aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Target/PowerPC/PPCVSXSwapRemoval.cpp
blob: 5665ef1c2e72444d5e3b72243aa0a052dd0a6118 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
//===----------- PPCVSXSwapRemoval.cpp - Remove VSX LE Swaps -------------===// 
// 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
// See https://llvm.org/LICENSE.txt for license information. 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
// 
//===---------------------------------------------------------------------===// 
// 
// This pass analyzes vector computations and removes unnecessary 
// doubleword swaps (xxswapd instructions).  This pass is performed 
// only for little-endian VSX code generation. 
// 
// For this specific case, loads and stores of v4i32, v4f32, v2i64, 
// and v2f64 vectors are inefficient.  These are implemented using 
// the lxvd2x and stxvd2x instructions, which invert the order of 
// doublewords in a vector register.  Thus code generation inserts 
// an xxswapd after each such load, and prior to each such store. 
// 
// The extra xxswapd instructions reduce performance.  The purpose 
// of this pass is to reduce the number of xxswapd instructions 
// required for correctness. 
// 
// The primary insight is that much code that operates on vectors 
// does not care about the relative order of elements in a register, 
// so long as the correct memory order is preserved.  If we have a 
// computation where all input values are provided by lxvd2x/xxswapd, 
// all outputs are stored using xxswapd/lxvd2x, and all intermediate 
// computations are lane-insensitive (independent of element order), 
// then all the xxswapd instructions associated with the loads and 
// stores may be removed without changing observable semantics. 
// 
// This pass uses standard equivalence class infrastructure to create 
// maximal webs of computations fitting the above description.  Each 
// such web is then optimized by removing its unnecessary xxswapd 
// instructions. 
// 
// There are some lane-sensitive operations for which we can still 
// permit the optimization, provided we modify those operations 
// accordingly.  Such operations are identified as using "special 
// handling" within this module. 
// 
//===---------------------------------------------------------------------===// 
 
#include "PPC.h" 
#include "PPCInstrBuilder.h" 
#include "PPCInstrInfo.h" 
#include "PPCTargetMachine.h" 
#include "llvm/ADT/DenseMap.h" 
#include "llvm/ADT/EquivalenceClasses.h" 
#include "llvm/CodeGen/MachineFunctionPass.h" 
#include "llvm/CodeGen/MachineInstrBuilder.h" 
#include "llvm/CodeGen/MachineRegisterInfo.h" 
#include "llvm/Config/llvm-config.h" 
#include "llvm/Support/Debug.h" 
#include "llvm/Support/Format.h" 
#include "llvm/Support/raw_ostream.h" 
 
using namespace llvm; 
 
#define DEBUG_TYPE "ppc-vsx-swaps" 
 
namespace { 
 
// A PPCVSXSwapEntry is created for each machine instruction that 
// is relevant to a vector computation. 
struct PPCVSXSwapEntry { 
  // Pointer to the instruction. 
  MachineInstr *VSEMI; 
 
  // Unique ID (position in the swap vector). 
  int VSEId; 
 
  // Attributes of this node. 
  unsigned int IsLoad : 1; 
  unsigned int IsStore : 1; 
  unsigned int IsSwap : 1; 
  unsigned int MentionsPhysVR : 1; 
  unsigned int IsSwappable : 1; 
  unsigned int MentionsPartialVR : 1; 
  unsigned int SpecialHandling : 3; 
  unsigned int WebRejected : 1; 
  unsigned int WillRemove : 1; 
}; 
 
enum SHValues { 
  SH_NONE = 0, 
  SH_EXTRACT, 
  SH_INSERT, 
  SH_NOSWAP_LD, 
  SH_NOSWAP_ST, 
  SH_SPLAT, 
  SH_XXPERMDI, 
  SH_COPYWIDEN 
}; 
 
struct PPCVSXSwapRemoval : public MachineFunctionPass { 
 
  static char ID; 
  const PPCInstrInfo *TII; 
  MachineFunction *MF; 
  MachineRegisterInfo *MRI; 
 
  // Swap entries are allocated in a vector for better performance. 
  std::vector<PPCVSXSwapEntry> SwapVector; 
 
  // A mapping is maintained between machine instructions and 
  // their swap entries.  The key is the address of the MI. 
  DenseMap<MachineInstr*, int> SwapMap; 
 
  // Equivalence classes are used to gather webs of related computation. 
  // Swap entries are represented by their VSEId fields. 
  EquivalenceClasses<int> *EC; 
 
  PPCVSXSwapRemoval() : MachineFunctionPass(ID) { 
    initializePPCVSXSwapRemovalPass(*PassRegistry::getPassRegistry()); 
  } 
 
private: 
  // Initialize data structures. 
  void initialize(MachineFunction &MFParm); 
 
  // Walk the machine instructions to gather vector usage information. 
  // Return true iff vector mentions are present. 
  bool gatherVectorInstructions(); 
 
  // Add an entry to the swap vector and swap map. 
  int addSwapEntry(MachineInstr *MI, PPCVSXSwapEntry &SwapEntry); 
 
  // Hunt backwards through COPY and SUBREG_TO_REG chains for a 
  // source register.  VecIdx indicates the swap vector entry to 
  // mark as mentioning a physical register if the search leads 
  // to one. 
  unsigned lookThruCopyLike(unsigned SrcReg, unsigned VecIdx); 
 
  // Generate equivalence classes for related computations (webs). 
  void formWebs(); 
 
  // Analyze webs and determine those that cannot be optimized. 
  void recordUnoptimizableWebs(); 
 
  // Record which swap instructions can be safely removed. 
  void markSwapsForRemoval(); 
 
  // Remove swaps and update other instructions requiring special 
  // handling.  Return true iff any changes are made. 
  bool removeSwaps(); 
 
  // Insert a swap instruction from SrcReg to DstReg at the given 
  // InsertPoint. 
  void insertSwap(MachineInstr *MI, MachineBasicBlock::iterator InsertPoint, 
                  unsigned DstReg, unsigned SrcReg); 
 
  // Update instructions requiring special handling. 
  void handleSpecialSwappables(int EntryIdx); 
 
  // Dump a description of the entries in the swap vector. 
  void dumpSwapVector(); 
 
  // Return true iff the given register is in the given class. 
  bool isRegInClass(unsigned Reg, const TargetRegisterClass *RC) { 
    if (Register::isVirtualRegister(Reg)) 
      return RC->hasSubClassEq(MRI->getRegClass(Reg)); 
    return RC->contains(Reg); 
  } 
 
  // Return true iff the given register is a full vector register. 
  bool isVecReg(unsigned Reg) { 
    return (isRegInClass(Reg, &PPC::VSRCRegClass) || 
            isRegInClass(Reg, &PPC::VRRCRegClass)); 
  } 
 
  // Return true iff the given register is a partial vector register. 
  bool isScalarVecReg(unsigned Reg) { 
    return (isRegInClass(Reg, &PPC::VSFRCRegClass) || 
            isRegInClass(Reg, &PPC::VSSRCRegClass)); 
  } 
 
  // Return true iff the given register mentions all or part of a 
  // vector register.  Also sets Partial to true if the mention 
  // is for just the floating-point register overlap of the register. 
  bool isAnyVecReg(unsigned Reg, bool &Partial) { 
    if (isScalarVecReg(Reg)) 
      Partial = true; 
    return isScalarVecReg(Reg) || isVecReg(Reg); 
  } 
 
public: 
  // Main entry point for this pass. 
  bool runOnMachineFunction(MachineFunction &MF) override { 
    if (skipFunction(MF.getFunction())) 
      return false; 
 
    // If we don't have VSX on the subtarget, don't do anything. 
    // Also, on Power 9 the load and store ops preserve element order and so 
    // the swaps are not required. 
    const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>(); 
    if (!STI.hasVSX() || !STI.needsSwapsForVSXMemOps()) 
      return false; 
 
    bool Changed = false; 
    initialize(MF); 
 
    if (gatherVectorInstructions()) { 
      formWebs(); 
      recordUnoptimizableWebs(); 
      markSwapsForRemoval(); 
      Changed = removeSwaps(); 
    } 
 
    // FIXME: See the allocation of EC in initialize(). 
    delete EC; 
    return Changed; 
  } 
}; 
 
// Initialize data structures for this pass.  In particular, clear the 
// swap vector and allocate the equivalence class mapping before 
// processing each function. 
void PPCVSXSwapRemoval::initialize(MachineFunction &MFParm) { 
  MF = &MFParm; 
  MRI = &MF->getRegInfo(); 
  TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo(); 
 
  // An initial vector size of 256 appears to work well in practice. 
  // Small/medium functions with vector content tend not to incur a 
  // reallocation at this size.  Three of the vector tests in 
  // projects/test-suite reallocate, which seems like a reasonable rate. 
  const int InitialVectorSize(256); 
  SwapVector.clear(); 
  SwapVector.reserve(InitialVectorSize); 
 
  // FIXME: Currently we allocate EC each time because we don't have 
  // access to the set representation on which to call clear().  Should 
  // consider adding a clear() method to the EquivalenceClasses class. 
  EC = new EquivalenceClasses<int>; 
} 
 
// Create an entry in the swap vector for each instruction that mentions 
// a full vector register, recording various characteristics of the 
// instructions there. 
bool PPCVSXSwapRemoval::gatherVectorInstructions() { 
  bool RelevantFunction = false; 
 
  for (MachineBasicBlock &MBB : *MF) { 
    for (MachineInstr &MI : MBB) { 
 
      if (MI.isDebugInstr()) 
        continue; 
 
      bool RelevantInstr = false; 
      bool Partial = false; 
 
      for (const MachineOperand &MO : MI.operands()) { 
        if (!MO.isReg()) 
          continue; 
        Register Reg = MO.getReg(); 
        // All operands need to be checked because there are instructions that
        // operate on a partial register and produce a full register (such as
        // XXPERMDIs).
        if (isAnyVecReg(Reg, Partial))
          RelevantInstr = true; 
      } 
 
      if (!RelevantInstr) 
        continue; 
 
      RelevantFunction = true; 
 
      // Create a SwapEntry initialized to zeros, then fill in the 
      // instruction and ID fields before pushing it to the back 
      // of the swap vector. 
      PPCVSXSwapEntry SwapEntry{}; 
      int VecIdx = addSwapEntry(&MI, SwapEntry); 
 
      switch(MI.getOpcode()) { 
      default: 
        // Unless noted otherwise, an instruction is considered 
        // safe for the optimization.  There are a large number of 
        // such true-SIMD instructions (all vector math, logical, 
        // select, compare, etc.).  However, if the instruction 
        // mentions a partial vector register and does not have 
        // special handling defined, it is not swappable. 
        if (Partial) 
          SwapVector[VecIdx].MentionsPartialVR = 1; 
        else 
          SwapVector[VecIdx].IsSwappable = 1; 
        break; 
      case PPC::XXPERMDI: { 
        // This is a swap if it is of the form XXPERMDI t, s, s, 2. 
        // Unfortunately, MachineCSE ignores COPY and SUBREG_TO_REG, so we 
        // can also see XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), 2, 
        // for example.  We have to look through chains of COPY and 
        // SUBREG_TO_REG to find the real source value for comparison. 
        // If the real source value is a physical register, then mark the 
        // XXPERMDI as mentioning a physical register. 
        int immed = MI.getOperand(3).getImm(); 
        if (immed == 2) { 
          unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(), 
                                               VecIdx); 
          unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(), 
                                               VecIdx); 
          if (trueReg1 == trueReg2) 
            SwapVector[VecIdx].IsSwap = 1; 
          else { 
            // We can still handle these if the two registers are not 
            // identical, by adjusting the form of the XXPERMDI. 
            SwapVector[VecIdx].IsSwappable = 1; 
            SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI; 
          } 
        // This is a doubleword splat if it is of the form 
        // XXPERMDI t, s, s, 0 or XXPERMDI t, s, s, 3.  As above we 
        // must look through chains of copy-likes to find the source 
        // register.  We turn off the marking for mention of a physical 
        // register, because splatting it is safe; the optimization 
        // will not swap the value in the physical register.  Whether 
        // or not the two input registers are identical, we can handle 
        // these by adjusting the form of the XXPERMDI. 
        } else if (immed == 0 || immed == 3) { 
 
          SwapVector[VecIdx].IsSwappable = 1; 
          SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI; 
 
          unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(), 
                                               VecIdx); 
          unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(), 
                                               VecIdx); 
          if (trueReg1 == trueReg2) 
            SwapVector[VecIdx].MentionsPhysVR = 0; 
 
        } else { 
          // We can still handle these by adjusting the form of the XXPERMDI. 
          SwapVector[VecIdx].IsSwappable = 1; 
          SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI; 
        } 
        break; 
      } 
      case PPC::LVX: 
        // Non-permuting loads are currently unsafe.  We can use special 
        // handling for this in the future.  By not marking these as 
        // IsSwap, we ensure computations containing them will be rejected 
        // for now. 
        SwapVector[VecIdx].IsLoad = 1; 
        break; 
      case PPC::LXVD2X: 
      case PPC::LXVW4X: 
        // Permuting loads are marked as both load and swap, and are 
        // safe for optimization. 
        SwapVector[VecIdx].IsLoad = 1; 
        SwapVector[VecIdx].IsSwap = 1; 
        break; 
      case PPC::LXSDX: 
      case PPC::LXSSPX: 
      case PPC::XFLOADf64: 
      case PPC::XFLOADf32: 
        // A load of a floating-point value into the high-order half of 
        // a vector register is safe, provided that we introduce a swap 
        // following the load, which will be done by the SUBREG_TO_REG 
        // support.  So just mark these as safe. 
        SwapVector[VecIdx].IsLoad = 1; 
        SwapVector[VecIdx].IsSwappable = 1; 
        break; 
      case PPC::STVX: 
        // Non-permuting stores are currently unsafe.  We can use special 
        // handling for this in the future.  By not marking these as 
        // IsSwap, we ensure computations containing them will be rejected 
        // for now. 
        SwapVector[VecIdx].IsStore = 1; 
        break; 
      case PPC::STXVD2X: 
      case PPC::STXVW4X: 
        // Permuting stores are marked as both store and swap, and are 
        // safe for optimization. 
        SwapVector[VecIdx].IsStore = 1; 
        SwapVector[VecIdx].IsSwap = 1; 
        break; 
      case PPC::COPY: 
        // These are fine provided they are moving between full vector 
        // register classes. 
        if (isVecReg(MI.getOperand(0).getReg()) && 
            isVecReg(MI.getOperand(1).getReg())) 
          SwapVector[VecIdx].IsSwappable = 1; 
        // If we have a copy from one scalar floating-point register 
        // to another, we can accept this even if it is a physical 
        // register.  The only way this gets involved is if it feeds 
        // a SUBREG_TO_REG, which is handled by introducing a swap. 
        else if (isScalarVecReg(MI.getOperand(0).getReg()) && 
                 isScalarVecReg(MI.getOperand(1).getReg())) 
          SwapVector[VecIdx].IsSwappable = 1; 
        break; 
      case PPC::SUBREG_TO_REG: { 
        // These are fine provided they are moving between full vector 
        // register classes.  If they are moving from a scalar 
        // floating-point class to a vector class, we can handle those 
        // as well, provided we introduce a swap.  It is generally the 
        // case that we will introduce fewer swaps than we remove, but 
        // (FIXME) a cost model could be used.  However, introduced 
        // swaps could potentially be CSEd, so this is not trivial. 
        if (isVecReg(MI.getOperand(0).getReg()) && 
            isVecReg(MI.getOperand(2).getReg())) 
          SwapVector[VecIdx].IsSwappable = 1; 
        else if (isVecReg(MI.getOperand(0).getReg()) && 
                 isScalarVecReg(MI.getOperand(2).getReg())) { 
          SwapVector[VecIdx].IsSwappable = 1; 
          SwapVector[VecIdx].SpecialHandling = SHValues::SH_COPYWIDEN; 
        } 
        break; 
      } 
      case PPC::VSPLTB: 
      case PPC::VSPLTH: 
      case PPC::VSPLTW: 
      case PPC::XXSPLTW: 
        // Splats are lane-sensitive, but we can use special handling 
        // to adjust the source lane for the splat. 
        SwapVector[VecIdx].IsSwappable = 1; 
        SwapVector[VecIdx].SpecialHandling = SHValues::SH_SPLAT; 
        break; 
      // The presence of the following lane-sensitive operations in a 
      // web will kill the optimization, at least for now.  For these 
      // we do nothing, causing the optimization to fail. 
      // FIXME: Some of these could be permitted with special handling, 
      // and will be phased in as time permits. 
      // FIXME: There is no simple and maintainable way to express a set 
      // of opcodes having a common attribute in TableGen.  Should this 
      // change, this is a prime candidate to use such a mechanism. 
      case PPC::INLINEASM: 
      case PPC::INLINEASM_BR: 
      case PPC::EXTRACT_SUBREG: 
      case PPC::INSERT_SUBREG: 
      case PPC::COPY_TO_REGCLASS: 
      case PPC::LVEBX: 
      case PPC::LVEHX: 
      case PPC::LVEWX: 
      case PPC::LVSL: 
      case PPC::LVSR: 
      case PPC::LVXL: 
      case PPC::STVEBX: 
      case PPC::STVEHX: 
      case PPC::STVEWX: 
      case PPC::STVXL: 
        // We can handle STXSDX and STXSSPX similarly to LXSDX and LXSSPX, 
        // by adding special handling for narrowing copies as well as 
        // widening ones.  However, I've experimented with this, and in 
        // practice we currently do not appear to use STXSDX fed by 
        // a narrowing copy from a full vector register.  Since I can't 
        // generate any useful test cases, I've left this alone for now. 
      case PPC::STXSDX: 
      case PPC::STXSSPX: 
      case PPC::VCIPHER: 
      case PPC::VCIPHERLAST: 
      case PPC::VMRGHB: 
      case PPC::VMRGHH: 
      case PPC::VMRGHW: 
      case PPC::VMRGLB: 
      case PPC::VMRGLH: 
      case PPC::VMRGLW: 
      case PPC::VMULESB: 
      case PPC::VMULESH: 
      case PPC::VMULESW: 
      case PPC::VMULEUB: 
      case PPC::VMULEUH: 
      case PPC::VMULEUW: 
      case PPC::VMULOSB: 
      case PPC::VMULOSH: 
      case PPC::VMULOSW: 
      case PPC::VMULOUB: 
      case PPC::VMULOUH: 
      case PPC::VMULOUW: 
      case PPC::VNCIPHER: 
      case PPC::VNCIPHERLAST: 
      case PPC::VPERM: 
      case PPC::VPERMXOR: 
      case PPC::VPKPX: 
      case PPC::VPKSHSS: 
      case PPC::VPKSHUS: 
      case PPC::VPKSDSS: 
      case PPC::VPKSDUS: 
      case PPC::VPKSWSS: 
      case PPC::VPKSWUS: 
      case PPC::VPKUDUM: 
      case PPC::VPKUDUS: 
      case PPC::VPKUHUM: 
      case PPC::VPKUHUS: 
      case PPC::VPKUWUM: 
      case PPC::VPKUWUS: 
      case PPC::VPMSUMB: 
      case PPC::VPMSUMD: 
      case PPC::VPMSUMH: 
      case PPC::VPMSUMW: 
      case PPC::VRLB: 
      case PPC::VRLD: 
      case PPC::VRLH: 
      case PPC::VRLW: 
      case PPC::VSBOX: 
      case PPC::VSHASIGMAD: 
      case PPC::VSHASIGMAW: 
      case PPC::VSL: 
      case PPC::VSLDOI: 
      case PPC::VSLO: 
      case PPC::VSR: 
      case PPC::VSRO: 
      case PPC::VSUM2SWS: 
      case PPC::VSUM4SBS: 
      case PPC::VSUM4SHS: 
      case PPC::VSUM4UBS: 
      case PPC::VSUMSWS: 
      case PPC::VUPKHPX: 
      case PPC::VUPKHSB: 
      case PPC::VUPKHSH: 
      case PPC::VUPKHSW: 
      case PPC::VUPKLPX: 
      case PPC::VUPKLSB: 
      case PPC::VUPKLSH: 
      case PPC::VUPKLSW: 
      case PPC::XXMRGHW: 
      case PPC::XXMRGLW: 
      // XXSLDWI could be replaced by a general permute with one of three 
      // permute control vectors (for shift values 1, 2, 3).  However, 
      // VPERM has a more restrictive register class. 
      case PPC::XXSLDWI: 
      case PPC::XSCVDPSPN: 
      case PPC::XSCVSPDPN: 
        break; 
      } 
    } 
  } 
 
  if (RelevantFunction) { 
    LLVM_DEBUG(dbgs() << "Swap vector when first built\n\n"); 
    LLVM_DEBUG(dumpSwapVector()); 
  } 
 
  return RelevantFunction; 
} 
 
// Add an entry to the swap vector and swap map, and make a 
// singleton equivalence class for the entry. 
int PPCVSXSwapRemoval::addSwapEntry(MachineInstr *MI, 
                                  PPCVSXSwapEntry& SwapEntry) { 
  SwapEntry.VSEMI = MI; 
  SwapEntry.VSEId = SwapVector.size(); 
  SwapVector.push_back(SwapEntry); 
  EC->insert(SwapEntry.VSEId); 
  SwapMap[MI] = SwapEntry.VSEId; 
  return SwapEntry.VSEId; 
} 
 
// This is used to find the "true" source register for an 
// XXPERMDI instruction, since MachineCSE does not handle the 
// "copy-like" operations (Copy and SubregToReg).  Returns 
// the original SrcReg unless it is the target of a copy-like 
// operation, in which case we chain backwards through all 
// such operations to the ultimate source register.  If a 
// physical register is encountered, we stop the search and 
// flag the swap entry indicated by VecIdx (the original 
// XXPERMDI) as mentioning a physical register. 
unsigned PPCVSXSwapRemoval::lookThruCopyLike(unsigned SrcReg, 
                                             unsigned VecIdx) { 
  MachineInstr *MI = MRI->getVRegDef(SrcReg); 
  if (!MI->isCopyLike()) 
    return SrcReg; 
 
  unsigned CopySrcReg; 
  if (MI->isCopy()) 
    CopySrcReg = MI->getOperand(1).getReg(); 
  else { 
    assert(MI->isSubregToReg() && "bad opcode for lookThruCopyLike"); 
    CopySrcReg = MI->getOperand(2).getReg(); 
  } 
 
  if (!Register::isVirtualRegister(CopySrcReg)) { 
    if (!isScalarVecReg(CopySrcReg)) 
      SwapVector[VecIdx].MentionsPhysVR = 1; 
    return CopySrcReg; 
  } 
 
  return lookThruCopyLike(CopySrcReg, VecIdx); 
} 
 
// Generate equivalence classes for related computations (webs) by 
// def-use relationships of virtual registers.  Mention of a physical 
// register terminates the generation of equivalence classes as this 
// indicates a use of a parameter, definition of a return value, use 
// of a value returned from a call, or definition of a parameter to a 
// call.  Computations with physical register mentions are flagged 
// as such so their containing webs will not be optimized. 
void PPCVSXSwapRemoval::formWebs() { 
 
  LLVM_DEBUG(dbgs() << "\n*** Forming webs for swap removal ***\n\n"); 
 
  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { 
 
    MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 
 
    LLVM_DEBUG(dbgs() << "\n" << SwapVector[EntryIdx].VSEId << " "); 
    LLVM_DEBUG(MI->dump()); 
 
    // It's sufficient to walk vector uses and join them to their unique 
    // definitions.  In addition, check full vector register operands 
    // for physical regs.  We exclude partial-vector register operands 
    // because we can handle them if copied to a full vector. 
    for (const MachineOperand &MO : MI->operands()) { 
      if (!MO.isReg()) 
        continue; 
 
      Register Reg = MO.getReg(); 
      if (!isVecReg(Reg) && !isScalarVecReg(Reg)) 
        continue; 
 
      if (!Register::isVirtualRegister(Reg)) { 
        if (!(MI->isCopy() && isScalarVecReg(Reg))) 
          SwapVector[EntryIdx].MentionsPhysVR = 1; 
        continue; 
      } 
 
      if (!MO.isUse()) 
        continue; 
 
      MachineInstr* DefMI = MRI->getVRegDef(Reg); 
      assert(SwapMap.find(DefMI) != SwapMap.end() && 
             "Inconsistency: def of vector reg not found in swap map!"); 
      int DefIdx = SwapMap[DefMI]; 
      (void)EC->unionSets(SwapVector[DefIdx].VSEId, 
                          SwapVector[EntryIdx].VSEId); 
 
      LLVM_DEBUG(dbgs() << format("Unioning %d with %d\n", 
                                  SwapVector[DefIdx].VSEId, 
                                  SwapVector[EntryIdx].VSEId)); 
      LLVM_DEBUG(dbgs() << "  Def: "); 
      LLVM_DEBUG(DefMI->dump()); 
    } 
  } 
} 
 
// Walk the swap vector entries looking for conditions that prevent their 
// containing computations from being optimized.  When such conditions are 
// found, mark the representative of the computation's equivalence class 
// as rejected. 
void PPCVSXSwapRemoval::recordUnoptimizableWebs() { 
 
  LLVM_DEBUG(dbgs() << "\n*** Rejecting webs for swap removal ***\n\n"); 
 
  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { 
    int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId); 
 
    // If representative is already rejected, don't waste further time. 
    if (SwapVector[Repr].WebRejected) 
      continue; 
 
    // Reject webs containing mentions of physical or partial registers, or 
    // containing operations that we don't know how to handle in a lane- 
    // permuted region. 
    if (SwapVector[EntryIdx].MentionsPhysVR || 
        SwapVector[EntryIdx].MentionsPartialVR || 
        !(SwapVector[EntryIdx].IsSwappable || SwapVector[EntryIdx].IsSwap)) { 
 
      SwapVector[Repr].WebRejected = 1; 
 
      LLVM_DEBUG( 
          dbgs() << format("Web %d rejected for physreg, partial reg, or not " 
                           "swap[pable]\n", 
                           Repr)); 
      LLVM_DEBUG(dbgs() << "  in " << EntryIdx << ": "); 
      LLVM_DEBUG(SwapVector[EntryIdx].VSEMI->dump()); 
      LLVM_DEBUG(dbgs() << "\n"); 
    } 
 
    // Reject webs than contain swapping loads that feed something other 
    // than a swap instruction. 
    else if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) { 
      MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 
      Register DefReg = MI->getOperand(0).getReg(); 
 
      // We skip debug instructions in the analysis.  (Note that debug 
      // location information is still maintained by this optimization 
      // because it remains on the LXVD2X and STXVD2X instructions after 
      // the XXPERMDIs are removed.) 
      for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) { 
        int UseIdx = SwapMap[&UseMI]; 
 
        if (!SwapVector[UseIdx].IsSwap || SwapVector[UseIdx].IsLoad || 
            SwapVector[UseIdx].IsStore) { 
 
          SwapVector[Repr].WebRejected = 1; 
 
          LLVM_DEBUG(dbgs() << format( 
                         "Web %d rejected for load not feeding swap\n", Repr)); 
          LLVM_DEBUG(dbgs() << "  def " << EntryIdx << ": "); 
          LLVM_DEBUG(MI->dump()); 
          LLVM_DEBUG(dbgs() << "  use " << UseIdx << ": "); 
          LLVM_DEBUG(UseMI.dump()); 
          LLVM_DEBUG(dbgs() << "\n"); 
        } 

        // It is possible that the load feeds a swap and that swap feeds a
        // store. In such a case, the code is actually trying to store a swapped
        // vector. We must reject such webs.
        if (SwapVector[UseIdx].IsSwap && !SwapVector[UseIdx].IsLoad &&
            !SwapVector[UseIdx].IsStore) {
          Register SwapDefReg = UseMI.getOperand(0).getReg();
          for (MachineInstr &UseOfUseMI :
               MRI->use_nodbg_instructions(SwapDefReg)) {
            int UseOfUseIdx = SwapMap[&UseOfUseMI];
            if (SwapVector[UseOfUseIdx].IsStore) {
              SwapVector[Repr].WebRejected = 1;
              LLVM_DEBUG(
                  dbgs() << format(
                      "Web %d rejected for load/swap feeding a store\n", Repr));
              LLVM_DEBUG(dbgs() << "  def " << EntryIdx << ": ");
              LLVM_DEBUG(MI->dump());
              LLVM_DEBUG(dbgs() << "  use " << UseIdx << ": ");
              LLVM_DEBUG(UseMI.dump());
              LLVM_DEBUG(dbgs() << "\n");
            }
          }
        }
      } 
 
    // Reject webs that contain swapping stores that are fed by something 
    // other than a swap instruction. 
    } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) { 
      MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 
      Register UseReg = MI->getOperand(0).getReg(); 
      MachineInstr *DefMI = MRI->getVRegDef(UseReg); 
      Register DefReg = DefMI->getOperand(0).getReg(); 
      int DefIdx = SwapMap[DefMI]; 
 
      if (!SwapVector[DefIdx].IsSwap || SwapVector[DefIdx].IsLoad || 
          SwapVector[DefIdx].IsStore) { 
 
        SwapVector[Repr].WebRejected = 1; 
 
        LLVM_DEBUG(dbgs() << format( 
                       "Web %d rejected for store not fed by swap\n", Repr)); 
        LLVM_DEBUG(dbgs() << "  def " << DefIdx << ": "); 
        LLVM_DEBUG(DefMI->dump()); 
        LLVM_DEBUG(dbgs() << "  use " << EntryIdx << ": "); 
        LLVM_DEBUG(MI->dump()); 
        LLVM_DEBUG(dbgs() << "\n"); 
      } 
 
      // Ensure all uses of the register defined by DefMI feed store 
      // instructions 
      for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) { 
        int UseIdx = SwapMap[&UseMI]; 
 
        if (SwapVector[UseIdx].VSEMI->getOpcode() != MI->getOpcode()) { 
          SwapVector[Repr].WebRejected = 1; 
 
          LLVM_DEBUG( 
              dbgs() << format( 
                  "Web %d rejected for swap not feeding only stores\n", Repr)); 
          LLVM_DEBUG(dbgs() << "  def " 
                            << " : "); 
          LLVM_DEBUG(DefMI->dump()); 
          LLVM_DEBUG(dbgs() << "  use " << UseIdx << ": "); 
          LLVM_DEBUG(SwapVector[UseIdx].VSEMI->dump()); 
          LLVM_DEBUG(dbgs() << "\n"); 
        } 
      } 
    } 
  } 
 
  LLVM_DEBUG(dbgs() << "Swap vector after web analysis:\n\n"); 
  LLVM_DEBUG(dumpSwapVector()); 
} 
 
// Walk the swap vector entries looking for swaps fed by permuting loads 
// and swaps that feed permuting stores.  If the containing computation 
// has not been marked rejected, mark each such swap for removal. 
// (Removal is delayed in case optimization has disturbed the pattern, 
// such that multiple loads feed the same swap, etc.) 
void PPCVSXSwapRemoval::markSwapsForRemoval() { 
 
  LLVM_DEBUG(dbgs() << "\n*** Marking swaps for removal ***\n\n"); 
 
  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { 
 
    if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) { 
      int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId); 
 
      if (!SwapVector[Repr].WebRejected) { 
        MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 
        Register DefReg = MI->getOperand(0).getReg(); 
 
        for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) { 
          int UseIdx = SwapMap[&UseMI]; 
          SwapVector[UseIdx].WillRemove = 1; 
 
          LLVM_DEBUG(dbgs() << "Marking swap fed by load for removal: "); 
          LLVM_DEBUG(UseMI.dump()); 
        } 
      } 
 
    } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) { 
      int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId); 
 
      if (!SwapVector[Repr].WebRejected) { 
        MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 
        Register UseReg = MI->getOperand(0).getReg(); 
        MachineInstr *DefMI = MRI->getVRegDef(UseReg); 
        int DefIdx = SwapMap[DefMI]; 
        SwapVector[DefIdx].WillRemove = 1; 
 
        LLVM_DEBUG(dbgs() << "Marking swap feeding store for removal: "); 
        LLVM_DEBUG(DefMI->dump()); 
      } 
 
    } else if (SwapVector[EntryIdx].IsSwappable && 
               SwapVector[EntryIdx].SpecialHandling != 0) { 
      int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId); 
 
      if (!SwapVector[Repr].WebRejected) 
        handleSpecialSwappables(EntryIdx); 
    } 
  } 
} 
 
// Create an xxswapd instruction and insert it prior to the given point. 
// MI is used to determine basic block and debug loc information. 
// FIXME: When inserting a swap, we should check whether SrcReg is 
// defined by another swap:  SrcReg = XXPERMDI Reg, Reg, 2;  If so, 
// then instead we should generate a copy from Reg to DstReg. 
void PPCVSXSwapRemoval::insertSwap(MachineInstr *MI, 
                                   MachineBasicBlock::iterator InsertPoint, 
                                   unsigned DstReg, unsigned SrcReg) { 
  BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(), 
          TII->get(PPC::XXPERMDI), DstReg) 
    .addReg(SrcReg) 
    .addReg(SrcReg) 
    .addImm(2); 
} 
 
// The identified swap entry requires special handling to allow its 
// containing computation to be optimized.  Perform that handling 
// here. 
// FIXME: Additional opportunities will be phased in with subsequent 
// patches. 
void PPCVSXSwapRemoval::handleSpecialSwappables(int EntryIdx) { 
  switch (SwapVector[EntryIdx].SpecialHandling) { 
 
  default: 
    llvm_unreachable("Unexpected special handling type"); 
 
  // For splats based on an index into a vector, add N/2 modulo N 
  // to the index, where N is the number of vector elements. 
  case SHValues::SH_SPLAT: { 
    MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 
    unsigned NElts; 
 
    LLVM_DEBUG(dbgs() << "Changing splat: "); 
    LLVM_DEBUG(MI->dump()); 
 
    switch (MI->getOpcode()) { 
    default: 
      llvm_unreachable("Unexpected splat opcode"); 
    case PPC::VSPLTB: NElts = 16; break; 
    case PPC::VSPLTH: NElts = 8;  break; 
    case PPC::VSPLTW: 
    case PPC::XXSPLTW: NElts = 4;  break; 
    } 
 
    unsigned EltNo; 
    if (MI->getOpcode() == PPC::XXSPLTW) 
      EltNo = MI->getOperand(2).getImm(); 
    else 
      EltNo = MI->getOperand(1).getImm(); 
 
    EltNo = (EltNo + NElts / 2) % NElts; 
    if (MI->getOpcode() == PPC::XXSPLTW) 
      MI->getOperand(2).setImm(EltNo); 
    else 
      MI->getOperand(1).setImm(EltNo); 
 
    LLVM_DEBUG(dbgs() << "  Into: "); 
    LLVM_DEBUG(MI->dump()); 
    break; 
  } 
 
  // For an XXPERMDI that isn't handled otherwise, we need to 
  // reverse the order of the operands.  If the selector operand 
  // has a value of 0 or 3, we need to change it to 3 or 0, 
  // respectively.  Otherwise we should leave it alone.  (This 
  // is equivalent to reversing the two bits of the selector 
  // operand and complementing the result.) 
  case SHValues::SH_XXPERMDI: { 
    MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 
 
    LLVM_DEBUG(dbgs() << "Changing XXPERMDI: "); 
    LLVM_DEBUG(MI->dump()); 
 
    unsigned Selector = MI->getOperand(3).getImm(); 
    if (Selector == 0 || Selector == 3) 
      Selector = 3 - Selector; 
    MI->getOperand(3).setImm(Selector); 
 
    Register Reg1 = MI->getOperand(1).getReg(); 
    Register Reg2 = MI->getOperand(2).getReg(); 
    MI->getOperand(1).setReg(Reg2); 
    MI->getOperand(2).setReg(Reg1); 
 
    // We also need to swap kill flag associated with the register. 
    bool IsKill1 = MI->getOperand(1).isKill(); 
    bool IsKill2 = MI->getOperand(2).isKill(); 
    MI->getOperand(1).setIsKill(IsKill2); 
    MI->getOperand(2).setIsKill(IsKill1); 
 
    LLVM_DEBUG(dbgs() << "  Into: "); 
    LLVM_DEBUG(MI->dump()); 
    break; 
  } 
 
  // For a copy from a scalar floating-point register to a vector 
  // register, removing swaps will leave the copied value in the 
  // wrong lane.  Insert a swap following the copy to fix this. 
  case SHValues::SH_COPYWIDEN: { 
    MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 
 
    LLVM_DEBUG(dbgs() << "Changing SUBREG_TO_REG: "); 
    LLVM_DEBUG(MI->dump()); 
 
    Register DstReg = MI->getOperand(0).getReg(); 
    const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 
    Register NewVReg = MRI->createVirtualRegister(DstRC); 
 
    MI->getOperand(0).setReg(NewVReg); 
    LLVM_DEBUG(dbgs() << "  Into: "); 
    LLVM_DEBUG(MI->dump()); 
 
    auto InsertPoint = ++MachineBasicBlock::iterator(MI); 
 
    // Note that an XXPERMDI requires a VSRC, so if the SUBREG_TO_REG 
    // is copying to a VRRC, we need to be careful to avoid a register 
    // assignment problem.  In this case we must copy from VRRC to VSRC 
    // prior to the swap, and from VSRC to VRRC following the swap. 
    // Coalescing will usually remove all this mess. 
    if (DstRC == &PPC::VRRCRegClass) { 
      Register VSRCTmp1 = MRI->createVirtualRegister(&PPC::VSRCRegClass); 
      Register VSRCTmp2 = MRI->createVirtualRegister(&PPC::VSRCRegClass); 
 
      BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(), 
              TII->get(PPC::COPY), VSRCTmp1) 
        .addReg(NewVReg); 
      LLVM_DEBUG(std::prev(InsertPoint)->dump()); 
 
      insertSwap(MI, InsertPoint, VSRCTmp2, VSRCTmp1); 
      LLVM_DEBUG(std::prev(InsertPoint)->dump()); 
 
      BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(), 
              TII->get(PPC::COPY), DstReg) 
        .addReg(VSRCTmp2); 
      LLVM_DEBUG(std::prev(InsertPoint)->dump()); 
 
    } else { 
      insertSwap(MI, InsertPoint, DstReg, NewVReg); 
      LLVM_DEBUG(std::prev(InsertPoint)->dump()); 
    } 
    break; 
  } 
  } 
} 
 
// Walk the swap vector and replace each entry marked for removal with 
// a copy operation. 
bool PPCVSXSwapRemoval::removeSwaps() { 
 
  LLVM_DEBUG(dbgs() << "\n*** Removing swaps ***\n\n"); 
 
  bool Changed = false; 
 
  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { 
    if (SwapVector[EntryIdx].WillRemove) { 
      Changed = true; 
      MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 
      MachineBasicBlock *MBB = MI->getParent(); 
      BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(TargetOpcode::COPY), 
              MI->getOperand(0).getReg()) 
          .add(MI->getOperand(1)); 
 
      LLVM_DEBUG(dbgs() << format("Replaced %d with copy: ", 
                                  SwapVector[EntryIdx].VSEId)); 
      LLVM_DEBUG(MI->dump()); 
 
      MI->eraseFromParent(); 
    } 
  } 
 
  return Changed; 
} 
 
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 
// For debug purposes, dump the contents of the swap vector. 
LLVM_DUMP_METHOD void PPCVSXSwapRemoval::dumpSwapVector() { 
 
  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { 
 
    MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 
    int ID = SwapVector[EntryIdx].VSEId; 
 
    dbgs() << format("%6d", ID); 
    dbgs() << format("%6d", EC->getLeaderValue(ID)); 
    dbgs() << format(" %bb.%3d", MI->getParent()->getNumber()); 
    dbgs() << format("  %14s  ", TII->getName(MI->getOpcode()).str().c_str()); 
 
    if (SwapVector[EntryIdx].IsLoad) 
      dbgs() << "load "; 
    if (SwapVector[EntryIdx].IsStore) 
      dbgs() << "store "; 
    if (SwapVector[EntryIdx].IsSwap) 
      dbgs() << "swap "; 
    if (SwapVector[EntryIdx].MentionsPhysVR) 
      dbgs() << "physreg "; 
    if (SwapVector[EntryIdx].MentionsPartialVR) 
      dbgs() << "partialreg "; 
 
    if (SwapVector[EntryIdx].IsSwappable) { 
      dbgs() << "swappable "; 
      switch(SwapVector[EntryIdx].SpecialHandling) { 
      default: 
        dbgs() << "special:**unknown**"; 
        break; 
      case SH_NONE: 
        break; 
      case SH_EXTRACT: 
        dbgs() << "special:extract "; 
        break; 
      case SH_INSERT: 
        dbgs() << "special:insert "; 
        break; 
      case SH_NOSWAP_LD: 
        dbgs() << "special:load "; 
        break; 
      case SH_NOSWAP_ST: 
        dbgs() << "special:store "; 
        break; 
      case SH_SPLAT: 
        dbgs() << "special:splat "; 
        break; 
      case SH_XXPERMDI: 
        dbgs() << "special:xxpermdi "; 
        break; 
      case SH_COPYWIDEN: 
        dbgs() << "special:copywiden "; 
        break; 
      } 
    } 
 
    if (SwapVector[EntryIdx].WebRejected) 
      dbgs() << "rejected "; 
    if (SwapVector[EntryIdx].WillRemove) 
      dbgs() << "remove "; 
 
    dbgs() << "\n"; 
 
    // For no-asserts builds. 
    (void)MI; 
    (void)ID; 
  } 
 
  dbgs() << "\n"; 
} 
#endif 
 
} // end default namespace 
 
INITIALIZE_PASS_BEGIN(PPCVSXSwapRemoval, DEBUG_TYPE, 
                      "PowerPC VSX Swap Removal", false, false) 
INITIALIZE_PASS_END(PPCVSXSwapRemoval, DEBUG_TYPE, 
                    "PowerPC VSX Swap Removal", false, false) 
 
char PPCVSXSwapRemoval::ID = 0; 
FunctionPass* 
llvm::createPPCVSXSwapRemovalPass() { return new PPCVSXSwapRemoval(); }