llvm
#endif // LLVM_LIB_TARGET_X86_ASMPARSER_X86OPERAND_H
|