aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Target/PowerPC/PPCInstrInfo.cpp
blob: 4b23a63eb08294f5ee68b328fda38c2a7f34bcd6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
//===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the PowerPC implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#include "PPCInstrInfo.h"
#include "MCTargetDesc/PPCPredicates.h"
#include "PPC.h"
#include "PPCHazardRecognizers.h"
#include "PPCInstrBuilder.h"
#include "PPCMachineFunctionInfo.h"
#include "PPCTargetMachine.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineConstantPool.h" 
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/RegisterClassInfo.h" 
#include "llvm/CodeGen/RegisterPressure.h" 
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

#define DEBUG_TYPE "ppc-instr-info"

#define GET_INSTRMAP_INFO
#define GET_INSTRINFO_CTOR_DTOR
#include "PPCGenInstrInfo.inc"

STATISTIC(NumStoreSPILLVSRRCAsVec,
          "Number of spillvsrrc spilled to stack as vec");
STATISTIC(NumStoreSPILLVSRRCAsGpr,
          "Number of spillvsrrc spilled to stack as gpr");
STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
STATISTIC(CmpIselsConverted,
          "Number of ISELs that depend on comparison of constants converted");
STATISTIC(MissedConvertibleImmediateInstrs,
          "Number of compare-immediate instructions fed by constants");
STATISTIC(NumRcRotatesConvertedToRcAnd,
          "Number of record-form rotates converted to record-form andi");

static cl::
opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
            cl::desc("Disable analysis for CTR loops"));

static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
cl::desc("Disable compare instruction optimization"), cl::Hidden);

static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
cl::Hidden);

static cl::opt<bool>
UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
  cl::desc("Use the old (incorrect) instruction latency calculation"));

static cl::opt<float> 
    FMARPFactor("ppc-fma-rp-factor", cl::Hidden, cl::init(1.5), 
                cl::desc("register pressure factor for the transformations.")); 
 
static cl::opt<bool> EnableFMARegPressureReduction( 
    "ppc-fma-rp-reduction", cl::Hidden, cl::init(true), 
    cl::desc("enable register pressure reduce in machine combiner pass.")); 
 
// Pin the vtable to this file.
void PPCInstrInfo::anchor() {}

PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
    : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
                      /* CatchRetOpcode */ -1,
                      STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
      Subtarget(STI), RI(STI.getTargetMachine()) {}

/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
/// this target when scheduling the DAG.
ScheduleHazardRecognizer *
PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
                                           const ScheduleDAG *DAG) const {
  unsigned Directive =
      static_cast<const PPCSubtarget *>(STI)->getCPUDirective();
  if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
      Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
    const InstrItineraryData *II =
        static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
    return new ScoreboardHazardRecognizer(II, DAG);
  }

  return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
}

/// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
/// to use for this target when scheduling the DAG.
ScheduleHazardRecognizer *
PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
                                                 const ScheduleDAG *DAG) const {
  unsigned Directive =
      DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective();

  // FIXME: Leaving this as-is until we have POWER9 scheduling info
  if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
    return new PPCDispatchGroupSBHazardRecognizer(II, DAG);

  // Most subtargets use a PPC970 recognizer.
  if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
      Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
    assert(DAG->TII && "No InstrInfo?");

    return new PPCHazardRecognizer970(*DAG);
  }

  return new ScoreboardHazardRecognizer(II, DAG);
}

unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
                                       const MachineInstr &MI,
                                       unsigned *PredCost) const {
  if (!ItinData || UseOldLatencyCalc)
    return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);

  // The default implementation of getInstrLatency calls getStageLatency, but
  // getStageLatency does not do the right thing for us. While we have
  // itinerary, most cores are fully pipelined, and so the itineraries only
  // express the first part of the pipeline, not every stage. Instead, we need
  // to use the listed output operand cycle number (using operand 0 here, which
  // is an output).

  unsigned Latency = 1;
  unsigned DefClass = MI.getDesc().getSchedClass();
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI.getOperand(i);
    if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
      continue;

    int Cycle = ItinData->getOperandCycle(DefClass, i);
    if (Cycle < 0)
      continue;

    Latency = std::max(Latency, (unsigned) Cycle);
  }

  return Latency;
}

int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
                                    const MachineInstr &DefMI, unsigned DefIdx,
                                    const MachineInstr &UseMI,
                                    unsigned UseIdx) const {
  int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
                                                   UseMI, UseIdx);

  if (!DefMI.getParent())
    return Latency;

  const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
  Register Reg = DefMO.getReg();

  bool IsRegCR;
  if (Register::isVirtualRegister(Reg)) {
    const MachineRegisterInfo *MRI =
        &DefMI.getParent()->getParent()->getRegInfo();
    IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
              MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
  } else {
    IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
              PPC::CRBITRCRegClass.contains(Reg);
  }

  if (UseMI.isBranch() && IsRegCR) {
    if (Latency < 0)
      Latency = getInstrLatency(ItinData, DefMI);

    // On some cores, there is an additional delay between writing to a condition
    // register, and using it from a branch.
    unsigned Directive = Subtarget.getCPUDirective();
    switch (Directive) {
    default: break;
    case PPC::DIR_7400:
    case PPC::DIR_750:
    case PPC::DIR_970:
    case PPC::DIR_E5500:
    case PPC::DIR_PWR4:
    case PPC::DIR_PWR5:
    case PPC::DIR_PWR5X:
    case PPC::DIR_PWR6:
    case PPC::DIR_PWR6X:
    case PPC::DIR_PWR7:
    case PPC::DIR_PWR8:
    // FIXME: Is this needed for POWER9?
      Latency += 2;
      break;
    }
  }

  return Latency;
}

/// This is an architecture-specific helper function of reassociateOps.
/// Set special operand attributes for new instructions after reassociation.
void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
                                         MachineInstr &OldMI2,
                                         MachineInstr &NewMI1,
                                         MachineInstr &NewMI2) const {
  // Propagate FP flags from the original instructions.
  // But clear poison-generating flags because those may not be valid now.
  uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
  NewMI1.setFlags(IntersectedFlags);
  NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
  NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
  NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);

  NewMI2.setFlags(IntersectedFlags);
  NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
  NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
  NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
}

void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI,
                                         uint16_t Flags) const {
  MI.setFlags(Flags);
  MI.clearFlag(MachineInstr::MIFlag::NoSWrap);
  MI.clearFlag(MachineInstr::MIFlag::NoUWrap);
  MI.clearFlag(MachineInstr::MIFlag::IsExact);
}

// This function does not list all associative and commutative operations, but
// only those worth feeding through the machine combiner in an attempt to
// reduce the critical path. Mostly, this means floating-point operations,
// because they have high latencies(>=5) (compared to other operations, such as
// and/or, which are also associative and commutative, but have low latencies).
bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
  switch (Inst.getOpcode()) {
  // Floating point:
  // FP Add:
  case PPC::FADD:
  case PPC::FADDS:
  // FP Multiply:
  case PPC::FMUL:
  case PPC::FMULS:
  // Altivec Add:
  case PPC::VADDFP:
  // VSX Add:
  case PPC::XSADDDP:
  case PPC::XVADDDP:
  case PPC::XVADDSP:
  case PPC::XSADDSP:
  // VSX Multiply:
  case PPC::XSMULDP:
  case PPC::XVMULDP:
  case PPC::XVMULSP:
  case PPC::XSMULSP:
    return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
           Inst.getFlag(MachineInstr::MIFlag::FmNsz);
  // Fixed point:
  // Multiply:
  case PPC::MULHD:
  case PPC::MULLD:
  case PPC::MULHW:
  case PPC::MULLW:
    return true;
  default:
    return false;
  }
}

#define InfoArrayIdxFMAInst 0
#define InfoArrayIdxFAddInst 1
#define InfoArrayIdxFMULInst 2
#define InfoArrayIdxAddOpIdx 3
#define InfoArrayIdxMULOpIdx 4
#define InfoArrayIdxFSubInst 5 
// Array keeps info for FMA instructions:
// Index 0(InfoArrayIdxFMAInst): FMA instruction;
// Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA; 
// Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA; 
// Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands;
// Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands;
//                                second MUL operand index is plus 1; 
// Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA. 
static const uint16_t FMAOpIdxInfo[][6] = { 
    // FIXME: Add more FMA instructions like XSNMADDADP and so on.
    {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2, PPC::XSSUBDP}, 
    {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2, PPC::XSSUBSP}, 
    {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2, PPC::XVSUBDP}, 
    {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2, PPC::XVSUBSP}, 
    {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1, PPC::FSUB}, 
    {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1, PPC::FSUBS}}; 

// Check if an opcode is a FMA instruction. If it is, return the index in array
// FMAOpIdxInfo. Otherwise, return -1.
int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const {
  for (unsigned I = 0; I < array_lengthof(FMAOpIdxInfo); I++)
    if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode)
      return I;
  return -1;
}

// On PowerPC target, we have two kinds of patterns related to FMA: 
// 1: Improve ILP. 
// Try to reassociate FMA chains like below:
//
// Pattern 1:
//   A =  FADD X,  Y          (Leaf)
//   B =  FMA  A,  M21,  M22  (Prev)
//   C =  FMA  B,  M31,  M32  (Root)
// -->
//   A =  FMA  X,  M21,  M22
//   B =  FMA  Y,  M31,  M32
//   C =  FADD A,  B
//
// Pattern 2:
//   A =  FMA  X,  M11,  M12  (Leaf)
//   B =  FMA  A,  M21,  M22  (Prev)
//   C =  FMA  B,  M31,  M32  (Root)
// -->
//   A =  FMUL M11,  M12
//   B =  FMA  X,  M21,  M22
//   D =  FMA  A,  M31,  M32
//   C =  FADD B,  D
//
// breaking the dependency between A and B, allowing FMA to be executed in
// parallel (or back-to-back in a pipeline) instead of depending on each other.
// 
// 2: Reduce register pressure. 
// Try to reassociate FMA with FSUB and a constant like below: 
// C is a floatint point const. 
// 
// Pattern 1: 
//   A = FSUB  X,  Y      (Leaf) 
//   D = FMA   B,  C,  A  (Root) 
// --> 
//   A = FMA   B,  Y,  -C 
//   D = FMA   A,  X,  C 
// 
// Pattern 2: 
//   A = FSUB  X,  Y      (Leaf) 
//   D = FMA   B,  A,  C  (Root) 
// --> 
//   A = FMA   B,  Y,  -C 
//   D = FMA   A,  X,  C 
// 
//  Before the transformation, A must be assigned with different hardware 
//  register with D. After the transformation, A and D must be assigned with 
//  same hardware register due to TIE attricute of FMA instructions. 
// 
bool PPCInstrInfo::getFMAPatterns(
    MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, 
    bool DoRegPressureReduce) const { 
  MachineBasicBlock *MBB = Root.getParent();
  const MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo(); 
  const TargetRegisterInfo *TRI = &getRegisterInfo(); 

  auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) {
    for (const auto &MO : Instr.explicit_operands())
      if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg())))
        return false;
    return true;
  };

  auto IsReassociableAddOrSub = [&](const MachineInstr &Instr, 
                                    unsigned OpType) { 
    if (Instr.getOpcode() != 
        FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())][OpType]) 
      return false;

    // Instruction can be reassociated.
    // fast math flags may prohibit reassociation.
    if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
          Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
      return false;

    // Instruction operands are virtual registers for reassociation.
    if (!IsAllOpsVirtualReg(Instr))
      return false;

    // For register pressure reassociation, the FSub must have only one use as 
    // we want to delete the sub to save its def. 
    if (OpType == InfoArrayIdxFSubInst && 
        !MRI->hasOneNonDBGUse(Instr.getOperand(0).getReg())) 
      return false; 
 
    return true; 
  }; 
 
  auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx, 
                               int16_t &MulOpIdx, bool IsLeaf) { 
    int16_t Idx = getFMAOpIdxInfo(Instr.getOpcode()); 
    if (Idx < 0) 
      return false; 
 
    // Instruction can be reassociated. 
    // fast math flags may prohibit reassociation. 
    if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && 
          Instr.getFlag(MachineInstr::MIFlag::FmNsz))) 
      return false; 
 
    // Instruction operands are virtual registers for reassociation. 
    if (!IsAllOpsVirtualReg(Instr)) 
      return false; 
 
    MulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 
    if (IsLeaf) 
      return true;

    AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];

    const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx);
    MachineInstr *MIAdd = MRI->getUniqueVRegDef(OpAdd.getReg()); 
    // If 'add' operand's def is not in current block, don't do ILP related opt.
    if (!MIAdd || MIAdd->getParent() != MBB)
      return false;

    // If this is not Leaf FMA Instr, its 'add' operand should only have one use
    // as this fma will be changed later.
    return IsLeaf ? true : MRI->hasOneNonDBGUse(OpAdd.getReg()); 
  };

  int16_t AddOpIdx = -1;
  int16_t MulOpIdx = -1; 
 
  bool IsUsedOnceL = false; 
  bool IsUsedOnceR = false; 
  MachineInstr *MULInstrL = nullptr; 
  MachineInstr *MULInstrR = nullptr; 
 
  auto IsRPReductionCandidate = [&]() { 
    // Currently, we only support float and double. 
    // FIXME: add support for other types. 
    unsigned Opcode = Root.getOpcode(); 
    if (Opcode != PPC::XSMADDASP && Opcode != PPC::XSMADDADP) 
      return false; 
 
    // Root must be a valid FMA like instruction. 
    // Treat it as leaf as we don't care its add operand. 
    if (IsReassociableFMA(Root, AddOpIdx, MulOpIdx, true)) { 
      assert((MulOpIdx >= 0) && "mul operand index not right!"); 
      Register MULRegL = TRI->lookThruSingleUseCopyChain( 
          Root.getOperand(MulOpIdx).getReg(), MRI); 
      Register MULRegR = TRI->lookThruSingleUseCopyChain( 
          Root.getOperand(MulOpIdx + 1).getReg(), MRI); 
      if (!MULRegL && !MULRegR) 
        return false; 
 
      if (MULRegL && !MULRegR) { 
        MULRegR = 
            TRI->lookThruCopyLike(Root.getOperand(MulOpIdx + 1).getReg(), MRI); 
        IsUsedOnceL = true; 
      } else if (!MULRegL && MULRegR) { 
        MULRegL = 
            TRI->lookThruCopyLike(Root.getOperand(MulOpIdx).getReg(), MRI); 
        IsUsedOnceR = true; 
      } else { 
        IsUsedOnceL = true; 
        IsUsedOnceR = true; 
      } 
 
      if (!Register::isVirtualRegister(MULRegL) || 
          !Register::isVirtualRegister(MULRegR)) 
        return false; 
 
      MULInstrL = MRI->getVRegDef(MULRegL); 
      MULInstrR = MRI->getVRegDef(MULRegR); 
      return true; 
    } 
    return false; 
  }; 
 
  // Register pressure fma reassociation patterns. 
  if (DoRegPressureReduce && IsRPReductionCandidate()) { 
    assert((MULInstrL && MULInstrR) && "wrong register preduction candidate!"); 
    // Register pressure pattern 1 
    if (isLoadFromConstantPool(MULInstrL) && IsUsedOnceR && 
        IsReassociableAddOrSub(*MULInstrR, InfoArrayIdxFSubInst)) { 
      LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n"); 
      Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BCA); 
      return true; 
    } 
 
    // Register pressure pattern 2 
    if ((isLoadFromConstantPool(MULInstrR) && IsUsedOnceL && 
         IsReassociableAddOrSub(*MULInstrL, InfoArrayIdxFSubInst))) { 
      LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n"); 
      Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BAC); 
      return true; 
    } 
  } 
 
  // ILP fma reassociation patterns. 
  // Root must be a valid FMA like instruction.
  AddOpIdx = -1; 
  if (!IsReassociableFMA(Root, AddOpIdx, MulOpIdx, false)) 
    return false;

  assert((AddOpIdx >= 0) && "add operand index not right!");

  Register RegB = Root.getOperand(AddOpIdx).getReg();
  MachineInstr *Prev = MRI->getUniqueVRegDef(RegB); 

  // Prev must be a valid FMA like instruction.
  AddOpIdx = -1;
  if (!IsReassociableFMA(*Prev, AddOpIdx, MulOpIdx, false)) 
    return false;

  assert((AddOpIdx >= 0) && "add operand index not right!");

  Register RegA = Prev->getOperand(AddOpIdx).getReg();
  MachineInstr *Leaf = MRI->getUniqueVRegDef(RegA); 
  AddOpIdx = -1;
  if (IsReassociableFMA(*Leaf, AddOpIdx, MulOpIdx, true)) { 
    Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM);
    LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n"); 
    return true;
  }
  if (IsReassociableAddOrSub(*Leaf, InfoArrayIdxFAddInst)) { 
    Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM);
    LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n"); 
    return true;
  }
  return false;
}

void PPCInstrInfo::finalizeInsInstrs( 
    MachineInstr &Root, MachineCombinerPattern &P, 
    SmallVectorImpl<MachineInstr *> &InsInstrs) const { 
  assert(!InsInstrs.empty() && "Instructions set to be inserted is empty!"); 
 
  MachineFunction *MF = Root.getMF(); 
  MachineRegisterInfo *MRI = &MF->getRegInfo(); 
  const TargetRegisterInfo *TRI = &getRegisterInfo(); 
  MachineConstantPool *MCP = MF->getConstantPool(); 
 
  int16_t Idx = getFMAOpIdxInfo(Root.getOpcode()); 
  if (Idx < 0) 
    return; 
 
  uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 
 
  // For now we only need to fix up placeholder for register pressure reduce 
  // patterns. 
  Register ConstReg = 0; 
  switch (P) { 
  case MachineCombinerPattern::REASSOC_XY_BCA: 
    ConstReg = 
        TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), MRI); 
    break; 
  case MachineCombinerPattern::REASSOC_XY_BAC: 
    ConstReg = 
        TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx + 1).getReg(), MRI); 
    break; 
  default: 
    // Not register pressure reduce patterns. 
    return; 
  } 
 
  MachineInstr *ConstDefInstr = MRI->getVRegDef(ConstReg); 
  // Get const value from const pool. 
  const Constant *C = getConstantFromConstantPool(ConstDefInstr); 
  assert(isa<llvm::ConstantFP>(C) && "not a valid constant!"); 
 
  // Get negative fp const. 
  APFloat F1((dyn_cast<ConstantFP>(C))->getValueAPF()); 
  F1.changeSign(); 
  Constant *NegC = ConstantFP::get(dyn_cast<ConstantFP>(C)->getContext(), F1); 
  Align Alignment = MF->getDataLayout().getPrefTypeAlign(C->getType()); 
 
  // Put negative fp const into constant pool. 
  unsigned ConstPoolIdx = MCP->getConstantPoolIndex(NegC, Alignment); 
 
  MachineOperand *Placeholder = nullptr; 
  // Record the placeholder PPC::ZERO8 we add in reassociateFMA. 
  for (auto *Inst : InsInstrs) { 
    for (MachineOperand &Operand : Inst->explicit_operands()) { 
      assert(Operand.isReg() && "Invalid instruction in InsInstrs!"); 
      if (Operand.getReg() == PPC::ZERO8) { 
        Placeholder = &Operand; 
        break; 
      } 
    } 
  } 
 
  assert(Placeholder && "Placeholder does not exist!"); 
 
  // Generate instructions to load the const fp from constant pool. 
  // We only support PPC64 and medium code model. 
  Register LoadNewConst = 
      generateLoadForNewConst(ConstPoolIdx, &Root, C->getType(), InsInstrs); 
 
  // Fill the placeholder with the new load from constant pool. 
  Placeholder->setReg(LoadNewConst); 
} 
 
bool PPCInstrInfo::shouldReduceRegisterPressure( 
    MachineBasicBlock *MBB, RegisterClassInfo *RegClassInfo) const { 
 
  if (!EnableFMARegPressureReduction) 
    return false; 
 
  // Currently, we only enable register pressure reducing in machine combiner 
  // for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector 
  // support. 
  // 
  // So we need following instructions to access a TOC entry: 
  // 
  // %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0 
  // %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0, 
  //   killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool) 
  // 
  // FIXME: add more supported targets, like Small and Large code model, PPC32, 
  // AIX. 
  if (!(Subtarget.isPPC64() && Subtarget.hasP9Vector() && 
        Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium)) 
    return false; 
 
  const TargetRegisterInfo *TRI = &getRegisterInfo(); 
  MachineFunction *MF = MBB->getParent(); 
  MachineRegisterInfo *MRI = &MF->getRegInfo(); 
 
  auto GetMBBPressure = [&](MachineBasicBlock *MBB) -> std::vector<unsigned> { 
    RegionPressure Pressure; 
    RegPressureTracker RPTracker(Pressure); 
 
    // Initialize the register pressure tracker. 
    RPTracker.init(MBB->getParent(), RegClassInfo, nullptr, MBB, MBB->end(), 
                   /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 
 
    for (MachineBasicBlock::iterator MII = MBB->instr_end(), 
                                     MIE = MBB->instr_begin(); 
         MII != MIE; --MII) { 
      MachineInstr &MI = *std::prev(MII); 
      if (MI.isDebugValue() || MI.isDebugLabel()) 
        continue; 
      RegisterOperands RegOpers; 
      RegOpers.collect(MI, *TRI, *MRI, false, false); 
      RPTracker.recedeSkipDebugValues(); 
      assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 
      RPTracker.recede(RegOpers); 
    } 
 
    // Close the RPTracker to finalize live ins. 
    RPTracker.closeRegion(); 
 
    return RPTracker.getPressure().MaxSetPressure; 
  }; 
 
  // For now we only care about float and double type fma. 
  unsigned VSSRCLimit = TRI->getRegPressureSetLimit( 
      *MBB->getParent(), PPC::RegisterPressureSets::VSSRC); 
 
  // Only reduce register pressure when pressure is high. 
  return GetMBBPressure(MBB)[PPC::RegisterPressureSets::VSSRC] > 
         (float)VSSRCLimit * FMARPFactor; 
} 
 
bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr *I) const { 
  // I has only one memory operand which is load from constant pool. 
  if (!I->hasOneMemOperand()) 
    return false; 
 
  MachineMemOperand *Op = I->memoperands()[0]; 
  return Op->isLoad() && Op->getPseudoValue() && 
         Op->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool; 
} 
 
Register PPCInstrInfo::generateLoadForNewConst( 
    unsigned Idx, MachineInstr *MI, Type *Ty, 
    SmallVectorImpl<MachineInstr *> &InsInstrs) const { 
  // Now we only support PPC64, Medium code model and P9 with vector. 
  // We have immutable pattern to access const pool. See function 
  // shouldReduceRegisterPressure. 
  assert((Subtarget.isPPC64() && Subtarget.hasP9Vector() && 
          Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium) && 
         "Target not supported!\n"); 
 
  MachineFunction *MF = MI->getMF(); 
  MachineRegisterInfo *MRI = &MF->getRegInfo(); 
 
  // Generate ADDIStocHA8 
  Register VReg1 = MRI->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 
  MachineInstrBuilder TOCOffset = 
      BuildMI(*MF, MI->getDebugLoc(), get(PPC::ADDIStocHA8), VReg1) 
          .addReg(PPC::X2) 
          .addConstantPoolIndex(Idx); 
 
  assert((Ty->isFloatTy() || Ty->isDoubleTy()) && 
         "Only float and double are supported!"); 
 
  unsigned LoadOpcode; 
  // Should be float type or double type. 
  if (Ty->isFloatTy()) 
    LoadOpcode = PPC::DFLOADf32; 
  else 
    LoadOpcode = PPC::DFLOADf64; 
 
  const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg()); 
  Register VReg2 = MRI->createVirtualRegister(RC); 
  MachineMemOperand *MMO = MF->getMachineMemOperand( 
      MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad, 
      Ty->getScalarSizeInBits() / 8, MF->getDataLayout().getPrefTypeAlign(Ty)); 
 
  // Generate Load from constant pool. 
  MachineInstrBuilder Load = 
      BuildMI(*MF, MI->getDebugLoc(), get(LoadOpcode), VReg2) 
          .addConstantPoolIndex(Idx) 
          .addReg(VReg1, getKillRegState(true)) 
          .addMemOperand(MMO); 
 
  Load->getOperand(1).setTargetFlags(PPCII::MO_TOC_LO); 
 
  // Insert the toc load instructions into InsInstrs. 
  InsInstrs.insert(InsInstrs.begin(), Load); 
  InsInstrs.insert(InsInstrs.begin(), TOCOffset); 
  return VReg2; 
} 
 
// This function returns the const value in constant pool if the \p I is a load 
// from constant pool. 
const Constant * 
PPCInstrInfo::getConstantFromConstantPool(MachineInstr *I) const { 
  MachineFunction *MF = I->getMF(); 
  MachineRegisterInfo *MRI = &MF->getRegInfo(); 
  MachineConstantPool *MCP = MF->getConstantPool(); 
  assert(I->mayLoad() && "Should be a load instruction.\n"); 
  for (auto MO : I->uses()) { 
    if (!MO.isReg()) 
      continue; 
    Register Reg = MO.getReg(); 
    if (Reg == 0 || !Register::isVirtualRegister(Reg)) 
      continue; 
    // Find the toc address. 
    MachineInstr *DefMI = MRI->getVRegDef(Reg); 
    for (auto MO2 : DefMI->uses()) 
      if (MO2.isCPI()) 
        return (MCP->getConstants())[MO2.getIndex()].Val.ConstVal; 
  } 
  return nullptr; 
} 
 
bool PPCInstrInfo::getMachineCombinerPatterns(
    MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, 
    bool DoRegPressureReduce) const { 
  // Using the machine combiner in this way is potentially expensive, so
  // restrict to when aggressive optimizations are desired.
  if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
    return false;

  if (getFMAPatterns(Root, Patterns, DoRegPressureReduce)) 
    return true;

  return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns, 
                                                     DoRegPressureReduce); 
}

void PPCInstrInfo::genAlternativeCodeSequence(
    MachineInstr &Root, MachineCombinerPattern Pattern,
    SmallVectorImpl<MachineInstr *> &InsInstrs,
    SmallVectorImpl<MachineInstr *> &DelInstrs,
    DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
  switch (Pattern) {
  case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
  case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
  case MachineCombinerPattern::REASSOC_XY_BCA: 
  case MachineCombinerPattern::REASSOC_XY_BAC: 
    reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg);
    break;
  default:
    // Reassociate default patterns.
    TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
                                                DelInstrs, InstrIdxForVirtReg);
    break;
  }
}

void PPCInstrInfo::reassociateFMA(
    MachineInstr &Root, MachineCombinerPattern Pattern,
    SmallVectorImpl<MachineInstr *> &InsInstrs,
    SmallVectorImpl<MachineInstr *> &DelInstrs,
    DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
  MachineFunction *MF = Root.getMF();
  MachineRegisterInfo &MRI = MF->getRegInfo();
  const TargetRegisterInfo *TRI = &getRegisterInfo(); 
  MachineOperand &OpC = Root.getOperand(0);
  Register RegC = OpC.getReg();
  const TargetRegisterClass *RC = MRI.getRegClass(RegC);
  MRI.constrainRegClass(RegC, RC);

  unsigned FmaOp = Root.getOpcode();
  int16_t Idx = getFMAOpIdxInfo(FmaOp);
  assert(Idx >= 0 && "Root must be a FMA instruction");

  bool IsILPReassociate = 
      (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) || 
      (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM); 
 
  uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
  uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];

  MachineInstr *Prev = nullptr; 
  MachineInstr *Leaf = nullptr; 
  switch (Pattern) { 
  default: 
    llvm_unreachable("not recognized pattern!"); 
  case MachineCombinerPattern::REASSOC_XY_AMM_BMM: 
  case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: 
    Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg()); 
    Leaf = MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg()); 
    break; 
  case MachineCombinerPattern::REASSOC_XY_BAC: { 
    Register MULReg = 
        TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), &MRI); 
    Leaf = MRI.getVRegDef(MULReg); 
    break; 
  } 
  case MachineCombinerPattern::REASSOC_XY_BCA: { 
    Register MULReg = TRI->lookThruCopyLike( 
        Root.getOperand(FirstMulOpIdx + 1).getReg(), &MRI); 
    Leaf = MRI.getVRegDef(MULReg); 
    break; 
  } 
  } 
 
  uint16_t IntersectedFlags = 0; 
  if (IsILPReassociate) 
    IntersectedFlags = Root.getFlags() & Prev->getFlags() & Leaf->getFlags(); 
  else 
    IntersectedFlags = Root.getFlags() & Leaf->getFlags(); 
 
  auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg,
                            bool &KillFlag) {
    Reg = Operand.getReg();
    MRI.constrainRegClass(Reg, RC);
    KillFlag = Operand.isKill();
  };

  auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1,
                             Register &MulOp2, Register &AddOp, 
                             bool &MulOp1KillFlag, bool &MulOp2KillFlag, 
                             bool &AddOpKillFlag) { 
    GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag);
    GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag);
    GetOperandInfo(Instr.getOperand(AddOpIdx), AddOp, AddOpKillFlag); 
  };

  Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32, RegA11, 
      RegA21, RegB; 
  bool KillX = false, KillY = false, KillM11 = false, KillM12 = false,
       KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false, 
       KillA11 = false, KillA21 = false, KillB = false; 

  GetFMAInstrInfo(Root, RegM31, RegM32, RegB, KillM31, KillM32, KillB); 

  if (IsILPReassociate) 
    GetFMAInstrInfo(*Prev, RegM21, RegM22, RegA21, KillM21, KillM22, KillA21); 
 
  if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
    GetFMAInstrInfo(*Leaf, RegM11, RegM12, RegA11, KillM11, KillM12, KillA11); 
    GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX);
  } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) {
    GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
    GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
  } else { 
    // Get FSUB instruction info. 
    GetOperandInfo(Leaf->getOperand(1), RegX, KillX); 
    GetOperandInfo(Leaf->getOperand(2), RegY, KillY); 
  }

  // Create new virtual registers for the new results instead of
  // recycling legacy ones because the MachineCombiner's computation of the
  // critical path requires a new register definition rather than an existing
  // one.
  // For register pressure reassociation, we only need create one virtual 
  // register for the new fma. 
  Register NewVRA = MRI.createVirtualRegister(RC);
  InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0));

  Register NewVRB = 0; 
  if (IsILPReassociate) { 
    NewVRB = MRI.createVirtualRegister(RC); 
    InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1)); 
  } 

  Register NewVRD = 0;
  if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
    NewVRD = MRI.createVirtualRegister(RC);
    InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2));
  }

  auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd,
                                Register RegMul1, bool KillRegMul1,
                                Register RegMul2, bool KillRegMul2) {
    MI->getOperand(AddOpIdx).setReg(RegAdd);
    MI->getOperand(AddOpIdx).setIsKill(KillAdd);
    MI->getOperand(FirstMulOpIdx).setReg(RegMul1);
    MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1);
    MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2);
    MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2);
  };

  MachineInstrBuilder NewARegPressure, NewCRegPressure; 
  switch (Pattern) { 
  default: 
    llvm_unreachable("not recognized pattern!"); 
  case MachineCombinerPattern::REASSOC_XY_AMM_BMM: { 
    // Create new instructions for insertion.
    MachineInstrBuilder MINewB =
        BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
            .addReg(RegX, getKillRegState(KillX))
            .addReg(RegM21, getKillRegState(KillM21))
            .addReg(RegM22, getKillRegState(KillM22));
    MachineInstrBuilder MINewA =
        BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
            .addReg(RegY, getKillRegState(KillY))
            .addReg(RegM31, getKillRegState(KillM31))
            .addReg(RegM32, getKillRegState(KillM32));
    // If AddOpIdx is not 1, adjust the order.
    if (AddOpIdx != 1) {
      AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
      AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32);
    }

    MachineInstrBuilder MINewC =
        BuildMI(*MF, Root.getDebugLoc(),
                get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
            .addReg(NewVRB, getKillRegState(true))
            .addReg(NewVRA, getKillRegState(true));

    // Update flags for newly created instructions.
    setSpecialOperandAttr(*MINewA, IntersectedFlags);
    setSpecialOperandAttr(*MINewB, IntersectedFlags);
    setSpecialOperandAttr(*MINewC, IntersectedFlags);

    // Record new instructions for insertion.
    InsInstrs.push_back(MINewA);
    InsInstrs.push_back(MINewB);
    InsInstrs.push_back(MINewC);
    break; 
  } 
  case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: { 
    assert(NewVRD && "new FMA register not created!");
    // Create new instructions for insertion.
    MachineInstrBuilder MINewA =
        BuildMI(*MF, Leaf->getDebugLoc(),
                get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA)
            .addReg(RegM11, getKillRegState(KillM11))
            .addReg(RegM12, getKillRegState(KillM12));
    MachineInstrBuilder MINewB =
        BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
            .addReg(RegX, getKillRegState(KillX))
            .addReg(RegM21, getKillRegState(KillM21))
            .addReg(RegM22, getKillRegState(KillM22));
    MachineInstrBuilder MINewD =
        BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD)
            .addReg(NewVRA, getKillRegState(true))
            .addReg(RegM31, getKillRegState(KillM31))
            .addReg(RegM32, getKillRegState(KillM32));
    // If AddOpIdx is not 1, adjust the order.
    if (AddOpIdx != 1) {
      AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
      AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32,
                         KillM32);
    }

    MachineInstrBuilder MINewC =
        BuildMI(*MF, Root.getDebugLoc(),
                get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
            .addReg(NewVRB, getKillRegState(true))
            .addReg(NewVRD, getKillRegState(true));

    // Update flags for newly created instructions.
    setSpecialOperandAttr(*MINewA, IntersectedFlags);
    setSpecialOperandAttr(*MINewB, IntersectedFlags);
    setSpecialOperandAttr(*MINewD, IntersectedFlags);
    setSpecialOperandAttr(*MINewC, IntersectedFlags);

    // Record new instructions for insertion.
    InsInstrs.push_back(MINewA);
    InsInstrs.push_back(MINewB);
    InsInstrs.push_back(MINewD);
    InsInstrs.push_back(MINewC);
    break; 
  }
  case MachineCombinerPattern::REASSOC_XY_BAC: 
  case MachineCombinerPattern::REASSOC_XY_BCA: { 
    Register VarReg; 
    bool KillVarReg = false; 
    if (Pattern == MachineCombinerPattern::REASSOC_XY_BCA) { 
      VarReg = RegM31; 
      KillVarReg = KillM31; 
    } else { 
      VarReg = RegM32; 
      KillVarReg = KillM32; 
    } 
    // We don't want to get negative const from memory pool too early, as the 
    // created entry will not be deleted even if it has no users. Since all 
    // operand of Leaf and Root are virtual register, we use zero register 
    // here as a placeholder. When the InsInstrs is selected in 
    // MachineCombiner, we call finalizeInsInstrs to replace the zero register 
    // with a virtual register which is a load from constant pool. 
    NewARegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) 
                          .addReg(RegB, getKillRegState(RegB)) 
                          .addReg(RegY, getKillRegState(KillY)) 
                          .addReg(PPC::ZERO8); 
    NewCRegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), RegC) 
                          .addReg(NewVRA, getKillRegState(true)) 
                          .addReg(RegX, getKillRegState(KillX)) 
                          .addReg(VarReg, getKillRegState(KillVarReg)); 
    // For now, we only support xsmaddadp/xsmaddasp, their add operand are 
    // both at index 1, no need to adjust. 
    // FIXME: when add more fma instructions support, like fma/fmas, adjust 
    // the operand index here. 
    break; 
  } 
  } 

  if (!IsILPReassociate) { 
    setSpecialOperandAttr(*NewARegPressure, IntersectedFlags); 
    setSpecialOperandAttr(*NewCRegPressure, IntersectedFlags); 
 
    InsInstrs.push_back(NewARegPressure); 
    InsInstrs.push_back(NewCRegPressure); 
  } 
 
  assert(!InsInstrs.empty() &&
         "Insertion instructions set should not be empty!");

  // Record old instructions for deletion.
  DelInstrs.push_back(Leaf);
  if (IsILPReassociate) 
    DelInstrs.push_back(Prev); 
  DelInstrs.push_back(&Root);
}

// Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
                                         Register &SrcReg, Register &DstReg,
                                         unsigned &SubIdx) const {
  switch (MI.getOpcode()) {
  default: return false;
  case PPC::EXTSW:
  case PPC::EXTSW_32:
  case PPC::EXTSW_32_64:
    SrcReg = MI.getOperand(1).getReg();
    DstReg = MI.getOperand(0).getReg();
    SubIdx = PPC::sub_32;
    return true;
  }
}

unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
                                           int &FrameIndex) const {
  unsigned Opcode = MI.getOpcode();
  const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
  const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;

  if (End != std::find(OpcodesForSpill, End, Opcode)) {
    // Check for the operands added by addFrameReference (the immediate is the
    // offset which defaults to 0).
    if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
        MI.getOperand(2).isFI()) {
      FrameIndex = MI.getOperand(2).getIndex();
      return MI.getOperand(0).getReg();
    }
  }
  return 0;
}

// For opcodes with the ReMaterializable flag set, this function is called to
// verify the instruction is really rematable.
bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
                                                     AliasAnalysis *AA) const {
  switch (MI.getOpcode()) {
  default:
    // This function should only be called for opcodes with the ReMaterializable
    // flag set.
    llvm_unreachable("Unknown rematerializable operation!");
    break;
  case PPC::LI:
  case PPC::LI8:
  case PPC::LIS:
  case PPC::LIS8:
  case PPC::ADDIStocHA:
  case PPC::ADDIStocHA8:
  case PPC::ADDItocL:
  case PPC::LOAD_STACK_GUARD:
  case PPC::XXLXORz:
  case PPC::XXLXORspz:
  case PPC::XXLXORdpz:
  case PPC::XXLEQVOnes:
  case PPC::V_SET0B:
  case PPC::V_SET0H:
  case PPC::V_SET0:
  case PPC::V_SETALLONESB:
  case PPC::V_SETALLONESH:
  case PPC::V_SETALLONES:
  case PPC::CRSET:
  case PPC::CRUNSET:
  case PPC::XXSETACCZ: 
    return true;
  }
  return false;
}

unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
                                          int &FrameIndex) const {
  unsigned Opcode = MI.getOpcode();
  const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
  const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;

  if (End != std::find(OpcodesForSpill, End, Opcode)) {
    if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
        MI.getOperand(2).isFI()) {
      FrameIndex = MI.getOperand(2).getIndex();
      return MI.getOperand(0).getReg();
    }
  }
  return 0;
}

MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
                                                   unsigned OpIdx1,
                                                   unsigned OpIdx2) const {
  MachineFunction &MF = *MI.getParent()->getParent();

  // Normal instructions can be commuted the obvious way.
  if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec)
    return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
  // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
  // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
  // changing the relative order of the mask operands might change what happens
  // to the high-bits of the mask (and, thus, the result).

  // Cannot commute if it has a non-zero rotate count.
  if (MI.getOperand(3).getImm() != 0)
    return nullptr;

  // If we have a zero rotate count, we have:
  //   M = mask(MB,ME)
  //   Op0 = (Op1 & ~M) | (Op2 & M)
  // Change this to:
  //   M = mask((ME+1)&31, (MB-1)&31)
  //   Op0 = (Op2 & ~M) | (Op1 & M)

  // Swap op1/op2
  assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
         "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec.");
  Register Reg0 = MI.getOperand(0).getReg();
  Register Reg1 = MI.getOperand(1).getReg();
  Register Reg2 = MI.getOperand(2).getReg();
  unsigned SubReg1 = MI.getOperand(1).getSubReg();
  unsigned SubReg2 = MI.getOperand(2).getSubReg();
  bool Reg1IsKill = MI.getOperand(1).isKill();
  bool Reg2IsKill = MI.getOperand(2).isKill();
  bool ChangeReg0 = false;
  // If machine instrs are no longer in two-address forms, update
  // destination register as well.
  if (Reg0 == Reg1) {
    // Must be two address instruction!
    assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
           "Expecting a two-address instruction!");
    assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
    Reg2IsKill = false;
    ChangeReg0 = true;
  }

  // Masks.
  unsigned MB = MI.getOperand(4).getImm();
  unsigned ME = MI.getOperand(5).getImm();

  // We can't commute a trivial mask (there is no way to represent an all-zero
  // mask).
  if (MB == 0 && ME == 31)
    return nullptr;

  if (NewMI) {
    // Create a new instruction.
    Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
    bool Reg0IsDead = MI.getOperand(0).isDead();
    return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
        .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
        .addReg(Reg2, getKillRegState(Reg2IsKill))
        .addReg(Reg1, getKillRegState(Reg1IsKill))
        .addImm((ME + 1) & 31)
        .addImm((MB - 1) & 31);
  }

  if (ChangeReg0) {
    MI.getOperand(0).setReg(Reg2);
    MI.getOperand(0).setSubReg(SubReg2);
  }
  MI.getOperand(2).setReg(Reg1);
  MI.getOperand(1).setReg(Reg2);
  MI.getOperand(2).setSubReg(SubReg1);
  MI.getOperand(1).setSubReg(SubReg2);
  MI.getOperand(2).setIsKill(Reg1IsKill);
  MI.getOperand(1).setIsKill(Reg2IsKill);

  // Swap the mask around.
  MI.getOperand(4).setImm((ME + 1) & 31);
  MI.getOperand(5).setImm((MB - 1) & 31);
  return &MI;
}

bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
                                         unsigned &SrcOpIdx1,
                                         unsigned &SrcOpIdx2) const {
  // For VSX A-Type FMA instructions, it is the first two operands that can be
  // commuted, however, because the non-encoded tied input operand is listed
  // first, the operands to swap are actually the second and third.

  int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
  if (AltOpc == -1)
    return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);

  // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
  // and SrcOpIdx2.
  return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
}

void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
                              MachineBasicBlock::iterator MI) const {
  // This function is used for scheduling, and the nop wanted here is the type
  // that terminates dispatch groups on the POWER cores.
  unsigned Directive = Subtarget.getCPUDirective();
  unsigned Opcode;
  switch (Directive) {
  default:            Opcode = PPC::NOP; break;
  case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
  case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
  case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
  // FIXME: Update when POWER9 scheduling model is ready.
  case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
  }

  DebugLoc DL;
  BuildMI(MBB, MI, DL, get(Opcode));
}

/// Return the noop instruction to use for a noop.
void PPCInstrInfo::getNoop(MCInst &NopInst) const {
  NopInst.setOpcode(PPC::NOP);
}

// Branch analysis.
// Note: If the condition register is set to CTR or CTR8 then this is a
// BDNZ (imm == 1) or BDZ (imm == 0) branch.
bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
                                 MachineBasicBlock *&TBB,
                                 MachineBasicBlock *&FBB,
                                 SmallVectorImpl<MachineOperand> &Cond,
                                 bool AllowModify) const {
  bool isPPC64 = Subtarget.isPPC64();

  // If the block has no terminators, it just falls into the block after it.
  MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
  if (I == MBB.end())
    return false;

  if (!isUnpredicatedTerminator(*I))
    return false;

  if (AllowModify) {
    // If the BB ends with an unconditional branch to the fallthrough BB,
    // we eliminate the branch instruction.
    if (I->getOpcode() == PPC::B &&
        MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
      I->eraseFromParent();

      // We update iterator after deleting the last branch.
      I = MBB.getLastNonDebugInstr();
      if (I == MBB.end() || !isUnpredicatedTerminator(*I))
        return false;
    }
  }

  // Get the last instruction in the block.
  MachineInstr &LastInst = *I;

  // If there is only one terminator instruction, process it.
  if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
    if (LastInst.getOpcode() == PPC::B) {
      if (!LastInst.getOperand(0).isMBB())
        return true;
      TBB = LastInst.getOperand(0).getMBB();
      return false;
    } else if (LastInst.getOpcode() == PPC::BCC) {
      if (!LastInst.getOperand(2).isMBB())
        return true;
      // Block ends with fall-through condbranch.
      TBB = LastInst.getOperand(2).getMBB();
      Cond.push_back(LastInst.getOperand(0));
      Cond.push_back(LastInst.getOperand(1));
      return false;
    } else if (LastInst.getOpcode() == PPC::BC) {
      if (!LastInst.getOperand(1).isMBB())
        return true;
      // Block ends with fall-through condbranch.
      TBB = LastInst.getOperand(1).getMBB();
      Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
      Cond.push_back(LastInst.getOperand(0));
      return false;
    } else if (LastInst.getOpcode() == PPC::BCn) {
      if (!LastInst.getOperand(1).isMBB())
        return true;
      // Block ends with fall-through condbranch.
      TBB = LastInst.getOperand(1).getMBB();
      Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
      Cond.push_back(LastInst.getOperand(0));
      return false;
    } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
               LastInst.getOpcode() == PPC::BDNZ) {
      if (!LastInst.getOperand(0).isMBB())
        return true;
      if (DisableCTRLoopAnal)
        return true;
      TBB = LastInst.getOperand(0).getMBB();
      Cond.push_back(MachineOperand::CreateImm(1));
      Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
                                               true));
      return false;
    } else if (LastInst.getOpcode() == PPC::BDZ8 ||
               LastInst.getOpcode() == PPC::BDZ) {
      if (!LastInst.getOperand(0).isMBB())
        return true;
      if (DisableCTRLoopAnal)
        return true;
      TBB = LastInst.getOperand(0).getMBB();
      Cond.push_back(MachineOperand::CreateImm(0));
      Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
                                               true));
      return false;
    }

    // Otherwise, don't know what this is.
    return true;
  }

  // Get the instruction before it if it's a terminator.
  MachineInstr &SecondLastInst = *I;

  // If there are three terminators, we don't know what sort of block this is.
  if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
    return true;

  // If the block ends with PPC::B and PPC:BCC, handle it.
  if (SecondLastInst.getOpcode() == PPC::BCC &&
      LastInst.getOpcode() == PPC::B) {
    if (!SecondLastInst.getOperand(2).isMBB() ||
        !LastInst.getOperand(0).isMBB())
      return true;
    TBB = SecondLastInst.getOperand(2).getMBB();
    Cond.push_back(SecondLastInst.getOperand(0));
    Cond.push_back(SecondLastInst.getOperand(1));
    FBB = LastInst.getOperand(0).getMBB();
    return false;
  } else if (SecondLastInst.getOpcode() == PPC::BC &&
             LastInst.getOpcode() == PPC::B) {
    if (!SecondLastInst.getOperand(1).isMBB() ||
        !LastInst.getOperand(0).isMBB())
      return true;
    TBB = SecondLastInst.getOperand(1).getMBB();
    Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
    Cond.push_back(SecondLastInst.getOperand(0));
    FBB = LastInst.getOperand(0).getMBB();
    return false;
  } else if (SecondLastInst.getOpcode() == PPC::BCn &&
             LastInst.getOpcode() == PPC::B) {
    if (!SecondLastInst.getOperand(1).isMBB() ||
        !LastInst.getOperand(0).isMBB())
      return true;
    TBB = SecondLastInst.getOperand(1).getMBB();
    Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
    Cond.push_back(SecondLastInst.getOperand(0));
    FBB = LastInst.getOperand(0).getMBB();
    return false;
  } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
              SecondLastInst.getOpcode() == PPC::BDNZ) &&
             LastInst.getOpcode() == PPC::B) {
    if (!SecondLastInst.getOperand(0).isMBB() ||
        !LastInst.getOperand(0).isMBB())
      return true;
    if (DisableCTRLoopAnal)
      return true;
    TBB = SecondLastInst.getOperand(0).getMBB();
    Cond.push_back(MachineOperand::CreateImm(1));
    Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
                                             true));
    FBB = LastInst.getOperand(0).getMBB();
    return false;
  } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
              SecondLastInst.getOpcode() == PPC::BDZ) &&
             LastInst.getOpcode() == PPC::B) {
    if (!SecondLastInst.getOperand(0).isMBB() ||
        !LastInst.getOperand(0).isMBB())
      return true;
    if (DisableCTRLoopAnal)
      return true;
    TBB = SecondLastInst.getOperand(0).getMBB();
    Cond.push_back(MachineOperand::CreateImm(0));
    Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
                                             true));
    FBB = LastInst.getOperand(0).getMBB();
    return false;
  }

  // If the block ends with two PPC:Bs, handle it.  The second one is not
  // executed, so remove it.
  if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
    if (!SecondLastInst.getOperand(0).isMBB())
      return true;
    TBB = SecondLastInst.getOperand(0).getMBB();
    I = LastInst;
    if (AllowModify)
      I->eraseFromParent();
    return false;
  }

  // Otherwise, can't handle this.
  return true;
}

unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
                                    int *BytesRemoved) const {
  assert(!BytesRemoved && "code size not handled");

  MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
  if (I == MBB.end())
    return 0;

  if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
      I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
      I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
      I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
    return 0;

  // Remove the branch.
  I->eraseFromParent();

  I = MBB.end();

  if (I == MBB.begin()) return 1;
  --I;
  if (I->getOpcode() != PPC::BCC &&
      I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
      I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
      I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
    return 1;

  // Remove the branch.
  I->eraseFromParent();
  return 2;
}

unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
                                    MachineBasicBlock *TBB,
                                    MachineBasicBlock *FBB,
                                    ArrayRef<MachineOperand> Cond,
                                    const DebugLoc &DL,
                                    int *BytesAdded) const {
  // Shouldn't be a fall through.
  assert(TBB && "insertBranch must not be told to insert a fallthrough");
  assert((Cond.size() == 2 || Cond.size() == 0) &&
         "PPC branch conditions have two components!");
  assert(!BytesAdded && "code size not handled");

  bool isPPC64 = Subtarget.isPPC64();

  // One-way branch.
  if (!FBB) {
    if (Cond.empty())   // Unconditional branch
      BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
    else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
      BuildMI(&MBB, DL, get(Cond[0].getImm() ?
                              (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
                              (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
    else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
      BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
    else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
      BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
    else                // Conditional branch
      BuildMI(&MBB, DL, get(PPC::BCC))
          .addImm(Cond[0].getImm())
          .add(Cond[1])
          .addMBB(TBB);
    return 1;
  }

  // Two-way Conditional Branch.
  if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
    BuildMI(&MBB, DL, get(Cond[0].getImm() ?
                            (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
                            (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
  else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
    BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
  else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
    BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
  else
    BuildMI(&MBB, DL, get(PPC::BCC))
        .addImm(Cond[0].getImm())
        .add(Cond[1])
        .addMBB(TBB);
  BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
  return 2;
}

// Select analysis.
bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
                                   ArrayRef<MachineOperand> Cond,
                                   Register DstReg, Register TrueReg,
                                   Register FalseReg, int &CondCycles,
                                   int &TrueCycles, int &FalseCycles) const {
  if (Cond.size() != 2)
    return false;

  // If this is really a bdnz-like condition, then it cannot be turned into a
  // select.
  if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
    return false;

  // Check register classes.
  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
  const TargetRegisterClass *RC =
    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
  if (!RC)
    return false;

  // isel is for regular integer GPRs only.
  if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
      !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
      !PPC::G8RCRegClass.hasSubClassEq(RC) &&
      !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
    return false;

  // FIXME: These numbers are for the A2, how well they work for other cores is
  // an open question. On the A2, the isel instruction has a 2-cycle latency
  // but single-cycle throughput. These numbers are used in combination with
  // the MispredictPenalty setting from the active SchedMachineModel.
  CondCycles = 1;
  TrueCycles = 1;
  FalseCycles = 1;

  return true;
}

void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
                                MachineBasicBlock::iterator MI,
                                const DebugLoc &dl, Register DestReg,
                                ArrayRef<MachineOperand> Cond, Register TrueReg,
                                Register FalseReg) const {
  assert(Cond.size() == 2 &&
         "PPC branch conditions have two components!");

  // Get the register classes.
  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
  const TargetRegisterClass *RC =
    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
  assert(RC && "TrueReg and FalseReg must have overlapping register classes");

  bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
                 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
  assert((Is64Bit ||
          PPC::GPRCRegClass.hasSubClassEq(RC) ||
          PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
         "isel is for regular integer GPRs only");

  unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
  auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());

  unsigned SubIdx = 0;
  bool SwapOps = false;
  switch (SelectPred) {
  case PPC::PRED_EQ:
  case PPC::PRED_EQ_MINUS:
  case PPC::PRED_EQ_PLUS:
      SubIdx = PPC::sub_eq; SwapOps = false; break;
  case PPC::PRED_NE:
  case PPC::PRED_NE_MINUS:
  case PPC::PRED_NE_PLUS:
      SubIdx = PPC::sub_eq; SwapOps = true; break;
  case PPC::PRED_LT:
  case PPC::PRED_LT_MINUS:
  case PPC::PRED_LT_PLUS:
      SubIdx = PPC::sub_lt; SwapOps = false; break;
  case PPC::PRED_GE:
  case PPC::PRED_GE_MINUS:
  case PPC::PRED_GE_PLUS:
      SubIdx = PPC::sub_lt; SwapOps = true; break;
  case PPC::PRED_GT:
  case PPC::PRED_GT_MINUS:
  case PPC::PRED_GT_PLUS:
      SubIdx = PPC::sub_gt; SwapOps = false; break;
  case PPC::PRED_LE:
  case PPC::PRED_LE_MINUS:
  case PPC::PRED_LE_PLUS:
      SubIdx = PPC::sub_gt; SwapOps = true; break;
  case PPC::PRED_UN:
  case PPC::PRED_UN_MINUS:
  case PPC::PRED_UN_PLUS:
      SubIdx = PPC::sub_un; SwapOps = false; break;
  case PPC::PRED_NU:
  case PPC::PRED_NU_MINUS:
  case PPC::PRED_NU_PLUS:
      SubIdx = PPC::sub_un; SwapOps = true; break;
  case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
  case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
  }

  Register FirstReg =  SwapOps ? FalseReg : TrueReg,
           SecondReg = SwapOps ? TrueReg  : FalseReg;

  // The first input register of isel cannot be r0. If it is a member
  // of a register class that can be r0, then copy it first (the
  // register allocator should eliminate the copy).
  if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
      MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
    const TargetRegisterClass *FirstRC =
      MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
        &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
    Register OldFirstReg = FirstReg;
    FirstReg = MRI.createVirtualRegister(FirstRC);
    BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
      .addReg(OldFirstReg);
  }

  BuildMI(MBB, MI, dl, get(OpCode), DestReg)
    .addReg(FirstReg).addReg(SecondReg)
    .addReg(Cond[1].getReg(), 0, SubIdx);
}

static unsigned getCRBitValue(unsigned CRBit) {
  unsigned Ret = 4;
  if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
      CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
      CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
      CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
    Ret = 3;
  if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
      CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
      CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
      CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
    Ret = 2;
  if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
      CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
      CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
      CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
    Ret = 1;
  if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
      CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
      CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
      CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
    Ret = 0;

  assert(Ret != 4 && "Invalid CR bit register");
  return Ret;
}

void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
                               MachineBasicBlock::iterator I,
                               const DebugLoc &DL, MCRegister DestReg,
                               MCRegister SrcReg, bool KillSrc) const {
  // We can end up with self copies and similar things as a result of VSX copy
  // legalization. Promote them here.
  const TargetRegisterInfo *TRI = &getRegisterInfo();
  if (PPC::F8RCRegClass.contains(DestReg) &&
      PPC::VSRCRegClass.contains(SrcReg)) {
    MCRegister SuperReg =
        TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);

    if (VSXSelfCopyCrash && SrcReg == SuperReg)
      llvm_unreachable("nop VSX copy");

    DestReg = SuperReg;
  } else if (PPC::F8RCRegClass.contains(SrcReg) &&
             PPC::VSRCRegClass.contains(DestReg)) {
    MCRegister SuperReg =
        TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);

    if (VSXSelfCopyCrash && DestReg == SuperReg)
      llvm_unreachable("nop VSX copy");

    SrcReg = SuperReg;
  }

  // Different class register copy
  if (PPC::CRBITRCRegClass.contains(SrcReg) &&
      PPC::GPRCRegClass.contains(DestReg)) {
    MCRegister CRReg = getCRFromCRBit(SrcReg);
    BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
    getKillRegState(KillSrc);
    // Rotate the CR bit in the CR fields to be the least significant bit and
    // then mask with 0x1 (MB = ME = 31).
    BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
       .addReg(DestReg, RegState::Kill)
       .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
       .addImm(31)
       .addImm(31);
    return;
  } else if (PPC::CRRCRegClass.contains(SrcReg) &&
             (PPC::G8RCRegClass.contains(DestReg) || 
              PPC::GPRCRegClass.contains(DestReg))) { 
    bool Is64Bit = PPC::G8RCRegClass.contains(DestReg); 
    unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF; 
    unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM; 
    unsigned CRNum = TRI->getEncodingValue(SrcReg); 
    BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg); 
    getKillRegState(KillSrc);
    if (CRNum == 7) 
      return; 
    // Shift the CR bits to make the CR field in the lowest 4 bits of GRC. 
    BuildMI(MBB, I, DL, get(ShCode), DestReg) 
        .addReg(DestReg, RegState::Kill) 
        .addImm(CRNum * 4 + 4) 
        .addImm(28) 
        .addImm(31); 
    return;
  } else if (PPC::G8RCRegClass.contains(SrcReg) &&
             PPC::VSFRCRegClass.contains(DestReg)) {
    assert(Subtarget.hasDirectMove() &&
           "Subtarget doesn't support directmove, don't know how to copy.");
    BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
    NumGPRtoVSRSpill++;
    getKillRegState(KillSrc);
    return;
  } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
             PPC::G8RCRegClass.contains(DestReg)) {
    assert(Subtarget.hasDirectMove() &&
           "Subtarget doesn't support directmove, don't know how to copy.");
    BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
    getKillRegState(KillSrc);
    return;
  } else if (PPC::SPERCRegClass.contains(SrcReg) &&
             PPC::GPRCRegClass.contains(DestReg)) {
    BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
    getKillRegState(KillSrc);
    return;
  } else if (PPC::GPRCRegClass.contains(SrcReg) &&
             PPC::SPERCRegClass.contains(DestReg)) {
    BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
    getKillRegState(KillSrc);
    return;
  }

  unsigned Opc;
  if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
    Opc = PPC::OR;
  else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
    Opc = PPC::OR8;
  else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
    Opc = PPC::FMR;
  else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
    Opc = PPC::MCRF;
  else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
    Opc = PPC::VOR;
  else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
    // There are two different ways this can be done:
    //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
    //      issue in VSU pipeline 0.
    //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
    //      can go to either pipeline.
    // We'll always use xxlor here, because in practically all cases where
    // copies are generated, they are close enough to some use that the
    // lower-latency form is preferable.
    Opc = PPC::XXLOR;
  else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
           PPC::VSSRCRegClass.contains(DestReg, SrcReg))
    Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
  else if (Subtarget.pairedVectorMemops() && 
           PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) { 
    if (SrcReg > PPC::VSRp15) 
      SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2; 
    else 
      SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2; 
    if (DestReg > PPC::VSRp15) 
      DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2; 
    else 
      DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2; 
    BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg). 
      addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 
    BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1). 
      addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc)); 
    return; 
  } 
  else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
    Opc = PPC::CROR;
  else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
    Opc = PPC::EVOR;
  else if ((PPC::ACCRCRegClass.contains(DestReg) || 
            PPC::UACCRCRegClass.contains(DestReg)) && 
           (PPC::ACCRCRegClass.contains(SrcReg) || 
            PPC::UACCRCRegClass.contains(SrcReg))) { 
    // If primed, de-prime the source register, copy the individual registers 
    // and prime the destination if needed. The vector subregisters are 
    // vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the 
    // source is primed, we need to re-prime it after the copy as well. 
    PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg); 
    bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg); 
    bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg); 
    MCRegister VSLSrcReg = 
        PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; 
    MCRegister VSLDestReg = 
        PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; 
    if (SrcPrimed) 
      BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg); 
    for (unsigned Idx = 0; Idx < 4; Idx++) 
      BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx) 
          .addReg(VSLSrcReg + Idx) 
          .addReg(VSLSrcReg + Idx, getKillRegState(KillSrc)); 
    if (DestPrimed) 
      BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg); 
    if (SrcPrimed && !KillSrc) 
      BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg); 
    return; 
  } else 
    llvm_unreachable("Impossible reg-to-reg copy");

  const MCInstrDesc &MCID = get(Opc);
  if (MCID.getNumOperands() == 3)
    BuildMI(MBB, I, DL, MCID, DestReg)
      .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
  else
    BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
}

unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const { 
  int OpcodeIndex = 0;

  if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
      PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
    OpcodeIndex = SOK_Int4Spill;
  } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
             PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
    OpcodeIndex = SOK_Int8Spill;
  } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
    OpcodeIndex = SOK_Float8Spill;
  } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
    OpcodeIndex = SOK_Float4Spill;
  } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
    OpcodeIndex = SOK_SPESpill;
  } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
    OpcodeIndex = SOK_CRSpill;
  } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
    OpcodeIndex = SOK_CRBitSpill;
  } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
    OpcodeIndex = SOK_VRVectorSpill;
  } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
    OpcodeIndex = SOK_VSXVectorSpill;
  } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
    OpcodeIndex = SOK_VectorFloat8Spill;
  } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
    OpcodeIndex = SOK_VectorFloat4Spill;
  } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
    OpcodeIndex = SOK_SpillToVSR;
  } else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) { 
    assert(Subtarget.pairedVectorMemops() && 
           "Register unexpected when paired memops are disabled."); 
    OpcodeIndex = SOK_AccumulatorSpill; 
  } else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) { 
    assert(Subtarget.pairedVectorMemops() && 
           "Register unexpected when paired memops are disabled."); 
    OpcodeIndex = SOK_UAccumulatorSpill; 
  } else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) { 
    assert(Subtarget.pairedVectorMemops() && 
           "Register unexpected when paired memops are disabled."); 
    OpcodeIndex = SOK_PairedVecSpill; 
  } else {
    llvm_unreachable("Unknown regclass!");
  }
  return OpcodeIndex;
}

unsigned
PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const {
  const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
  return OpcodesForSpill[getSpillIndex(RC)];
}

unsigned
PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const {
  const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
  return OpcodesForSpill[getSpillIndex(RC)];
}

void PPCInstrInfo::StoreRegToStackSlot(
    MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
    const TargetRegisterClass *RC,
    SmallVectorImpl<MachineInstr *> &NewMIs) const {
  unsigned Opcode = getStoreOpcodeForSpill(RC);
  DebugLoc DL;

  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
  FuncInfo->setHasSpills();

  NewMIs.push_back(addFrameReference(
      BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
      FrameIdx));

  if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
      PPC::CRBITRCRegClass.hasSubClassEq(RC))
    FuncInfo->setSpillsCR();

  if (isXFormMemOp(Opcode))
    FuncInfo->setHasNonRISpills();
}

void PPCInstrInfo::storeRegToStackSlotNoUpd(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg,
    bool isKill, int FrameIdx, const TargetRegisterClass *RC,
    const TargetRegisterInfo *TRI) const {
  MachineFunction &MF = *MBB.getParent();
  SmallVector<MachineInstr *, 4> NewMIs;

  StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);

  for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
    MBB.insert(MI, NewMIs[i]);

  const MachineFrameInfo &MFI = MF.getFrameInfo();
  MachineMemOperand *MMO = MF.getMachineMemOperand(
      MachinePointerInfo::getFixedStack(MF, FrameIdx),
      MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
      MFI.getObjectAlign(FrameIdx));
  NewMIs.back()->addMemOperand(MF, MMO);
}

void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
                                       MachineBasicBlock::iterator MI,
                                       Register SrcReg, bool isKill,
                                       int FrameIdx,
                                       const TargetRegisterClass *RC,
                                       const TargetRegisterInfo *TRI) const {
  // We need to avoid a situation in which the value from a VRRC register is
  // spilled using an Altivec instruction and reloaded into a VSRC register
  // using a VSX instruction. The issue with this is that the VSX
  // load/store instructions swap the doublewords in the vector and the Altivec
  // ones don't. The register classes on the spill/reload may be different if
  // the register is defined using an Altivec instruction and is then used by a
  // VSX instruction.
  RC = updatedRC(RC);
  storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI);
}

void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
                                        unsigned DestReg, int FrameIdx,
                                        const TargetRegisterClass *RC,
                                        SmallVectorImpl<MachineInstr *> &NewMIs)
                                        const {
  unsigned Opcode = getLoadOpcodeForSpill(RC);
  NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
                                     FrameIdx));
  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();

  if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
      PPC::CRBITRCRegClass.hasSubClassEq(RC))
    FuncInfo->setSpillsCR();

  if (isXFormMemOp(Opcode))
    FuncInfo->setHasNonRISpills();
}

void PPCInstrInfo::loadRegFromStackSlotNoUpd(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg,
    int FrameIdx, const TargetRegisterClass *RC,
    const TargetRegisterInfo *TRI) const {
  MachineFunction &MF = *MBB.getParent();
  SmallVector<MachineInstr*, 4> NewMIs;
  DebugLoc DL;
  if (MI != MBB.end()) DL = MI->getDebugLoc();

  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
  FuncInfo->setHasSpills();

  LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);

  for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
    MBB.insert(MI, NewMIs[i]);

  const MachineFrameInfo &MFI = MF.getFrameInfo();
  MachineMemOperand *MMO = MF.getMachineMemOperand(
      MachinePointerInfo::getFixedStack(MF, FrameIdx),
      MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
      MFI.getObjectAlign(FrameIdx));
  NewMIs.back()->addMemOperand(MF, MMO);
}

void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
                                        MachineBasicBlock::iterator MI,
                                        Register DestReg, int FrameIdx,
                                        const TargetRegisterClass *RC,
                                        const TargetRegisterInfo *TRI) const {
  // We need to avoid a situation in which the value from a VRRC register is
  // spilled using an Altivec instruction and reloaded into a VSRC register
  // using a VSX instruction. The issue with this is that the VSX
  // load/store instructions swap the doublewords in the vector and the Altivec
  // ones don't. The register classes on the spill/reload may be different if
  // the register is defined using an Altivec instruction and is then used by a
  // VSX instruction.
  RC = updatedRC(RC);

  loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI);
}

bool PPCInstrInfo::
reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
  assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
  if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
    Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
  else
    // Leave the CR# the same, but invert the condition.
    Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
  return false;
}

// For some instructions, it is legal to fold ZERO into the RA register field.
// This function performs that fold by replacing the operand with PPC::ZERO,
// it does not consider whether the load immediate zero is no longer in use.
bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
                                     Register Reg) const {
  // A zero immediate should always be loaded with a single li.
  unsigned DefOpc = DefMI.getOpcode();
  if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
    return false;
  if (!DefMI.getOperand(1).isImm())
    return false;
  if (DefMI.getOperand(1).getImm() != 0)
    return false;

  // Note that we cannot here invert the arguments of an isel in order to fold
  // a ZERO into what is presented as the second argument. All we have here
  // is the condition bit, and that might come from a CR-logical bit operation.

  const MCInstrDesc &UseMCID = UseMI.getDesc();

  // Only fold into real machine instructions.
  if (UseMCID.isPseudo())
    return false;

  // We need to find which of the User's operands is to be folded, that will be
  // the operand that matches the given register ID.
  unsigned UseIdx;
  for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
    if (UseMI.getOperand(UseIdx).isReg() &&
        UseMI.getOperand(UseIdx).getReg() == Reg)
      break;

  assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
  assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");

  const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];

  // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
  // register (which might also be specified as a pointer class kind).
  if (UseInfo->isLookupPtrRegClass()) {
    if (UseInfo->RegClass /* Kind */ != 1)
      return false;
  } else {
    if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
        UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
      return false;
  }

  // Make sure this is not tied to an output register (or otherwise
  // constrained). This is true for ST?UX registers, for example, which
  // are tied to their output registers.
  if (UseInfo->Constraints != 0)
    return false;

  MCRegister ZeroReg;
  if (UseInfo->isLookupPtrRegClass()) {
    bool isPPC64 = Subtarget.isPPC64();
    ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
  } else {
    ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
              PPC::ZERO8 : PPC::ZERO;
  }

  UseMI.getOperand(UseIdx).setReg(ZeroReg);
  return true;
}

// Folds zero into instructions which have a load immediate zero as an operand
// but also recognize zero as immediate zero. If the definition of the load
// has no more users it is deleted.
bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
                                 Register Reg, MachineRegisterInfo *MRI) const {
  bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg);
  if (MRI->use_nodbg_empty(Reg))
    DefMI.eraseFromParent();
  return Changed;
}

static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
  for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
       I != IE; ++I)
    if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
      return true;
  return false;
}

// We should make sure that, if we're going to predicate both sides of a
// condition (a diamond), that both sides don't define the counter register. We
// can predicate counter-decrement-based branches, but while that predicates
// the branching, it does not predicate the counter decrement. If we tried to
// merge the triangle into one predicated block, we'd decrement the counter
// twice.
bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
                     unsigned NumT, unsigned ExtraT,
                     MachineBasicBlock &FMBB,
                     unsigned NumF, unsigned ExtraF,
                     BranchProbability Probability) const {
  return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
}


bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
  // The predicated branches are identified by their type, not really by the
  // explicit presence of a predicate. Furthermore, some of them can be
  // predicated more than once. Because if conversion won't try to predicate
  // any instruction which already claims to be predicated (by returning true
  // here), always return false. In doing so, we let isPredicable() be the
  // final word on whether not the instruction can be (further) predicated.

  return false;
}

bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 
                                        const MachineBasicBlock *MBB, 
                                        const MachineFunction &MF) const { 
  // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion 
  // across them, since some FP operations may change content of FPSCR. 
  // TODO: Model FPSCR in PPC instruction definitions and remove the workaround 
  if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF) 
    return true; 
  return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF); 
} 
 
bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
                                        ArrayRef<MachineOperand> Pred) const {
  unsigned OpC = MI.getOpcode();
  if (OpC == PPC::BLR || OpC == PPC::BLR8) {
    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
      bool isPPC64 = Subtarget.isPPC64();
      MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
                                      : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
      // Need add Def and Use for CTR implicit operand. 
      MachineInstrBuilder(*MI.getParent()->getParent(), MI) 
          .addReg(Pred[1].getReg(), RegState::Implicit) 
          .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 
    } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
      MI.setDesc(get(PPC::BCLR));
      MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
    } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
      MI.setDesc(get(PPC::BCLRn));
      MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
    } else {
      MI.setDesc(get(PPC::BCCLR));
      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
          .addImm(Pred[0].getImm())
          .add(Pred[1]);
    }

    return true;
  } else if (OpC == PPC::B) {
    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
      bool isPPC64 = Subtarget.isPPC64();
      MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
                                      : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
      // Need add Def and Use for CTR implicit operand. 
      MachineInstrBuilder(*MI.getParent()->getParent(), MI) 
          .addReg(Pred[1].getReg(), RegState::Implicit) 
          .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 
    } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
      MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
      MI.RemoveOperand(0);

      MI.setDesc(get(PPC::BC));
      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
          .add(Pred[1])
          .addMBB(MBB);
    } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
      MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
      MI.RemoveOperand(0);

      MI.setDesc(get(PPC::BCn));
      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
          .add(Pred[1])
          .addMBB(MBB);
    } else {
      MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
      MI.RemoveOperand(0);

      MI.setDesc(get(PPC::BCC));
      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
          .addImm(Pred[0].getImm())
          .add(Pred[1])
          .addMBB(MBB);
    }

    return true;
  } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
             OpC == PPC::BCTRL8) {
    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
      llvm_unreachable("Cannot predicate bctr[l] on the ctr register");

    bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
    bool isPPC64 = Subtarget.isPPC64();

    if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
      MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
                             : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
      MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
    } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
      MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
                             : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
      MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
    } else { 
      MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 
                             : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 
      MachineInstrBuilder(*MI.getParent()->getParent(), MI) 
          .addImm(Pred[0].getImm()) 
          .add(Pred[1]); 
    }

    // Need add Def and Use for LR implicit operand. 
    if (setLR) 
      MachineInstrBuilder(*MI.getParent()->getParent(), MI) 
          .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit) 
          .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine); 
 
    return true;
  }

  return false;
}

bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
                                     ArrayRef<MachineOperand> Pred2) const {
  assert(Pred1.size() == 2 && "Invalid PPC first predicate");
  assert(Pred2.size() == 2 && "Invalid PPC second predicate");

  if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
    return false;
  if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
    return false;

  // P1 can only subsume P2 if they test the same condition register.
  if (Pred1[1].getReg() != Pred2[1].getReg())
    return false;

  PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
  PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();

  if (P1 == P2)
    return true;

  // Does P1 subsume P2, e.g. GE subsumes GT.
  if (P1 == PPC::PRED_LE &&
      (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
    return true;
  if (P1 == PPC::PRED_GE &&
      (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
    return true;

  return false;
}

bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI, 
                                     std::vector<MachineOperand> &Pred, 
                                     bool SkipDead) const { 
  // Note: At the present time, the contents of Pred from this function is
  // unused by IfConversion. This implementation follows ARM by pushing the
  // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
  // predicate, instructions defining CTR or CTR8 are also included as
  // predicate-defining instructions.

  const TargetRegisterClass *RCs[] =
    { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
      &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };

  bool Found = false;
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI.getOperand(i);
    for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
      const TargetRegisterClass *RC = RCs[c];
      if (MO.isReg()) {
        if (MO.isDef() && RC->contains(MO.getReg())) {
          Pred.push_back(MO);
          Found = true;
        }
      } else if (MO.isRegMask()) {
        for (TargetRegisterClass::iterator I = RC->begin(),
             IE = RC->end(); I != IE; ++I)
          if (MO.clobbersPhysReg(*I)) {
            Pred.push_back(MO);
            Found = true;
          }
      }
    }
  }

  return Found;
}

bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
                                  Register &SrcReg2, int &Mask,
                                  int &Value) const {
  unsigned Opc = MI.getOpcode();

  switch (Opc) {
  default: return false;
  case PPC::CMPWI:
  case PPC::CMPLWI:
  case PPC::CMPDI:
  case PPC::CMPLDI:
    SrcReg = MI.getOperand(1).getReg();
    SrcReg2 = 0;
    Value = MI.getOperand(2).getImm();
    Mask = 0xFFFF;
    return true;
  case PPC::CMPW:
  case PPC::CMPLW:
  case PPC::CMPD:
  case PPC::CMPLD:
  case PPC::FCMPUS:
  case PPC::FCMPUD:
    SrcReg = MI.getOperand(1).getReg();
    SrcReg2 = MI.getOperand(2).getReg();
    Value = 0;
    Mask = 0;
    return true;
  }
}

bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
                                        Register SrcReg2, int Mask, int Value,
                                        const MachineRegisterInfo *MRI) const {
  if (DisableCmpOpt)
    return false;

  int OpC = CmpInstr.getOpcode();
  Register CRReg = CmpInstr.getOperand(0).getReg();

  // FP record forms set CR1 based on the exception status bits, not a
  // comparison with zero.
  if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
    return false;

  const TargetRegisterInfo *TRI = &getRegisterInfo();
  // The record forms set the condition register based on a signed comparison
  // with zero (so says the ISA manual). This is not as straightforward as it
  // seems, however, because this is always a 64-bit comparison on PPC64, even
  // for instructions that are 32-bit in nature (like slw for example).
  // So, on PPC32, for unsigned comparisons, we can use the record forms only
  // for equality checks (as those don't depend on the sign). On PPC64,
  // we are restricted to equality for unsigned 64-bit comparisons and for
  // signed 32-bit comparisons the applicability is more restricted.
  bool isPPC64 = Subtarget.isPPC64();
  bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
  bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
  bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;

  // Look through copies unless that gets us to a physical register.
  Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
  if (ActualSrc.isVirtual())
    SrcReg = ActualSrc;

  // Get the unique definition of SrcReg.
  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
  if (!MI) return false;

  bool equalityOnly = false;
  bool noSub = false;
  if (isPPC64) {
    if (is32BitSignedCompare) {
      // We can perform this optimization only if MI is sign-extending.
      if (isSignExtended(*MI))
        noSub = true;
      else
        return false;
    } else if (is32BitUnsignedCompare) {
      // We can perform this optimization, equality only, if MI is
      // zero-extending.
      if (isZeroExtended(*MI)) {
        noSub = true;
        equalityOnly = true;
      } else
        return false;
    } else
      equalityOnly = is64BitUnsignedCompare;
  } else
    equalityOnly = is32BitUnsignedCompare;

  if (equalityOnly) {
    // We need to check the uses of the condition register in order to reject
    // non-equality comparisons.
    for (MachineRegisterInfo::use_instr_iterator
         I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
         I != IE; ++I) {
      MachineInstr *UseMI = &*I;
      if (UseMI->getOpcode() == PPC::BCC) {
        PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
        unsigned PredCond = PPC::getPredicateCondition(Pred);
        // We ignore hint bits when checking for non-equality comparisons.
        if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
          return false;
      } else if (UseMI->getOpcode() == PPC::ISEL ||
                 UseMI->getOpcode() == PPC::ISEL8) {
        unsigned SubIdx = UseMI->getOperand(3).getSubReg();
        if (SubIdx != PPC::sub_eq)
          return false;
      } else
        return false;
    }
  }

  MachineBasicBlock::iterator I = CmpInstr;

  // Scan forward to find the first use of the compare.
  for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
       ++I) {
    bool FoundUse = false;
    for (MachineRegisterInfo::use_instr_iterator
         J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
         J != JE; ++J)
      if (&*J == &*I) {
        FoundUse = true;
        break;
      }

    if (FoundUse)
      break;
  }

  SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
  SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;

  // There are two possible candidates which can be changed to set CR[01].
  // One is MI, the other is a SUB instruction.
  // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
  MachineInstr *Sub = nullptr;
  if (SrcReg2 != 0)
    // MI is not a candidate for CMPrr.
    MI = nullptr;
  // FIXME: Conservatively refuse to convert an instruction which isn't in the
  // same BB as the comparison. This is to allow the check below to avoid calls
  // (and other explicit clobbers); instead we should really check for these
  // more explicitly (in at least a few predecessors).
  else if (MI->getParent() != CmpInstr.getParent())
    return false;
  else if (Value != 0) {
    // The record-form instructions set CR bit based on signed comparison
    // against 0. We try to convert a compare against 1 or -1 into a compare
    // against 0 to exploit record-form instructions. For example, we change
    // the condition "greater than -1" into "greater than or equal to 0"
    // and "less than 1" into "less than or equal to 0".

    // Since we optimize comparison based on a specific branch condition,
    // we don't optimize if condition code is used by more than once.
    if (equalityOnly || !MRI->hasOneUse(CRReg))
      return false;

    MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
    if (UseMI->getOpcode() != PPC::BCC)
      return false;

    PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
    unsigned PredCond = PPC::getPredicateCondition(Pred);
    unsigned PredHint = PPC::getPredicateHint(Pred);
    int16_t Immed = (int16_t)Value;

    // When modifying the condition in the predicate, we propagate hint bits
    // from the original predicate to the new one.
    if (Immed == -1 && PredCond == PPC::PRED_GT)
      // We convert "greater than -1" into "greater than or equal to 0",
      // since we are assuming signed comparison by !equalityOnly
      Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
    else if (Immed == -1 && PredCond == PPC::PRED_LE)
      // We convert "less than or equal to -1" into "less than 0".
      Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
    else if (Immed == 1 && PredCond == PPC::PRED_LT)
      // We convert "less than 1" into "less than or equal to 0".
      Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
    else if (Immed == 1 && PredCond == PPC::PRED_GE)
      // We convert "greater than or equal to 1" into "greater than 0".
      Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
    else
      return false;

    PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred));
  }

  // Search for Sub.
  --I;

  // Get ready to iterate backward from CmpInstr.
  MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();

  for (; I != E && !noSub; --I) {
    const MachineInstr &Instr = *I;
    unsigned IOpC = Instr.getOpcode();

    if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
                             Instr.readsRegister(PPC::CR0, TRI)))
      // This instruction modifies or uses the record condition register after
      // the one we want to change. While we could do this transformation, it
      // would likely not be profitable. This transformation removes one
      // instruction, and so even forcing RA to generate one move probably
      // makes it unprofitable.
      return false;

    // Check whether CmpInstr can be made redundant by the current instruction.
    if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
         OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
        (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
        ((Instr.getOperand(1).getReg() == SrcReg &&
          Instr.getOperand(2).getReg() == SrcReg2) ||
        (Instr.getOperand(1).getReg() == SrcReg2 &&
         Instr.getOperand(2).getReg() == SrcReg))) {
      Sub = &*I;
      break;
    }

    if (I == B)
      // The 'and' is below the comparison instruction.
      return false;
  }

  // Return false if no candidates exist.
  if (!MI && !Sub)
    return false;

  // The single candidate is called MI.
  if (!MI) MI = Sub;

  int NewOpC = -1;
  int MIOpC = MI->getOpcode();
  if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec ||
      MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec)
    NewOpC = MIOpC;
  else {
    NewOpC = PPC::getRecordFormOpcode(MIOpC);
    if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
      NewOpC = MIOpC;
  }

  // FIXME: On the non-embedded POWER architectures, only some of the record
  // forms are fast, and we should use only the fast ones.

  // The defining instruction has a record form (or is already a record
  // form). It is possible, however, that we'll need to reverse the condition
  // code of the users.
  if (NewOpC == -1)
    return false;

  // This transformation should not be performed if `nsw` is missing and is not 
  // `equalityOnly` comparison. Since if there is overflow, sub_lt, sub_gt in 
  // CRReg do not reflect correct order. If `equalityOnly` is true, sub_eq in 
  // CRReg can reflect if compared values are equal, this optz is still valid. 
  if (!equalityOnly && (NewOpC == PPC::SUBF_rec || NewOpC == PPC::SUBF8_rec) && 
      Sub && !Sub->getFlag(MachineInstr::NoSWrap)) 
    return false; 
 
  // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
  // needs to be updated to be based on SUB.  Push the condition code
  // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
  // condition code of these operands will be modified.
  // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
  // comparison against 0, which may modify predicate.
  bool ShouldSwap = false;
  if (Sub && Value == 0) {
    ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
      Sub->getOperand(2).getReg() == SrcReg;

    // The operands to subf are the opposite of sub, so only in the fixed-point
    // case, invert the order.
    ShouldSwap = !ShouldSwap;
  }

  if (ShouldSwap)
    for (MachineRegisterInfo::use_instr_iterator
         I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
         I != IE; ++I) {
      MachineInstr *UseMI = &*I;
      if (UseMI->getOpcode() == PPC::BCC) {
        PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
        unsigned PredCond = PPC::getPredicateCondition(Pred);
        assert((!equalityOnly ||
                PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
               "Invalid predicate for equality-only optimization");
        (void)PredCond; // To suppress warning in release build.
        PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
                                PPC::getSwappedPredicate(Pred)));
      } else if (UseMI->getOpcode() == PPC::ISEL ||
                 UseMI->getOpcode() == PPC::ISEL8) {
        unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
        assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
               "Invalid CR bit for equality-only optimization");

        if (NewSubReg == PPC::sub_lt)
          NewSubReg = PPC::sub_gt;
        else if (NewSubReg == PPC::sub_gt)
          NewSubReg = PPC::sub_lt;

        SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
                                                 NewSubReg));
      } else // We need to abort on a user we don't understand.
        return false;
    }
  assert(!(Value != 0 && ShouldSwap) &&
         "Non-zero immediate support and ShouldSwap"
         "may conflict in updating predicate");

  // Create a new virtual register to hold the value of the CR set by the
  // record-form instruction. If the instruction was not previously in
  // record form, then set the kill flag on the CR.
  CmpInstr.eraseFromParent();

  MachineBasicBlock::iterator MII = MI;
  BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
          get(TargetOpcode::COPY), CRReg)
    .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);

  // Even if CR0 register were dead before, it is alive now since the
  // instruction we just built uses it.
  MI->clearRegisterDeads(PPC::CR0);

  if (MIOpC != NewOpC) {
    // We need to be careful here: we're replacing one instruction with
    // another, and we need to make sure that we get all of the right
    // implicit uses and defs. On the other hand, the caller may be holding
    // an iterator to this instruction, and so we can't delete it (this is
    // specifically the case if this is the instruction directly after the
    // compare).

    // Rotates are expensive instructions. If we're emitting a record-form
    // rotate that can just be an andi/andis, we should just emit that.
    if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
      Register GPRRes = MI->getOperand(0).getReg();
      int64_t SH = MI->getOperand(2).getImm();
      int64_t MB = MI->getOperand(3).getImm();
      int64_t ME = MI->getOperand(4).getImm();
      // We can only do this if both the start and end of the mask are in the
      // same halfword.
      bool MBInLoHWord = MB >= 16;
      bool MEInLoHWord = ME >= 16;
      uint64_t Mask = ~0LLU;

      if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
        Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
        // The mask value needs to shift right 16 if we're emitting andis.
        Mask >>= MBInLoHWord ? 0 : 16;
        NewOpC = MIOpC == PPC::RLWINM
                     ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec)
                     : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec);
      } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
                 (ME - MB + 1 == SH) && (MB >= 16)) {
        // If we are rotating by the exact number of bits as are in the mask
        // and the mask is in the least significant bits of the register,
        // that's just an andis. (as long as the GPR result has no uses).
        Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
        Mask >>= 16;
        NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec;
      }
      // If we've set the mask, we can transform.
      if (Mask != ~0LLU) {
        MI->RemoveOperand(4);
        MI->RemoveOperand(3);
        MI->getOperand(2).setImm(Mask);
        NumRcRotatesConvertedToRcAnd++;
      }
    } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
      int64_t MB = MI->getOperand(3).getImm();
      if (MB >= 48) {
        uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
        NewOpC = PPC::ANDI8_rec;
        MI->RemoveOperand(3);
        MI->getOperand(2).setImm(Mask);
        NumRcRotatesConvertedToRcAnd++;
      }
    }

    const MCInstrDesc &NewDesc = get(NewOpC);
    MI->setDesc(NewDesc);

    if (NewDesc.ImplicitDefs)
      for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
           *ImpDefs; ++ImpDefs)
        if (!MI->definesRegister(*ImpDefs))
          MI->addOperand(*MI->getParent()->getParent(),
                         MachineOperand::CreateReg(*ImpDefs, true, true));
    if (NewDesc.ImplicitUses)
      for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
           *ImpUses; ++ImpUses)
        if (!MI->readsRegister(*ImpUses))
          MI->addOperand(*MI->getParent()->getParent(),
                         MachineOperand::CreateReg(*ImpUses, false, true));
  }
  assert(MI->definesRegister(PPC::CR0) &&
         "Record-form instruction does not define cr0?");

  // Modify the condition code of operands in OperandsToUpdate.
  // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
  // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
  for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
    PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);

  for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
    SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);

  return true;
}

bool PPCInstrInfo::getMemOperandsWithOffsetWidth( 
    const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, 
    int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, 
    const TargetRegisterInfo *TRI) const { 
  const MachineOperand *BaseOp; 
  OffsetIsScalable = false; 
  if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI)) 
    return false; 
  BaseOps.push_back(BaseOp); 
  return true; 
} 
 
static bool isLdStSafeToCluster(const MachineInstr &LdSt, 
                                const TargetRegisterInfo *TRI) { 
  // If this is a volatile load/store, don't mess with it. 
  if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3) 
    return false; 
 
  if (LdSt.getOperand(2).isFI()) 
    return true; 
 
  assert(LdSt.getOperand(2).isReg() && "Expected a reg operand."); 
  // Can't cluster if the instruction modifies the base register 
  // or it is update form. e.g. ld r2,3(r2) 
  if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI)) 
    return false; 
 
  return true; 
} 
 
// Only cluster instruction pair that have the same opcode, and they are 
// clusterable according to PowerPC specification. 
static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc, 
                                     const PPCSubtarget &Subtarget) { 
  switch (FirstOpc) { 
  default: 
    return false; 
  case PPC::STD: 
  case PPC::STFD: 
  case PPC::STXSD: 
  case PPC::DFSTOREf64: 
    return FirstOpc == SecondOpc; 
  // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with 
  // 32bit and 64bit instruction selection. They are clusterable pair though 
  // they are different opcode. 
  case PPC::STW: 
  case PPC::STW8: 
    return SecondOpc == PPC::STW || SecondOpc == PPC::STW8; 
  } 
} 
 
bool PPCInstrInfo::shouldClusterMemOps( 
    ArrayRef<const MachineOperand *> BaseOps1, 
    ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads, 
    unsigned NumBytes) const { 
 
  assert(BaseOps1.size() == 1 && BaseOps2.size() == 1); 
  const MachineOperand &BaseOp1 = *BaseOps1.front(); 
  const MachineOperand &BaseOp2 = *BaseOps2.front(); 
  assert((BaseOp1.isReg() || BaseOp1.isFI()) && 
         "Only base registers and frame indices are supported."); 
 
  // The NumLoads means the number of loads that has been clustered. 
  // Don't cluster memory op if there are already two ops clustered at least. 
  if (NumLoads > 2) 
    return false; 
 
  // Cluster the load/store only when they have the same base 
  // register or FI. 
  if ((BaseOp1.isReg() != BaseOp2.isReg()) || 
      (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) || 
      (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex())) 
    return false; 
 
  // Check if the load/store are clusterable according to the PowerPC 
  // specification. 
  const MachineInstr &FirstLdSt = *BaseOp1.getParent(); 
  const MachineInstr &SecondLdSt = *BaseOp2.getParent(); 
  unsigned FirstOpc = FirstLdSt.getOpcode(); 
  unsigned SecondOpc = SecondLdSt.getOpcode(); 
  const TargetRegisterInfo *TRI = &getRegisterInfo(); 
  // Cluster the load/store only when they have the same opcode, and they are 
  // clusterable opcode according to PowerPC specification. 
  if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget)) 
    return false; 
 
  // Can't cluster load/store that have ordered or volatile memory reference. 
  if (!isLdStSafeToCluster(FirstLdSt, TRI) || 
      !isLdStSafeToCluster(SecondLdSt, TRI)) 
    return false; 
 
  int64_t Offset1 = 0, Offset2 = 0; 
  unsigned Width1 = 0, Width2 = 0; 
  const MachineOperand *Base1 = nullptr, *Base2 = nullptr; 
  if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) || 
      !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) || 
      Width1 != Width2) 
    return false; 
 
  assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 && 
         "getMemOperandWithOffsetWidth return incorrect base op"); 
  // The caller should already have ordered FirstMemOp/SecondMemOp by offset. 
  assert(Offset1 <= Offset2 && "Caller should have ordered offsets."); 
  return Offset1 + Width1 == Offset2; 
} 
 
/// GetInstSize - Return the number of bytes of code the specified
/// instruction may be.  This returns the maximum number of bytes.
///
unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
  unsigned Opcode = MI.getOpcode();

  if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
    const MachineFunction *MF = MI.getParent()->getParent();
    const char *AsmStr = MI.getOperand(0).getSymbolName();
    return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
  } else if (Opcode == TargetOpcode::STACKMAP) {
    StackMapOpers Opers(&MI);
    return Opers.getNumPatchBytes();
  } else if (Opcode == TargetOpcode::PATCHPOINT) {
    PatchPointOpers Opers(&MI);
    return Opers.getNumPatchBytes();
  } else {
    return get(Opcode).getSize();
  }
}

std::pair<unsigned, unsigned>
PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
  const unsigned Mask = PPCII::MO_ACCESS_MASK;
  return std::make_pair(TF & Mask, TF & ~Mask);
}

ArrayRef<std::pair<unsigned, const char *>>
PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
  using namespace PPCII;
  static const std::pair<unsigned, const char *> TargetFlags[] = {
      {MO_LO, "ppc-lo"},
      {MO_HA, "ppc-ha"},
      {MO_TPREL_LO, "ppc-tprel-lo"},
      {MO_TPREL_HA, "ppc-tprel-ha"},
      {MO_DTPREL_LO, "ppc-dtprel-lo"},
      {MO_TLSLD_LO, "ppc-tlsld-lo"},
      {MO_TOC_LO, "ppc-toc-lo"},
      {MO_TLS, "ppc-tls"}};
  return makeArrayRef(TargetFlags);
}

ArrayRef<std::pair<unsigned, const char *>>
PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
  using namespace PPCII;
  static const std::pair<unsigned, const char *> TargetFlags[] = {
      {MO_PLT, "ppc-plt"},
      {MO_PIC_FLAG, "ppc-pic"},
      {MO_PCREL_FLAG, "ppc-pcrel"},
      {MO_GOT_FLAG, "ppc-got"}, 
      {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"}, 
      {MO_TLSGD_FLAG, "ppc-tlsgd"}, 
      {MO_TLSLD_FLAG, "ppc-tlsld"}, 
      {MO_TPREL_FLAG, "ppc-tprel"}, 
      {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"}, 
      {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"}, 
      {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}}; 
  return makeArrayRef(TargetFlags);
}

// Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
// The VSX versions have the advantage of a full 64-register target whereas
// the FP ones have the advantage of lower latency and higher throughput. So
// what we are after is using the faster instructions in low register pressure
// situations and using the larger register file in high register pressure
// situations.
bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
    unsigned UpperOpcode, LowerOpcode;
    switch (MI.getOpcode()) {
    case PPC::DFLOADf32:
      UpperOpcode = PPC::LXSSP;
      LowerOpcode = PPC::LFS;
      break;
    case PPC::DFLOADf64:
      UpperOpcode = PPC::LXSD;
      LowerOpcode = PPC::LFD;
      break;
    case PPC::DFSTOREf32:
      UpperOpcode = PPC::STXSSP;
      LowerOpcode = PPC::STFS;
      break;
    case PPC::DFSTOREf64:
      UpperOpcode = PPC::STXSD;
      LowerOpcode = PPC::STFD;
      break;
    case PPC::XFLOADf32:
      UpperOpcode = PPC::LXSSPX;
      LowerOpcode = PPC::LFSX;
      break;
    case PPC::XFLOADf64:
      UpperOpcode = PPC::LXSDX;
      LowerOpcode = PPC::LFDX;
      break;
    case PPC::XFSTOREf32:
      UpperOpcode = PPC::STXSSPX;
      LowerOpcode = PPC::STFSX;
      break;
    case PPC::XFSTOREf64:
      UpperOpcode = PPC::STXSDX;
      LowerOpcode = PPC::STFDX;
      break;
    case PPC::LIWAX:
      UpperOpcode = PPC::LXSIWAX;
      LowerOpcode = PPC::LFIWAX;
      break;
    case PPC::LIWZX:
      UpperOpcode = PPC::LXSIWZX;
      LowerOpcode = PPC::LFIWZX;
      break;
    case PPC::STIWX:
      UpperOpcode = PPC::STXSIWX;
      LowerOpcode = PPC::STFIWX;
      break;
    default:
      llvm_unreachable("Unknown Operation!");
    }

    Register TargetReg = MI.getOperand(0).getReg();
    unsigned Opcode;
    if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
        (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
      Opcode = LowerOpcode;
    else
      Opcode = UpperOpcode;
    MI.setDesc(get(Opcode));
    return true;
}

static bool isAnImmediateOperand(const MachineOperand &MO) {
  return MO.isCPI() || MO.isGlobal() || MO.isImm();
}

bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
  auto &MBB = *MI.getParent();
  auto DL = MI.getDebugLoc();

  switch (MI.getOpcode()) {
  case PPC::BUILD_UACC: { 
    MCRegister ACC = MI.getOperand(0).getReg(); 
    MCRegister UACC = MI.getOperand(1).getReg(); 
    if (ACC - PPC::ACC0 != UACC - PPC::UACC0) { 
      MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4; 
      MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4; 
      // FIXME: This can easily be improved to look up to the top of the MBB 
      // to see if the inputs are XXLOR's. If they are and SrcReg is killed, 
      // we can just re-target any such XXLOR's to DstVSR + offset. 
      for (int VecNo = 0; VecNo < 4; VecNo++) 
        BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo) 
            .addReg(SrcVSR + VecNo) 
            .addReg(SrcVSR + VecNo); 
    } 
    // BUILD_UACC is expanded to 4 copies of the underlying vsx regisers. 
    // So after building the 4 copies, we can replace the BUILD_UACC instruction 
    // with a NOP. 
    LLVM_FALLTHROUGH; 
  } 
  case PPC::KILL_PAIR: { 
    MI.setDesc(get(PPC::UNENCODED_NOP)); 
    MI.RemoveOperand(1); 
    MI.RemoveOperand(0); 
    return true; 
  } 
  case TargetOpcode::LOAD_STACK_GUARD: {
    assert(Subtarget.isTargetLinux() &&
           "Only Linux target is expected to contain LOAD_STACK_GUARD");
    const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
    const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
    MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
    MachineInstrBuilder(*MI.getParent()->getParent(), MI)
        .addImm(Offset)
        .addReg(Reg);
    return true;
  }
  case PPC::DFLOADf32:
  case PPC::DFLOADf64:
  case PPC::DFSTOREf32:
  case PPC::DFSTOREf64: {
    assert(Subtarget.hasP9Vector() &&
           "Invalid D-Form Pseudo-ops on Pre-P9 target.");
    assert(MI.getOperand(2).isReg() &&
           isAnImmediateOperand(MI.getOperand(1)) &&
           "D-form op must have register and immediate operands");
    return expandVSXMemPseudo(MI);
  }
  case PPC::XFLOADf32:
  case PPC::XFSTOREf32:
  case PPC::LIWAX:
  case PPC::LIWZX:
  case PPC::STIWX: {
    assert(Subtarget.hasP8Vector() &&
           "Invalid X-Form Pseudo-ops on Pre-P8 target.");
    assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
           "X-form op must have register and register operands");
    return expandVSXMemPseudo(MI);
  }
  case PPC::XFLOADf64:
  case PPC::XFSTOREf64: {
    assert(Subtarget.hasVSX() &&
           "Invalid X-Form Pseudo-ops on target that has no VSX.");
    assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
           "X-form op must have register and register operands");
    return expandVSXMemPseudo(MI);
  }
  case PPC::SPILLTOVSR_LD: {
    Register TargetReg = MI.getOperand(0).getReg();
    if (PPC::VSFRCRegClass.contains(TargetReg)) {
      MI.setDesc(get(PPC::DFLOADf64));
      return expandPostRAPseudo(MI);
    }
    else
      MI.setDesc(get(PPC::LD));
    return true;
  }
  case PPC::SPILLTOVSR_ST: {
    Register SrcReg = MI.getOperand(0).getReg();
    if (PPC::VSFRCRegClass.contains(SrcReg)) {
      NumStoreSPILLVSRRCAsVec++;
      MI.setDesc(get(PPC::DFSTOREf64));
      return expandPostRAPseudo(MI);
    } else {
      NumStoreSPILLVSRRCAsGpr++;
      MI.setDesc(get(PPC::STD));
    }
    return true;
  }
  case PPC::SPILLTOVSR_LDX: {
    Register TargetReg = MI.getOperand(0).getReg();
    if (PPC::VSFRCRegClass.contains(TargetReg))
      MI.setDesc(get(PPC::LXSDX));
    else
      MI.setDesc(get(PPC::LDX));
    return true;
  }
  case PPC::SPILLTOVSR_STX: {
    Register SrcReg = MI.getOperand(0).getReg();
    if (PPC::VSFRCRegClass.contains(SrcReg)) {
      NumStoreSPILLVSRRCAsVec++;
      MI.setDesc(get(PPC::STXSDX));
    } else {
      NumStoreSPILLVSRRCAsGpr++;
      MI.setDesc(get(PPC::STDX));
    }
    return true;
  }

  case PPC::CFENCE8: {
    auto Val = MI.getOperand(0).getReg();
    BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
    BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
        .addImm(PPC::PRED_NE_MINUS)
        .addReg(PPC::CR7)
        .addImm(1);
    MI.setDesc(get(PPC::ISYNC));
    MI.RemoveOperand(0);
    return true;
  }
  }
  return false;
}

// Essentially a compile-time implementation of a compare->isel sequence.
// It takes two constants to compare, along with the true/false registers
// and the comparison type (as a subreg to a CR field) and returns one
// of the true/false registers, depending on the comparison results.
static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
                          unsigned TrueReg, unsigned FalseReg,
                          unsigned CRSubReg) {
  // Signed comparisons. The immediates are assumed to be sign-extended.
  if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
    switch (CRSubReg) {
    default: llvm_unreachable("Unknown integer comparison type.");
    case PPC::sub_lt:
      return Imm1 < Imm2 ? TrueReg : FalseReg;
    case PPC::sub_gt:
      return Imm1 > Imm2 ? TrueReg : FalseReg;
    case PPC::sub_eq:
      return Imm1 == Imm2 ? TrueReg : FalseReg;
    }
  }
  // Unsigned comparisons.
  else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
    switch (CRSubReg) {
    default: llvm_unreachable("Unknown integer comparison type.");
    case PPC::sub_lt:
      return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
    case PPC::sub_gt:
      return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
    case PPC::sub_eq:
      return Imm1 == Imm2 ? TrueReg : FalseReg;
    }
  }
  return PPC::NoRegister;
}

void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
                                              unsigned OpNo,
                                              int64_t Imm) const {
  assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
  // Replace the REG with the Immediate.
  Register InUseReg = MI.getOperand(OpNo).getReg();
  MI.getOperand(OpNo).ChangeToImmediate(Imm);

  if (MI.implicit_operands().empty())
    return;

  // We need to make sure that the MI didn't have any implicit use
  // of this REG any more.
  const TargetRegisterInfo *TRI = &getRegisterInfo();
  int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
  if (UseOpIdx >= 0) {
    MachineOperand &MO = MI.getOperand(UseOpIdx);
    if (MO.isImplicit())
      // The operands must always be in the following order:
      // - explicit reg defs,
      // - other explicit operands (reg uses, immediates, etc.),
      // - implicit reg defs
      // - implicit reg uses
      // Therefore, removing the implicit operand won't change the explicit
      // operands layout.
      MI.RemoveOperand(UseOpIdx);
  }
}

// Replace an instruction with one that materializes a constant (and sets
// CR0 if the original instruction was a record-form instruction).
void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
                                      const LoadImmediateInfo &LII) const {
  // Remove existing operands.
  int OperandToKeep = LII.SetCR ? 1 : 0;
  for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
    MI.RemoveOperand(i);

  // Replace the instruction.
  if (LII.SetCR) {
    MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
    // Set the immediate.
    MachineInstrBuilder(*MI.getParent()->getParent(), MI)
        .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
    return;
  }
  else
    MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));

  // Set the immediate.
  MachineInstrBuilder(*MI.getParent()->getParent(), MI)
      .addImm(LII.Imm);
}

MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI,
                                           bool &SeenIntermediateUse) const {
  assert(!MI.getParent()->getParent()->getRegInfo().isSSA() &&
         "Should be called after register allocation.");
  const TargetRegisterInfo *TRI = &getRegisterInfo();
  MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
  It++;
  SeenIntermediateUse = false;
  for (; It != E; ++It) {
    if (It->modifiesRegister(Reg, TRI))
      return &*It;
    if (It->readsRegister(Reg, TRI))
      SeenIntermediateUse = true;
  }
  return nullptr;
}

MachineInstr *PPCInstrInfo::getForwardingDefMI(
  MachineInstr &MI,
  unsigned &OpNoForForwarding,
  bool &SeenIntermediateUse) const {
  OpNoForForwarding = ~0U;
  MachineInstr *DefMI = nullptr;
  MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
  const TargetRegisterInfo *TRI = &getRegisterInfo();
  // If we're in SSA, get the defs through the MRI. Otherwise, only look
  // within the basic block to see if the register is defined using an
  // LI/LI8/ADDI/ADDI8.
  if (MRI->isSSA()) {
    for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
      if (!MI.getOperand(i).isReg())
        continue;
      Register Reg = MI.getOperand(i).getReg();
      if (!Register::isVirtualRegister(Reg))
        continue;
      unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
      if (Register::isVirtualRegister(TrueReg)) {
        DefMI = MRI->getVRegDef(TrueReg);
        if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8 ||
            DefMI->getOpcode() == PPC::ADDI ||
            DefMI->getOpcode() == PPC::ADDI8) {
          OpNoForForwarding = i;
          // The ADDI and LI operand maybe exist in one instruction at same
          // time. we prefer to fold LI operand as LI only has one Imm operand
          // and is more possible to be converted. So if current DefMI is
          // ADDI/ADDI8, we continue to find possible LI/LI8.
          if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8)
            break;
        }
      }
    }
  } else {
    // Looking back through the definition for each operand could be expensive,
    // so exit early if this isn't an instruction that either has an immediate
    // form or is already an immediate form that we can handle.
    ImmInstrInfo III;
    unsigned Opc = MI.getOpcode();
    bool ConvertibleImmForm =
        Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI ||
        Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
        Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI ||
        Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec ||
        Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
        Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 ||
        Opc == PPC::RLWINM8_rec;
    bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
                       ? isVFRegister(MI.getOperand(0).getReg())
                       : false;
    if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
      return nullptr;

    // Don't convert or %X, %Y, %Y since that's just a register move.
    if ((Opc == PPC::OR || Opc == PPC::OR8) &&
        MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
      return nullptr;
    for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
      MachineOperand &MO = MI.getOperand(i);
      SeenIntermediateUse = false;
      if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
        Register Reg = MI.getOperand(i).getReg();
        // If we see another use of this reg between the def and the MI,
        // we want to flat it so the def isn't deleted.
        MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse);
        if (DefMI) {
          // Is this register defined by some form of add-immediate (including
          // load-immediate) within this basic block?
          switch (DefMI->getOpcode()) {
          default:
            break;
          case PPC::LI:
          case PPC::LI8:
          case PPC::ADDItocL:
          case PPC::ADDI:
          case PPC::ADDI8:
            OpNoForForwarding = i;
            return DefMI;
          }
        }
      }
    }
  }
  return OpNoForForwarding == ~0U ? nullptr : DefMI;
}

unsigned PPCInstrInfo::getSpillTarget() const {
  // With P10, we may need to spill paired vector registers or accumulator 
  // registers. MMA implies paired vectors, so we can just check that. 
  bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops(); 
  return IsP10Variant ? 2 : Subtarget.hasP9Vector() ? 1 : 0; 
}

const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
  return StoreSpillOpcodesArray[getSpillTarget()];
}

const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
  return LoadSpillOpcodesArray[getSpillTarget()];
}

void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI,
                                     unsigned RegNo) const {
  // Conservatively clear kill flag for the register if the instructions are in
  // different basic blocks and in SSA form, because the kill flag may no longer
  // be right. There is no need to bother with dead flags since defs with no
  // uses will be handled by DCE.
  MachineRegisterInfo &MRI = StartMI->getParent()->getParent()->getRegInfo();
  if (MRI.isSSA() && (StartMI->getParent() != EndMI->getParent())) {
    MRI.clearKillFlags(RegNo);
    return;
  }

  // Instructions between [StartMI, EndMI] should be in same basic block.
  assert((StartMI->getParent() == EndMI->getParent()) &&
         "Instructions are not in same basic block");

  // If before RA, StartMI may be def through COPY, we need to adjust it to the
  // real def. See function getForwardingDefMI.
  if (MRI.isSSA()) {
    bool Reads, Writes;
    std::tie(Reads, Writes) = StartMI->readsWritesVirtualRegister(RegNo);
    if (!Reads && !Writes) {
      assert(Register::isVirtualRegister(RegNo) &&
             "Must be a virtual register");
      // Get real def and ignore copies.
      StartMI = MRI.getVRegDef(RegNo);
    }
  }

  bool IsKillSet = false;

  auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
    MachineOperand &MO = MI.getOperand(Index);
    if (MO.isReg() && MO.isUse() && MO.isKill() &&
        getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
      MO.setIsKill(false);
  };

  // Set killed flag for EndMI.
  // No need to do anything if EndMI defines RegNo.
  int UseIndex =
      EndMI->findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
  if (UseIndex != -1) {
    EndMI->getOperand(UseIndex).setIsKill(true);
    IsKillSet = true;
    // Clear killed flag for other EndMI operands related to RegNo. In some
    // upexpected cases, killed may be set multiple times for same register
    // operand in same MI.
    for (int i = 0, e = EndMI->getNumOperands(); i != e; ++i)
      if (i != UseIndex)
        clearOperandKillInfo(*EndMI, i);
  }

  // Walking the inst in reverse order (EndMI -> StartMI].
  MachineBasicBlock::reverse_iterator It = *EndMI;
  MachineBasicBlock::reverse_iterator E = EndMI->getParent()->rend();
  // EndMI has been handled above, skip it here.
  It++;
  MachineOperand *MO = nullptr;
  for (; It != E; ++It) {
    // Skip insturctions which could not be a def/use of RegNo.
    if (It->isDebugInstr() || It->isPosition())
      continue;

    // Clear killed flag for all It operands related to RegNo. In some
    // upexpected cases, killed may be set multiple times for same register
    // operand in same MI.
    for (int i = 0, e = It->getNumOperands(); i != e; ++i)
        clearOperandKillInfo(*It, i);

    // If killed is not set, set killed for its last use or set dead for its def
    // if no use found.
    if (!IsKillSet) {
      if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
        // Use found, set it killed.
        IsKillSet = true;
        MO->setIsKill(true);
        continue;
      } else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
                                                  &getRegisterInfo()))) {
        // No use found, set dead for its def.
        assert(&*It == StartMI && "No new def between StartMI and EndMI.");
        MO->setIsDead(true);
        break;
      }
    }

    if ((&*It) == StartMI)
      break;
  }
  // Ensure RegMo liveness is killed after EndMI.
  assert((IsKillSet || (MO && MO->isDead())) &&
         "RegNo should be killed or dead");
}

// This opt tries to convert the following imm form to an index form to save an
// add for stack variables.
// Return false if no such pattern found.
//
// ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
// ADD instr:  ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg
// Imm instr:  Reg            = op OffsetImm, ToBeDeletedReg(killed)
//
// can be converted to:
//
// new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm)
// Index instr:    Reg            = opx ScaleReg, ToBeChangedReg(killed)
//
// In order to eliminate ADD instr, make sure that:
// 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in
//    new ADDI instr and ADDI can only take int16 Imm.
// 2: ToBeChangedReg must be killed in ADD instr and there is no other use
//    between ADDI and ADD instr since its original def in ADDI will be changed
//    in new ADDI instr. And also there should be no new def for it between
//    ADD and Imm instr as ToBeChangedReg will be used in Index instr.
// 3: ToBeDeletedReg must be killed in Imm instr and there is no other use
//    between ADD and Imm instr since ADD instr will be eliminated.
// 4: ScaleReg must not be redefined between ADD and Imm instr since it will be
//    moved to Index instr.
bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const {
  MachineFunction *MF = MI.getParent()->getParent();
  MachineRegisterInfo *MRI = &MF->getRegInfo();
  bool PostRA = !MRI->isSSA();
  // Do this opt after PEI which is after RA. The reason is stack slot expansion
  // in PEI may expose such opportunities since in PEI, stack slot offsets to
  // frame base(OffsetAddi) are determined.
  if (!PostRA)
    return false;
  unsigned ToBeDeletedReg = 0;
  int64_t OffsetImm = 0;
  unsigned XFormOpcode = 0;
  ImmInstrInfo III;

  // Check if Imm instr meets requirement.
  if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm,
                                    III))
    return false;

  bool OtherIntermediateUse = false;
  MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse);

  // Exit if there is other use between ADD and Imm instr or no def found.
  if (OtherIntermediateUse || !ADDMI)
    return false;

  // Check if ADD instr meets requirement.
  if (!isADDInstrEligibleForFolding(*ADDMI))
    return false;

  unsigned ScaleRegIdx = 0;
  int64_t OffsetAddi = 0;
  MachineInstr *ADDIMI = nullptr;

  // Check if there is a valid ToBeChangedReg in ADDMI.
  // 1: It must be killed.
  // 2: Its definition must be a valid ADDIMI.
  // 3: It must satify int16 offset requirement.
  if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm))
    ScaleRegIdx = 2;
  else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm))
    ScaleRegIdx = 1;
  else
    return false;

  assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg.");
  unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg();
  unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg();
  auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start,
                       MachineBasicBlock::iterator End) {
    for (auto It = ++Start; It != End; It++)
      if (It->modifiesRegister(Reg, &getRegisterInfo()))
        return true;
    return false;
  };

  // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is
  // treated as special zero when ScaleReg is R0/X0 register.
  if (III.ZeroIsSpecialOrig == III.ImmOpNo &&
      (ScaleReg == PPC::R0 || ScaleReg == PPC::X0))
    return false;

  // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr
  // and Imm Instr.
  if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI))
    return false;

  // Now start to do the transformation.
  LLVM_DEBUG(dbgs() << "Replace instruction: "
                    << "\n");
  LLVM_DEBUG(ADDIMI->dump());
  LLVM_DEBUG(ADDMI->dump());
  LLVM_DEBUG(MI.dump());
  LLVM_DEBUG(dbgs() << "with: "
                    << "\n");

  // Update ADDI instr.
  ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm);

  // Update Imm instr.
  MI.setDesc(get(XFormOpcode));
  MI.getOperand(III.ImmOpNo)
      .ChangeToRegister(ScaleReg, false, false,
                        ADDMI->getOperand(ScaleRegIdx).isKill());

  MI.getOperand(III.OpNoForForwarding)
      .ChangeToRegister(ToBeChangedReg, false, false, true);

  // Eliminate ADD instr.
  ADDMI->eraseFromParent();

  LLVM_DEBUG(ADDIMI->dump());
  LLVM_DEBUG(MI.dump());

  return true;
}

bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI,
                                                 int64_t &Imm) const {
  unsigned Opc = ADDIMI.getOpcode();

  // Exit if the instruction is not ADDI.
  if (Opc != PPC::ADDI && Opc != PPC::ADDI8)
    return false;

  // The operand may not necessarily be an immediate - it could be a relocation.
  if (!ADDIMI.getOperand(2).isImm())
    return false;

  Imm = ADDIMI.getOperand(2).getImm();

  return true;
}

bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const {
  unsigned Opc = ADDMI.getOpcode();

  // Exit if the instruction is not ADD.
  return Opc == PPC::ADD4 || Opc == PPC::ADD8;
}

bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI,
                                                unsigned &ToBeDeletedReg,
                                                unsigned &XFormOpcode,
                                                int64_t &OffsetImm,
                                                ImmInstrInfo &III) const {
  // Only handle load/store.
  if (!MI.mayLoadOrStore())
    return false;

  unsigned Opc = MI.getOpcode();

  XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc);

  // Exit if instruction has no index form.
  if (XFormOpcode == PPC::INSTRUCTION_LIST_END)
    return false;

  // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap.
  if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()),
                       III, true))
    return false;

  if (!III.IsSummingOperands)
    return false;

  MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo);
  MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding);
  // Only support imm operands, not relocation slots or others.
  if (!ImmOperand.isImm())
    return false;

  assert(RegOperand.isReg() && "Instruction format is not right");

  // There are other use for ToBeDeletedReg after Imm instr, can not delete it.
  if (!RegOperand.isKill())
    return false;

  ToBeDeletedReg = RegOperand.getReg();
  OffsetImm = ImmOperand.getImm();

  return true;
}

bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
                                         MachineInstr *&ADDIMI,
                                         int64_t &OffsetAddi,
                                         int64_t OffsetImm) const {
  assert((Index == 1 || Index == 2) && "Invalid operand index for add.");
  MachineOperand &MO = ADDMI->getOperand(Index);

  if (!MO.isKill())
    return false;

  bool OtherIntermediateUse = false;

  ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse);
  // Currently handle only one "add + Imminstr" pair case, exit if other
  // intermediate use for ToBeChangedReg found.
  // TODO: handle the cases where there are other "add + Imminstr" pairs
  // with same offset in Imminstr which is like:
  //
  // ADDI instr: ToBeChangedReg  = ADDI FrameBaseReg, OffsetAddi
  // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1
  // Imm instr1: Reg1            = op1 OffsetImm, ToBeDeletedReg1(killed)
  // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2
  // Imm instr2: Reg2            = op2 OffsetImm, ToBeDeletedReg2(killed)
  //
  // can be converted to:
  //
  // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg,
  //                                       (OffsetAddi + OffsetImm)
  // Index instr1:   Reg1           = opx1 ScaleReg1, ToBeChangedReg
  // Index instr2:   Reg2           = opx2 ScaleReg2, ToBeChangedReg(killed)

  if (OtherIntermediateUse || !ADDIMI)
    return false;
  // Check if ADDI instr meets requirement.
  if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi))
    return false;

  if (isInt<16>(OffsetAddi + OffsetImm))
    return true;
  return false;
}

// If this instruction has an immediate form and one of its operands is a
// result of a load-immediate or an add-immediate, convert it to
// the immediate form if the constant is in range.
bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
                                          MachineInstr **KilledDef) const {
  MachineFunction *MF = MI.getParent()->getParent();
  MachineRegisterInfo *MRI = &MF->getRegInfo();
  bool PostRA = !MRI->isSSA();
  bool SeenIntermediateUse = true;
  unsigned ForwardingOperand = ~0U;
  MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
                                           SeenIntermediateUse);
  if (!DefMI)
    return false;
  assert(ForwardingOperand < MI.getNumOperands() &&
         "The forwarding operand needs to be valid at this point");
  bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
  bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
  if (KilledDef && KillFwdDefMI)
    *KilledDef = DefMI;

  // If this is a imm instruction and its register operands is produced by ADDI,
  // put the imm into imm inst directly.
  if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) !=
          PPC::INSTRUCTION_LIST_END &&
      transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand))
    return true;

  ImmInstrInfo III;
  bool IsVFReg = MI.getOperand(0).isReg()
                     ? isVFRegister(MI.getOperand(0).getReg())
                     : false;
  bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
  // If this is a reg+reg instruction that has a reg+imm form,
  // and one of the operands is produced by an add-immediate,
  // try to convert it.
  if (HasImmForm &&
      transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
                                 KillFwdDefMI))
    return true;

  // If this is a reg+reg instruction that has a reg+imm form,
  // and one of the operands is produced by LI, convert it now.
  if (HasImmForm &&
      transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI))
    return true;

  // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI
  // can be simpified to LI.
  if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef))
    return true;

  return false;
}

bool PPCInstrInfo::combineRLWINM(MachineInstr &MI, 
                                 MachineInstr **ToErase) const { 
  MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 
  unsigned FoldingReg = MI.getOperand(1).getReg(); 
  if (!Register::isVirtualRegister(FoldingReg)) 
    return false; 
  MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg); 
  if (SrcMI->getOpcode() != PPC::RLWINM && 
      SrcMI->getOpcode() != PPC::RLWINM_rec && 
      SrcMI->getOpcode() != PPC::RLWINM8 && 
      SrcMI->getOpcode() != PPC::RLWINM8_rec) 
    return false; 
  assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() && 
          MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() && 
          SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) && 
         "Invalid PPC::RLWINM Instruction!"); 
  uint64_t SHSrc = SrcMI->getOperand(2).getImm(); 
  uint64_t SHMI = MI.getOperand(2).getImm(); 
  uint64_t MBSrc = SrcMI->getOperand(3).getImm(); 
  uint64_t MBMI = MI.getOperand(3).getImm(); 
  uint64_t MESrc = SrcMI->getOperand(4).getImm(); 
  uint64_t MEMI = MI.getOperand(4).getImm(); 
 
  assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) && 
         "Invalid PPC::RLWINM Instruction!"); 
  // If MBMI is bigger than MEMI, we always can not get run of ones. 
  // RotatedSrcMask non-wrap: 
  //                 0........31|32........63 
  // RotatedSrcMask:   B---E        B---E 
  // MaskMI:         -----------|--E  B------ 
  // Result:           -----          ---      (Bad candidate) 
  // 
  // RotatedSrcMask wrap: 
  //                 0........31|32........63 
  // RotatedSrcMask: --E   B----|--E    B---- 
  // MaskMI:         -----------|--E  B------ 
  // Result:         ---   -----|---    -----  (Bad candidate) 
  // 
  // One special case is RotatedSrcMask is a full set mask. 
  // RotatedSrcMask full: 
  //                 0........31|32........63 
  // RotatedSrcMask: ------EB---|-------EB--- 
  // MaskMI:         -----------|--E  B------ 
  // Result:         -----------|---  -------  (Good candidate) 
 
  // Mark special case. 
  bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31); 
 
  // For other MBMI > MEMI cases, just return. 
  if ((MBMI > MEMI) && !SrcMaskFull) 
    return false; 
 
  // Handle MBMI <= MEMI cases. 
  APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI); 
  // In MI, we only need low 32 bits of SrcMI, just consider about low 32 
  // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0, 
  // while in PowerPC ISA, lowerest bit is at index 63. 
  APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc); 
 
  APInt RotatedSrcMask = MaskSrc.rotl(SHMI); 
  APInt FinalMask = RotatedSrcMask & MaskMI; 
  uint32_t NewMB, NewME; 
  bool Simplified = false; 
 
  // If final mask is 0, MI result should be 0 too. 
  if (FinalMask.isNullValue()) { 
    bool Is64Bit = 
        (MI.getOpcode() == PPC::RLWINM8 || MI.getOpcode() == PPC::RLWINM8_rec); 
    Simplified = true; 
    LLVM_DEBUG(dbgs() << "Replace Instr: "); 
    LLVM_DEBUG(MI.dump()); 
 
    if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) { 
      // Replace MI with "LI 0" 
      MI.RemoveOperand(4); 
      MI.RemoveOperand(3); 
      MI.RemoveOperand(2); 
      MI.getOperand(1).ChangeToImmediate(0); 
      MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI)); 
    } else { 
      // Replace MI with "ANDI_rec reg, 0" 
      MI.RemoveOperand(4); 
      MI.RemoveOperand(3); 
      MI.getOperand(2).setImm(0); 
      MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 
      MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 
      if (SrcMI->getOperand(1).isKill()) { 
        MI.getOperand(1).setIsKill(true); 
        SrcMI->getOperand(1).setIsKill(false); 
      } else 
        // About to replace MI.getOperand(1), clear its kill flag. 
        MI.getOperand(1).setIsKill(false); 
    } 
 
    LLVM_DEBUG(dbgs() << "With: "); 
    LLVM_DEBUG(MI.dump()); 
 
  } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) && 
              NewMB <= NewME) || 
             SrcMaskFull) { 
    // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger 
    // than NewME. Otherwise we get a 64 bit value after folding, but MI 
    // return a 32 bit value. 
    Simplified = true; 
    LLVM_DEBUG(dbgs() << "Converting Instr: "); 
    LLVM_DEBUG(MI.dump()); 
 
    uint16_t NewSH = (SHSrc + SHMI) % 32; 
    MI.getOperand(2).setImm(NewSH); 
    // If SrcMI mask is full, no need to update MBMI and MEMI. 
    if (!SrcMaskFull) { 
      MI.getOperand(3).setImm(NewMB); 
      MI.getOperand(4).setImm(NewME); 
    } 
    MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 
    if (SrcMI->getOperand(1).isKill()) { 
      MI.getOperand(1).setIsKill(true); 
      SrcMI->getOperand(1).setIsKill(false); 
    } else 
      // About to replace MI.getOperand(1), clear its kill flag. 
      MI.getOperand(1).setIsKill(false); 
 
    LLVM_DEBUG(dbgs() << "To: "); 
    LLVM_DEBUG(MI.dump()); 
  } 
  if (Simplified & MRI->use_nodbg_empty(FoldingReg) && 
      !SrcMI->hasImplicitDef()) { 
    // If FoldingReg has no non-debug use and it has no implicit def (it 
    // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI. 
    // Otherwise keep it. 
    *ToErase = SrcMI; 
    LLVM_DEBUG(dbgs() << "Delete dead instruction: "); 
    LLVM_DEBUG(SrcMI->dump()); 
  } 
  return Simplified; 
} 
 
bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
                                   ImmInstrInfo &III, bool PostRA) const {
  // The vast majority of the instructions would need their operand 2 replaced
  // with an immediate when switching to the reg+imm form. A marked exception
  // are the update form loads/stores for which a constant operand 2 would need
  // to turn into a displacement and move operand 1 to the operand 2 position.
  III.ImmOpNo = 2;
  III.OpNoForForwarding = 2;
  III.ImmWidth = 16;
  III.ImmMustBeMultipleOf = 1;
  III.TruncateImmTo = 0;
  III.IsSummingOperands = false;
  switch (Opc) {
  default: return false;
  case PPC::ADD4:
  case PPC::ADD8:
    III.SignedImm = true;
    III.ZeroIsSpecialOrig = 0;
    III.ZeroIsSpecialNew = 1;
    III.IsCommutative = true;
    III.IsSummingOperands = true;
    III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
    break;
  case PPC::ADDC:
  case PPC::ADDC8:
    III.SignedImm = true;
    III.ZeroIsSpecialOrig = 0;
    III.ZeroIsSpecialNew = 0;
    III.IsCommutative = true;
    III.IsSummingOperands = true;
    III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
    break;
  case PPC::ADDC_rec:
    III.SignedImm = true;
    III.ZeroIsSpecialOrig = 0;
    III.ZeroIsSpecialNew = 0;
    III.IsCommutative = true;
    III.IsSummingOperands = true;
    III.ImmOpcode = PPC::ADDIC_rec;
    break;
  case PPC::SUBFC:
  case PPC::SUBFC8:
    III.SignedImm = true;
    III.ZeroIsSpecialOrig = 0;
    III.ZeroIsSpecialNew = 0;
    III.IsCommutative = false;
    III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
    break;
  case PPC::CMPW:
  case PPC::CMPD:
    III.SignedImm = true;
    III.ZeroIsSpecialOrig = 0;
    III.ZeroIsSpecialNew = 0;
    III.IsCommutative = false;
    III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
    break;
  case PPC::CMPLW:
  case PPC::CMPLD:
    III.SignedImm = false;
    III.ZeroIsSpecialOrig = 0;
    III.ZeroIsSpecialNew = 0;
    III.IsCommutative = false;
    III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
    break;
  case PPC::AND_rec:
  case PPC::AND8_rec:
  case PPC::OR:
  case PPC::OR8:
  case PPC::XOR:
  case PPC::XOR8:
    III.SignedImm = false;
    III.ZeroIsSpecialOrig = 0;
    III.ZeroIsSpecialNew = 0;
    III.IsCommutative = true;
    switch(Opc) {
    default: llvm_unreachable("Unknown opcode");
    case PPC::AND_rec:
      III.ImmOpcode = PPC::ANDI_rec;
      break;
    case PPC::AND8_rec:
      III.ImmOpcode = PPC::ANDI8_rec;
      break;
    case PPC::OR: III.ImmOpcode = PPC::ORI; break;
    case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
    case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
    case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
    }
    break;
  case PPC::RLWNM:
  case PPC::RLWNM8:
  case PPC::RLWNM_rec:
  case PPC::RLWNM8_rec:
  case PPC::SLW:
  case PPC::SLW8:
  case PPC::SLW_rec:
  case PPC::SLW8_rec:
  case PPC::SRW:
  case PPC::SRW8:
  case PPC::SRW_rec:
  case PPC::SRW8_rec:
  case PPC::SRAW:
  case PPC::SRAW_rec:
    III.SignedImm = false;
    III.ZeroIsSpecialOrig = 0;
    III.ZeroIsSpecialNew = 0;
    III.IsCommutative = false;
    // This isn't actually true, but the instructions ignore any of the
    // upper bits, so any immediate loaded with an LI is acceptable.
    // This does not apply to shift right algebraic because a value
    // out of range will produce a -1/0.
    III.ImmWidth = 16;
    if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec ||
        Opc == PPC::RLWNM8_rec)
      III.TruncateImmTo = 5;
    else
      III.TruncateImmTo = 6;
    switch(Opc) {
    default: llvm_unreachable("Unknown opcode");
    case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
    case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
    case PPC::RLWNM_rec:
      III.ImmOpcode = PPC::RLWINM_rec;
      break;
    case PPC::RLWNM8_rec:
      III.ImmOpcode = PPC::RLWINM8_rec;
      break;
    case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
    case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
    case PPC::SLW_rec:
      III.ImmOpcode = PPC::RLWINM_rec;
      break;
    case PPC::SLW8_rec:
      III.ImmOpcode = PPC::RLWINM8_rec;
      break;
    case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
    case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
    case PPC::SRW_rec:
      III.ImmOpcode = PPC::RLWINM_rec;
      break;
    case PPC::SRW8_rec:
      III.ImmOpcode = PPC::RLWINM8_rec;
      break;
    case PPC::SRAW:
      III.ImmWidth = 5;
      III.TruncateImmTo = 0;
      III.ImmOpcode = PPC::SRAWI;
      break;
    case PPC::SRAW_rec:
      III.ImmWidth = 5;
      III.TruncateImmTo = 0;
      III.ImmOpcode = PPC::SRAWI_rec;
      break;
    }
    break;
  case PPC::RLDCL:
  case PPC::RLDCL_rec:
  case PPC::RLDCR:
  case PPC::RLDCR_rec:
  case PPC::SLD:
  case PPC::SLD_rec:
  case PPC::SRD:
  case PPC::SRD_rec:
  case PPC::SRAD:
  case PPC::SRAD_rec:
    III.SignedImm = false;
    III.ZeroIsSpecialOrig = 0;
    III.ZeroIsSpecialNew = 0;
    III.IsCommutative = false;
    // This isn't actually true, but the instructions ignore any of the
    // upper bits, so any immediate loaded with an LI is acceptable.
    // This does not apply to shift right algebraic because a value
    // out of range will produce a -1/0.
    III.ImmWidth = 16;
    if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR ||
        Opc == PPC::RLDCR_rec)
      III.TruncateImmTo = 6;
    else
      III.TruncateImmTo = 7;
    switch(Opc) {
    default: llvm_unreachable("Unknown opcode");
    case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
    case PPC::RLDCL_rec:
      III.ImmOpcode = PPC::RLDICL_rec;
      break;
    case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
    case PPC::RLDCR_rec:
      III.ImmOpcode = PPC::RLDICR_rec;
      break;
    case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
    case PPC::SLD_rec:
      III.ImmOpcode = PPC::RLDICR_rec;
      break;
    case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
    case PPC::SRD_rec:
      III.ImmOpcode = PPC::RLDICL_rec;
      break;
    case PPC::SRAD:
      III.ImmWidth = 6;
      III.TruncateImmTo = 0;
      III.ImmOpcode = PPC::SRADI;
       break;
    case PPC::SRAD_rec:
      III.ImmWidth = 6;
      III.TruncateImmTo = 0;
      III.ImmOpcode = PPC::SRADI_rec;
      break;
    }
    break;
  // Loads and stores:
  case PPC::LBZX:
  case PPC::LBZX8:
  case PPC::LHZX:
  case PPC::LHZX8:
  case PPC::LHAX:
  case PPC::LHAX8:
  case PPC::LWZX:
  case PPC::LWZX8:
  case PPC::LWAX:
  case PPC::LDX:
  case PPC::LFSX:
  case PPC::LFDX:
  case PPC::STBX:
  case PPC::STBX8:
  case PPC::STHX:
  case PPC::STHX8:
  case PPC::STWX:
  case PPC::STWX8:
  case PPC::STDX:
  case PPC::STFSX:
  case PPC::STFDX:
    III.SignedImm = true;
    III.ZeroIsSpecialOrig = 1;
    III.ZeroIsSpecialNew = 2;
    III.IsCommutative = true;
    III.IsSummingOperands = true;
    III.ImmOpNo = 1;
    III.OpNoForForwarding = 2;
    switch(Opc) {
    default: llvm_unreachable("Unknown opcode");
    case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
    case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
    case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
    case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
    case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
    case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
    case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
    case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
    case PPC::LWAX:
      III.ImmOpcode = PPC::LWA;
      III.ImmMustBeMultipleOf = 4;
      break;
    case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
    case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
    case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
    case PPC::STBX: III.ImmOpcode = PPC::STB; break;
    case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
    case PPC::STHX: III.ImmOpcode = PPC::STH; break;
    case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
    case PPC::STWX: III.ImmOpcode = PPC::STW; break;
    case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
    case PPC::STDX:
      III.ImmOpcode = PPC::STD;
      III.ImmMustBeMultipleOf = 4;
      break;
    case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
    case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
    }
    break;
  case PPC::LBZUX:
  case PPC::LBZUX8:
  case PPC::LHZUX:
  case PPC::LHZUX8:
  case PPC::LHAUX:
  case PPC::LHAUX8:
  case PPC::LWZUX:
  case PPC::LWZUX8:
  case PPC::LDUX:
  case PPC::LFSUX:
  case PPC::LFDUX:
  case PPC::STBUX:
  case PPC::STBUX8:
  case PPC::STHUX:
  case PPC::STHUX8:
  case PPC::STWUX:
  case PPC::STWUX8:
  case PPC::STDUX:
  case PPC::STFSUX:
  case PPC::STFDUX:
    III.SignedImm = true;
    III.ZeroIsSpecialOrig = 2;
    III.ZeroIsSpecialNew = 3;
    III.IsCommutative = false;
    III.IsSummingOperands = true;
    III.ImmOpNo = 2;
    III.OpNoForForwarding = 3;
    switch(Opc) {
    default: llvm_unreachable("Unknown opcode");
    case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
    case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
    case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
    case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
    case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
    case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
    case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
    case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
    case PPC::LDUX:
      III.ImmOpcode = PPC::LDU;
      III.ImmMustBeMultipleOf = 4;
      break;
    case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
    case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
    case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
    case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
    case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
    case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
    case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
    case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
    case PPC::STDUX:
      III.ImmOpcode = PPC::STDU;
      III.ImmMustBeMultipleOf = 4;
      break;
    case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
    case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
    }
    break;
  // Power9 and up only. For some of these, the X-Form version has access to all
  // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
  // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
  // into or stored from is one of the VR registers.
  case PPC::LXVX:
  case PPC::LXSSPX:
  case PPC::LXSDX:
  case PPC::STXVX:
  case PPC::STXSSPX:
  case PPC::STXSDX:
  case PPC::XFLOADf32:
  case PPC::XFLOADf64:
  case PPC::XFSTOREf32:
  case PPC::XFSTOREf64:
    if (!Subtarget.hasP9Vector())
      return false;
    III.SignedImm = true;
    III.ZeroIsSpecialOrig = 1;
    III.ZeroIsSpecialNew = 2;
    III.IsCommutative = true;
    III.IsSummingOperands = true;
    III.ImmOpNo = 1;
    III.OpNoForForwarding = 2;
    III.ImmMustBeMultipleOf = 4;
    switch(Opc) {
    default: llvm_unreachable("Unknown opcode");
    case PPC::LXVX:
      III.ImmOpcode = PPC::LXV;
      III.ImmMustBeMultipleOf = 16;
      break;
    case PPC::LXSSPX:
      if (PostRA) {
        if (IsVFReg)
          III.ImmOpcode = PPC::LXSSP;
        else {
          III.ImmOpcode = PPC::LFS;
          III.ImmMustBeMultipleOf = 1;
        }
        break;
      }
      LLVM_FALLTHROUGH;
    case PPC::XFLOADf32:
      III.ImmOpcode = PPC::DFLOADf32;
      break;
    case PPC::LXSDX:
      if (PostRA) {
        if (IsVFReg)
          III.ImmOpcode = PPC::LXSD;
        else {
          III.ImmOpcode = PPC::LFD;
          III.ImmMustBeMultipleOf = 1;
        }
        break;
      }
      LLVM_FALLTHROUGH;
    case PPC::XFLOADf64:
      III.ImmOpcode = PPC::DFLOADf64;
      break;
    case PPC::STXVX:
      III.ImmOpcode = PPC::STXV;
      III.ImmMustBeMultipleOf = 16;
      break;
    case PPC::STXSSPX:
      if (PostRA) {
        if (IsVFReg)
          III.ImmOpcode = PPC::STXSSP;
        else {
          III.ImmOpcode = PPC::STFS;
          III.ImmMustBeMultipleOf = 1;
        }
        break;
      }
      LLVM_FALLTHROUGH;
    case PPC::XFSTOREf32:
      III.ImmOpcode = PPC::DFSTOREf32;
      break;
    case PPC::STXSDX:
      if (PostRA) {
        if (IsVFReg)
          III.ImmOpcode = PPC::STXSD;
        else {
          III.ImmOpcode = PPC::STFD;
          III.ImmMustBeMultipleOf = 1;
        }
        break;
      }
      LLVM_FALLTHROUGH;
    case PPC::XFSTOREf64:
      III.ImmOpcode = PPC::DFSTOREf64;
      break;
    }
    break;
  }
  return true;
}

// Utility function for swaping two arbitrary operands of an instruction.
static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
  assert(Op1 != Op2 && "Cannot swap operand with itself.");

  unsigned MaxOp = std::max(Op1, Op2);
  unsigned MinOp = std::min(Op1, Op2);
  MachineOperand MOp1 = MI.getOperand(MinOp);
  MachineOperand MOp2 = MI.getOperand(MaxOp);
  MI.RemoveOperand(std::max(Op1, Op2));
  MI.RemoveOperand(std::min(Op1, Op2));

  // If the operands we are swapping are the two at the end (the common case)
  // we can just remove both and add them in the opposite order.
  if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
    MI.addOperand(MOp2);
    MI.addOperand(MOp1);
  } else {
    // Store all operands in a temporary vector, remove them and re-add in the
    // right order.
    SmallVector<MachineOperand, 2> MOps;
    unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
    for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
      MOps.push_back(MI.getOperand(i));
      MI.RemoveOperand(i);
    }
    // MOp2 needs to be added next.
    MI.addOperand(MOp2);
    // Now add the rest.
    for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
      if (i == MaxOp)
        MI.addOperand(MOp1);
      else {
        MI.addOperand(MOps.back());
        MOps.pop_back();
      }
    }
  }
}

// Check if the 'MI' that has the index OpNoForForwarding
// meets the requirement described in the ImmInstrInfo.
bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
                                               const ImmInstrInfo &III,
                                               unsigned OpNoForForwarding
                                               ) const {
  // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
  // would not work pre-RA, we can only do the check post RA.
  MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
  if (MRI.isSSA())
    return false;

  // Cannot do the transform if MI isn't summing the operands.
  if (!III.IsSummingOperands)
    return false;

  // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
  if (!III.ZeroIsSpecialOrig)
    return false;

  // We cannot do the transform if the operand we are trying to replace
  // isn't the same as the operand the instruction allows.
  if (OpNoForForwarding != III.OpNoForForwarding)
    return false;

  // Check if the instruction we are trying to transform really has
  // the special zero register as its operand.
  if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
      MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
    return false;

  // This machine instruction is convertible if it is,
  // 1. summing the operands.
  // 2. one of the operands is special zero register.
  // 3. the operand we are trying to replace is allowed by the MI.
  return true;
}

// Check if the DefMI is the add inst and set the ImmMO and RegMO
// accordingly.
bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
                                               const ImmInstrInfo &III,
                                               MachineOperand *&ImmMO,
                                               MachineOperand *&RegMO) const {
  unsigned Opc = DefMI.getOpcode();
  if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
    return false;

  assert(DefMI.getNumOperands() >= 3 &&
         "Add inst must have at least three operands");
  RegMO = &DefMI.getOperand(1);
  ImmMO = &DefMI.getOperand(2);

  // Before RA, ADDI first operand could be a frame index.
  if (!RegMO->isReg())
    return false;

  // This DefMI is elgible for forwarding if it is:
  // 1. add inst
  // 2. one of the operands is Imm/CPI/Global.
  return isAnImmediateOperand(*ImmMO);
}

bool PPCInstrInfo::isRegElgibleForForwarding(
    const MachineOperand &RegMO, const MachineInstr &DefMI,
    const MachineInstr &MI, bool KillDefMI,
    bool &IsFwdFeederRegKilled) const {
  // x = addi y, imm
  // ...
  // z = lfdx 0, x   -> z = lfd imm(y)
  // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
  // of "y" between the DEF of "x" and "z".
  // The query is only valid post RA.
  const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
  if (MRI.isSSA())
    return false;

  Register Reg = RegMO.getReg();

  // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
  MachineBasicBlock::const_reverse_iterator It = MI;
  MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
  It++;
  for (; It != E; ++It) {
    if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
      return false;
    else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
      IsFwdFeederRegKilled = true;
    // Made it to DefMI without encountering a clobber.
    if ((&*It) == &DefMI)
      break;
  }
  assert((&*It) == &DefMI && "DefMI is missing");

  // If DefMI also defines the register to be forwarded, we can only forward it
  // if DefMI is being erased.
  if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
    return KillDefMI;

  return true;
}

bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
                                             const MachineInstr &DefMI,
                                             const ImmInstrInfo &III,
                                             int64_t &Imm,
                                             int64_t BaseImm) const {
  assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
  if (DefMI.getOpcode() == PPC::ADDItocL) {
    // The operand for ADDItocL is CPI, which isn't imm at compiling time,
    // However, we know that, it is 16-bit width, and has the alignment of 4.
    // Check if the instruction met the requirement.
    if (III.ImmMustBeMultipleOf > 4 ||
       III.TruncateImmTo || III.ImmWidth != 16)
      return false;

    // Going from XForm to DForm loads means that the displacement needs to be
    // not just an immediate but also a multiple of 4, or 16 depending on the
    // load. A DForm load cannot be represented if it is a multiple of say 2.
    // XForm loads do not have this restriction.
    if (ImmMO.isGlobal()) {
      const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout();
      if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf)
        return false;
    }

    return true;
  }

  if (ImmMO.isImm()) {
    // It is Imm, we need to check if the Imm fit the range.
    // Sign-extend to 64-bits.
    // DefMI may be folded with another imm form instruction, the result Imm is
    // the sum of Imm of DefMI and BaseImm which is from imm form instruction.
    Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm);

    if (Imm % III.ImmMustBeMultipleOf)
      return false;
    if (III.TruncateImmTo)
      Imm &= ((1 << III.TruncateImmTo) - 1);
    if (III.SignedImm) {
      APInt ActualValue(64, Imm, true);
      if (!ActualValue.isSignedIntN(III.ImmWidth))
        return false;
    } else {
      uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
      if ((uint64_t)Imm > UnsignedMax)
        return false;
    }
  }
  else
    return false;

  // This ImmMO is forwarded if it meets the requriement describle
  // in ImmInstrInfo
  return true;
}

bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI,
                                unsigned OpNoForForwarding,
                                MachineInstr **KilledDef) const {
  if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
      !DefMI.getOperand(1).isImm())
    return false;

  MachineFunction *MF = MI.getParent()->getParent();
  MachineRegisterInfo *MRI = &MF->getRegInfo();
  bool PostRA = !MRI->isSSA();

  int64_t Immediate = DefMI.getOperand(1).getImm();
  // Sign-extend to 64-bits.
  int64_t SExtImm = SignExtend64<16>(Immediate);

  bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill();
  Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg();

  bool ReplaceWithLI = false;
  bool Is64BitLI = false;
  int64_t NewImm = 0;
  bool SetCR = false;
  unsigned Opc = MI.getOpcode();
  switch (Opc) {
  default:
    return false;

  // FIXME: Any branches conditional on such a comparison can be made
  // unconditional. At this time, this happens too infrequently to be worth
  // the implementation effort, but if that ever changes, we could convert
  // such a pattern here.
  case PPC::CMPWI:
  case PPC::CMPLWI:
  case PPC::CMPDI:
  case PPC::CMPLDI: {
    // Doing this post-RA would require dataflow analysis to reliably find uses
    // of the CR register set by the compare.
    // No need to fixup killed/dead flag since this transformation is only valid
    // before RA.
    if (PostRA)
      return false;
    // If a compare-immediate is fed by an immediate and is itself an input of
    // an ISEL (the most common case) into a COPY of the correct register.
    bool Changed = false;
    Register DefReg = MI.getOperand(0).getReg();
    int64_t Comparand = MI.getOperand(2).getImm();
    int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0
                                ? (Comparand | 0xFFFFFFFFFFFF0000)
                                : Comparand;

    for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
      unsigned UseOpc = CompareUseMI.getOpcode();
      if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
        continue;
      unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
      Register TrueReg = CompareUseMI.getOperand(1).getReg();
      Register FalseReg = CompareUseMI.getOperand(2).getReg();
      unsigned RegToCopy =
          selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg);
      if (RegToCopy == PPC::NoRegister)
        continue;
      // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
      if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
        CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
        replaceInstrOperandWithImm(CompareUseMI, 1, 0);
        CompareUseMI.RemoveOperand(3);
        CompareUseMI.RemoveOperand(2);
        continue;
      }
      LLVM_DEBUG(
          dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
      LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump());
      LLVM_DEBUG(dbgs() << "Is converted to:\n");
      // Convert to copy and remove unneeded operands.
      CompareUseMI.setDesc(get(PPC::COPY));
      CompareUseMI.RemoveOperand(3);
      CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
      CmpIselsConverted++;
      Changed = true;
      LLVM_DEBUG(CompareUseMI.dump());
    }
    if (Changed)
      return true;
    // This may end up incremented multiple times since this function is called
    // during a fixed-point transformation, but it is only meant to indicate the
    // presence of this opportunity.
    MissedConvertibleImmediateInstrs++;
    return false;
  }

  // Immediate forms - may simply be convertable to an LI.
  case PPC::ADDI:
  case PPC::ADDI8: {
    // Does the sum fit in a 16-bit signed field?
    int64_t Addend = MI.getOperand(2).getImm();
    if (isInt<16>(Addend + SExtImm)) {
      ReplaceWithLI = true;
      Is64BitLI = Opc == PPC::ADDI8;
      NewImm = Addend + SExtImm;
      break;
    }
    return false;
  }
  case PPC::SUBFIC: 
  case PPC::SUBFIC8: { 
    // Only transform this if the CARRY implicit operand is dead. 
    if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead()) 
      return false; 
    int64_t Minuend = MI.getOperand(2).getImm(); 
    if (isInt<16>(Minuend - SExtImm)) { 
      ReplaceWithLI = true; 
      Is64BitLI = Opc == PPC::SUBFIC8; 
      NewImm = Minuend - SExtImm; 
      break; 
    } 
    return false; 
  } 
  case PPC::RLDICL:
  case PPC::RLDICL_rec:
  case PPC::RLDICL_32:
  case PPC::RLDICL_32_64: {
    // Use APInt's rotate function.
    int64_t SH = MI.getOperand(2).getImm();
    int64_t MB = MI.getOperand(3).getImm();
    APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32,
                SExtImm, true);
    InVal = InVal.rotl(SH);
    uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1;
    InVal &= Mask;
    // Can't replace negative values with an LI as that will sign-extend
    // and not clear the left bits. If we're setting the CR bit, we will use
    // ANDI_rec which won't sign extend, so that's safe.
    if (isUInt<15>(InVal.getSExtValue()) ||
        (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) {
      ReplaceWithLI = true;
      Is64BitLI = Opc != PPC::RLDICL_32;
      NewImm = InVal.getSExtValue();
      SetCR = Opc == PPC::RLDICL_rec;
      break;
    }
    return false;
  }
  case PPC::RLWINM:
  case PPC::RLWINM8:
  case PPC::RLWINM_rec:
  case PPC::RLWINM8_rec: {
    int64_t SH = MI.getOperand(2).getImm();
    int64_t MB = MI.getOperand(3).getImm();
    int64_t ME = MI.getOperand(4).getImm();
    APInt InVal(32, SExtImm, true);
    InVal = InVal.rotl(SH);
    APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB);
    InVal &= Mask;
    // Can't replace negative values with an LI as that will sign-extend
    // and not clear the left bits. If we're setting the CR bit, we will use
    // ANDI_rec which won't sign extend, so that's safe.
    bool ValueFits = isUInt<15>(InVal.getSExtValue());
    ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) &&
                  isUInt<16>(InVal.getSExtValue()));
    if (ValueFits) {
      ReplaceWithLI = true;
      Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec;
      NewImm = InVal.getSExtValue();
      SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec;
      break;
    }
    return false;
  }
  case PPC::ORI:
  case PPC::ORI8:
  case PPC::XORI:
  case PPC::XORI8: {
    int64_t LogicalImm = MI.getOperand(2).getImm();
    int64_t Result = 0;
    if (Opc == PPC::ORI || Opc == PPC::ORI8)
      Result = LogicalImm | SExtImm;
    else
      Result = LogicalImm ^ SExtImm;
    if (isInt<16>(Result)) {
      ReplaceWithLI = true;
      Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
      NewImm = Result;
      break;
    }
    return false;
  }
  }

  if (ReplaceWithLI) {
    // We need to be careful with CR-setting instructions we're replacing.
    if (SetCR) {
      // We don't know anything about uses when we're out of SSA, so only
      // replace if the new immediate will be reproduced.
      bool ImmChanged = (SExtImm & NewImm) != NewImm;
      if (PostRA && ImmChanged)
        return false;

      if (!PostRA) {
        // If the defining load-immediate has no other uses, we can just replace
        // the immediate with the new immediate.
        if (MRI->hasOneUse(DefMI.getOperand(0).getReg()))
          DefMI.getOperand(1).setImm(NewImm);

        // If we're not using the GPR result of the CR-setting instruction, we
        // just need to and with zero/non-zero depending on the new immediate.
        else if (MRI->use_empty(MI.getOperand(0).getReg())) {
          if (NewImm) {
            assert(Immediate && "Transformation converted zero to non-zero?");
            NewImm = Immediate;
          }
        } else if (ImmChanged)
          return false;
      }
    }

    LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
    LLVM_DEBUG(MI.dump());
    LLVM_DEBUG(dbgs() << "Fed by:\n");
    LLVM_DEBUG(DefMI.dump());
    LoadImmediateInfo LII;
    LII.Imm = NewImm;
    LII.Is64Bit = Is64BitLI;
    LII.SetCR = SetCR;
    // If we're setting the CR, the original load-immediate must be kept (as an
    // operand to ANDI_rec/ANDI8_rec).
    if (KilledDef && SetCR)
      *KilledDef = nullptr;
    replaceInstrWithLI(MI, LII);

    // Fixup killed/dead flag after transformation.
    // Pattern:
    // ForwardingOperandReg = LI imm1
    // y = op2 imm2, ForwardingOperandReg(killed)
    if (IsForwardingOperandKilled)
      fixupIsDeadOrKill(&DefMI, &MI, ForwardingOperandReg);

    LLVM_DEBUG(dbgs() << "With:\n");
    LLVM_DEBUG(MI.dump());
    return true;
  }
  return false;
}

bool PPCInstrInfo::transformToNewImmFormFedByAdd(
    MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const {
  MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
  bool PostRA = !MRI->isSSA();
  // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI
  // for post-ra.
  if (PostRA)
    return false;

  // Only handle load/store.
  if (!MI.mayLoadOrStore())
    return false;

  unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode());

  assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) &&
         "MI must have x-form opcode");

  // get Imm Form info.
  ImmInstrInfo III;
  bool IsVFReg = MI.getOperand(0).isReg()
                     ? isVFRegister(MI.getOperand(0).getReg())
                     : false;

  if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA))
    return false;

  if (!III.IsSummingOperands)
    return false;

  if (OpNoForForwarding != III.OpNoForForwarding)
    return false;

  MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo);
  if (!ImmOperandMI.isImm())
    return false;

  // Check DefMI.
  MachineOperand *ImmMO = nullptr;
  MachineOperand *RegMO = nullptr;
  if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
    return false;
  assert(ImmMO && RegMO && "Imm and Reg operand must have been set");

  // Check Imm.
  // Set ImmBase from imm instruction as base and get new Imm inside
  // isImmElgibleForForwarding.
  int64_t ImmBase = ImmOperandMI.getImm();
  int64_t Imm = 0;
  if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase))
    return false;

  // Get killed info in case fixup needed after transformation.
  unsigned ForwardKilledOperandReg = ~0U;
  if (MI.getOperand(III.OpNoForForwarding).isKill())
    ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg();

  // Do the transform
  LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
  LLVM_DEBUG(MI.dump());
  LLVM_DEBUG(dbgs() << "Fed by:\n");
  LLVM_DEBUG(DefMI.dump());

  MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg());
  MI.getOperand(III.OpNoForForwarding).setIsKill(RegMO->isKill());
  MI.getOperand(III.ImmOpNo).setImm(Imm);

  // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block.
  if (DefMI.getParent() == MI.getParent()) {
    // Check if reg is killed between MI and DefMI.
    auto IsKilledFor = [&](unsigned Reg) {
      MachineBasicBlock::const_reverse_iterator It = MI;
      MachineBasicBlock::const_reverse_iterator E = DefMI;
      It++;
      for (; It != E; ++It) {
        if (It->killsRegister(Reg))
          return true;
      }
      return false;
    };

    // Update kill flag
    if (RegMO->isKill() || IsKilledFor(RegMO->getReg()))
      fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg());
    if (ForwardKilledOperandReg != ~0U)
      fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
  }

  LLVM_DEBUG(dbgs() << "With:\n");
  LLVM_DEBUG(MI.dump());
  return true;
}

// If an X-Form instruction is fed by an add-immediate and one of its operands
// is the literal zero, attempt to forward the source of the add-immediate to
// the corresponding D-Form instruction with the displacement coming from
// the immediate being added.
bool PPCInstrInfo::transformToImmFormFedByAdd(
    MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
    MachineInstr &DefMI, bool KillDefMI) const {
  //         RegMO ImmMO
  //           |    |
  // x = addi reg, imm  <----- DefMI
  // y = op    0 ,  x   <----- MI
  //                |
  //         OpNoForForwarding
  // Check if the MI meet the requirement described in the III.
  if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
    return false;

  // Check if the DefMI meet the requirement
  // described in the III. If yes, set the ImmMO and RegMO accordingly.
  MachineOperand *ImmMO = nullptr;
  MachineOperand *RegMO = nullptr;
  if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
    return false;
  assert(ImmMO && RegMO && "Imm and Reg operand must have been set");

  // As we get the Imm operand now, we need to check if the ImmMO meet
  // the requirement described in the III. If yes set the Imm.
  int64_t Imm = 0;
  if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
    return false;

  bool IsFwdFeederRegKilled = false;
  // Check if the RegMO can be forwarded to MI.
  if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
                                 IsFwdFeederRegKilled))
    return false;

  // Get killed info in case fixup needed after transformation.
  unsigned ForwardKilledOperandReg = ~0U;
  MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
  bool PostRA = !MRI.isSSA();
  if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
    ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();

  // We know that, the MI and DefMI both meet the pattern, and
  // the Imm also meet the requirement with the new Imm-form.
  // It is safe to do the transformation now.
  LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
  LLVM_DEBUG(MI.dump());
  LLVM_DEBUG(dbgs() << "Fed by:\n");
  LLVM_DEBUG(DefMI.dump());

  // Update the base reg first.
  MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
                                                        false, false,
                                                        RegMO->isKill());

  // Then, update the imm.
  if (ImmMO->isImm()) {
    // If the ImmMO is Imm, change the operand that has ZERO to that Imm
    // directly.
    replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
  }
  else {
    // Otherwise, it is Constant Pool Index(CPI) or Global,
    // which is relocation in fact. We need to replace the special zero
    // register with ImmMO.
    // Before that, we need to fixup the target flags for imm.
    // For some reason, we miss to set the flag for the ImmMO if it is CPI.
    if (DefMI.getOpcode() == PPC::ADDItocL)
      ImmMO->setTargetFlags(PPCII::MO_TOC_LO);

    // MI didn't have the interface such as MI.setOperand(i) though
    // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
    // ImmMO, we need to remove ZERO operand and all the operands behind it,
    // and, add the ImmMO, then, move back all the operands behind ZERO.
    SmallVector<MachineOperand, 2> MOps;
    for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
      MOps.push_back(MI.getOperand(i));
      MI.RemoveOperand(i);
    }

    // Remove the last MO in the list, which is ZERO operand in fact.
    MOps.pop_back();
    // Add the imm operand.
    MI.addOperand(*ImmMO);
    // Now add the rest back.
    for (auto &MO : MOps)
      MI.addOperand(MO);
  }

  // Update the opcode.
  MI.setDesc(get(III.ImmOpcode));

  // Fix up killed/dead flag after transformation.
  // Pattern 1:
  // x = ADD KilledFwdFeederReg, imm
  // n = opn KilledFwdFeederReg(killed), regn
  // y = XOP 0, x
  // Pattern 2:
  // x = ADD reg(killed), imm
  // y = XOP 0, x
  if (IsFwdFeederRegKilled || RegMO->isKill())
    fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg());
  // Pattern 3:
  // ForwardKilledOperandReg = ADD reg, imm
  // y = XOP 0, ForwardKilledOperandReg(killed)
  if (ForwardKilledOperandReg != ~0U)
    fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);

  LLVM_DEBUG(dbgs() << "With:\n");
  LLVM_DEBUG(MI.dump());

  return true;
}

bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
                                             const ImmInstrInfo &III,
                                             unsigned ConstantOpNo,
                                             MachineInstr &DefMI) const {
  // DefMI must be LI or LI8.
  if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
      !DefMI.getOperand(1).isImm())
    return false;

  // Get Imm operand and Sign-extend to 64-bits.
  int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm());

  MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
  bool PostRA = !MRI.isSSA();
  // Exit early if we can't convert this.
  if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
    return false;
  if (Imm % III.ImmMustBeMultipleOf)
    return false;
  if (III.TruncateImmTo)
    Imm &= ((1 << III.TruncateImmTo) - 1);
  if (III.SignedImm) {
    APInt ActualValue(64, Imm, true);
    if (!ActualValue.isSignedIntN(III.ImmWidth))
      return false;
  } else {
    uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
    if ((uint64_t)Imm > UnsignedMax)
      return false;
  }

  // If we're post-RA, the instructions don't agree on whether register zero is
  // special, we can transform this as long as the register operand that will
  // end up in the location where zero is special isn't R0.
  if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
    unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
      III.ZeroIsSpecialNew + 1;
    Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
    Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
    // If R0 is in the operand where zero is special for the new instruction,
    // it is unsafe to transform if the constant operand isn't that operand.
    if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
        ConstantOpNo != III.ZeroIsSpecialNew)
      return false;
    if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
        ConstantOpNo != PosForOrigZero)
      return false;
  }

  // Get killed info in case fixup needed after transformation.
  unsigned ForwardKilledOperandReg = ~0U;
  if (PostRA && MI.getOperand(ConstantOpNo).isKill())
    ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();

  unsigned Opc = MI.getOpcode();
  bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec ||
                        Opc == PPC::SRW || Opc == PPC::SRW_rec ||
                        Opc == PPC::SLW8 || Opc == PPC::SLW8_rec ||
                        Opc == PPC::SRW8 || Opc == PPC::SRW8_rec;
  bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec ||
                        Opc == PPC::SRD || Opc == PPC::SRD_rec;
  bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec ||
               Opc == PPC::SLD_rec || Opc == PPC::SRD_rec;
  bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD ||
                    Opc == PPC::SRD_rec;

  MI.setDesc(get(III.ImmOpcode));
  if (ConstantOpNo == III.OpNoForForwarding) {
    // Converting shifts to immediate form is a bit tricky since they may do
    // one of three things:
    // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
    // 2. If the shift amount is zero, the result is unchanged (save for maybe
    //    setting CR0)
    // 3. If the shift amount is in [1, OpSize), it's just a shift
    if (SpecialShift32 || SpecialShift64) {
      LoadImmediateInfo LII;
      LII.Imm = 0;
      LII.SetCR = SetCR;
      LII.Is64Bit = SpecialShift64;
      uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
      if (Imm & (SpecialShift32 ? 0x20 : 0x40))
        replaceInstrWithLI(MI, LII);
      // Shifts by zero don't change the value. If we don't need to set CR0,
      // just convert this to a COPY. Can't do this post-RA since we've already
      // cleaned up the copies.
      else if (!SetCR && ShAmt == 0 && !PostRA) {
        MI.RemoveOperand(2);
        MI.setDesc(get(PPC::COPY));
      } else {
        // The 32 bit and 64 bit instructions are quite different.
        if (SpecialShift32) {
          // Left shifts use (N, 0, 31-N).
          // Right shifts use (32-N, N, 31) if 0 < N < 32.
          //              use (0, 0, 31)    if N == 0.
          uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt;
          uint64_t MB = RightShift ? ShAmt : 0;
          uint64_t ME = RightShift ? 31 : 31 - ShAmt;
          replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
          MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
            .addImm(ME);
        } else {
          // Left shifts use (N, 63-N).
          // Right shifts use (64-N, N) if 0 < N < 64.
          //              use (0, 0)    if N == 0.
          uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt;
          uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
          replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
          MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
        }
      }
    } else
      replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
  }
  // Convert commutative instructions (switch the operands and convert the
  // desired one to an immediate.
  else if (III.IsCommutative) {
    replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
    swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
  } else
    llvm_unreachable("Should have exited early!");

  // For instructions for which the constant register replaces a different
  // operand than where the immediate goes, we need to swap them.
  if (III.OpNoForForwarding != III.ImmOpNo)
    swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);

  // If the special R0/X0 register index are different for original instruction
  // and new instruction, we need to fix up the register class in new
  // instruction.
  if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
    if (III.ZeroIsSpecialNew) {
      // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
      // need to fix up register class.
      Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
      if (Register::isVirtualRegister(RegToModify)) {
        const TargetRegisterClass *NewRC =
          MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
          &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
        MRI.setRegClass(RegToModify, NewRC);
      }
    }
  }

  // Fix up killed/dead flag after transformation.
  // Pattern:
  // ForwardKilledOperandReg = LI imm
  // y = XOP reg, ForwardKilledOperandReg(killed)
  if (ForwardKilledOperandReg != ~0U)
    fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
  return true;
}

const TargetRegisterClass *
PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
  if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
    return &PPC::VSRCRegClass;
  return RC;
}

int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
  return PPC::getRecordFormOpcode(Opcode);
}

// This function returns true if the machine instruction
// always outputs a value by sign-extending a 32 bit value,
// i.e. 0 to 31-th bits are same as 32-th bit.
static bool isSignExtendingOp(const MachineInstr &MI) {
  int Opcode = MI.getOpcode();
  if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS ||
      Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec ||
      Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA ||
      Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
      Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 ||
      Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
      Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU ||
      Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
      Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 ||
      Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
      Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB ||
      Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH ||
      Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 ||
      Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW ||
      Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 ||
      Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
      Opcode == PPC::EXTSB8_32_64)
    return true;

  if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
    return true;

  if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
       Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) &&
      MI.getOperand(3).getImm() > 0 &&
      MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
    return true;

  return false;
}

// This function returns true if the machine instruction
// always outputs zeros in higher 32 bits.
static bool isZeroExtendingOp(const MachineInstr &MI) {
  int Opcode = MI.getOpcode();
  // The 16-bit immediate is sign-extended in li/lis.
  // If the most significant bit is zero, all higher bits are zero.
  if (Opcode == PPC::LI  || Opcode == PPC::LI8 ||
      Opcode == PPC::LIS || Opcode == PPC::LIS8) {
    int64_t Imm = MI.getOperand(1).getImm();
    if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
      return true;
  }

  // We have some variations of rotate-and-mask instructions
  // that clear higher 32-bits.
  if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
       Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec ||
       Opcode == PPC::RLDICL_32_64) &&
      MI.getOperand(3).getImm() >= 32)
    return true;

  if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
      MI.getOperand(3).getImm() >= 32 &&
      MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
    return true;

  if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
       Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
       Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
      MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
    return true;

  // There are other instructions that clear higher 32-bits.
  if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
      Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
      Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
      Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
      Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec ||
      Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW ||
      Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec ||
      Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI ||
      Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI ||
      Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX ||
      Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX ||
      Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
      Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ ||
      Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
      Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 ||
      Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 ||
      Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 ||
      Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
      Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
      Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec ||
      Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec ||
      Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec ||
      Opcode == PPC::MFVSRWZ)
    return true;

  return false;
}

// This function returns true if the input MachineInstr is a TOC save
// instruction.
bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
  if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
    return false;
  unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
  unsigned StackOffset = MI.getOperand(1).getImm();
  Register StackReg = MI.getOperand(2).getReg();
  if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset)
    return true;

  return false;
}

// We limit the max depth to track incoming values of PHIs or binary ops
// (e.g. AND) to avoid excessive cost.
const unsigned MAX_DEPTH = 1;

bool
PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
                                   const unsigned Depth) const {
  const MachineFunction *MF = MI.getParent()->getParent();
  const MachineRegisterInfo *MRI = &MF->getRegInfo();

  // If we know this instruction returns sign- or zero-extended result,
  // return true.
  if (SignExt ? isSignExtendingOp(MI):
                isZeroExtendingOp(MI))
    return true;

  switch (MI.getOpcode()) {
  case PPC::COPY: {
    Register SrcReg = MI.getOperand(1).getReg();

    // In both ELFv1 and v2 ABI, method parameters and the return value
    // are sign- or zero-extended.
    if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
      const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
      // We check the ZExt/SExt flags for a method parameter.
      if (MI.getParent()->getBasicBlock() ==
          &MF->getFunction().getEntryBlock()) {
        Register VReg = MI.getOperand(0).getReg();
        if (MF->getRegInfo().isLiveIn(VReg))
          return SignExt ? FuncInfo->isLiveInSExt(VReg) :
                           FuncInfo->isLiveInZExt(VReg);
      }

      // For a method return value, we check the ZExt/SExt flags in attribute.
      // We assume the following code sequence for method call.
      //   ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
      //   BL8_NOP @func,...
      //   ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
      //   %5 = COPY %x3; G8RC:%5
      if (SrcReg == PPC::X3) {
        const MachineBasicBlock *MBB = MI.getParent();
        MachineBasicBlock::const_instr_iterator II =
          MachineBasicBlock::const_instr_iterator(&MI);
        if (II != MBB->instr_begin() &&
            (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
          const MachineInstr &CallMI = *(--II);
          if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
            const Function *CalleeFn =
              dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
            if (!CalleeFn)
              return false;
            const IntegerType *IntTy =
              dyn_cast<IntegerType>(CalleeFn->getReturnType());
            const AttributeSet &Attrs =
              CalleeFn->getAttributes().getRetAttributes();
            if (IntTy && IntTy->getBitWidth() <= 32)
              return Attrs.hasAttribute(SignExt ? Attribute::SExt :
                                                  Attribute::ZExt);
          }
        }
      }
    }

    // If this is a copy from another register, we recursively check source.
    if (!Register::isVirtualRegister(SrcReg))
      return false;
    const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
    if (SrcMI != NULL)
      return isSignOrZeroExtended(*SrcMI, SignExt, Depth);

    return false;
  }

  case PPC::ANDI_rec:
  case PPC::ANDIS_rec:
  case PPC::ORI:
  case PPC::ORIS:
  case PPC::XORI:
  case PPC::XORIS:
  case PPC::ANDI8_rec:
  case PPC::ANDIS8_rec:
  case PPC::ORI8:
  case PPC::ORIS8:
  case PPC::XORI8:
  case PPC::XORIS8: {
    // logical operation with 16-bit immediate does not change the upper bits.
    // So, we track the operand register as we do for register copy.
    Register SrcReg = MI.getOperand(1).getReg();
    if (!Register::isVirtualRegister(SrcReg))
      return false;
    const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
    if (SrcMI != NULL)
      return isSignOrZeroExtended(*SrcMI, SignExt, Depth);

    return false;
  }

  // If all incoming values are sign-/zero-extended,
  // the output of OR, ISEL or PHI is also sign-/zero-extended.
  case PPC::OR:
  case PPC::OR8:
  case PPC::ISEL:
  case PPC::PHI: {
    if (Depth >= MAX_DEPTH)
      return false;

    // The input registers for PHI are operand 1, 3, ...
    // The input registers for others are operand 1 and 2.
    unsigned E = 3, D = 1;
    if (MI.getOpcode() == PPC::PHI) {
      E = MI.getNumOperands();
      D = 2;
    }

    for (unsigned I = 1; I != E; I += D) {
      if (MI.getOperand(I).isReg()) {
        Register SrcReg = MI.getOperand(I).getReg();
        if (!Register::isVirtualRegister(SrcReg))
          return false;
        const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
        if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
          return false;
      }
      else
        return false;
    }
    return true;
  }

  // If at least one of the incoming values of an AND is zero extended
  // then the output is also zero-extended. If both of the incoming values
  // are sign-extended then the output is also sign extended.
  case PPC::AND:
  case PPC::AND8: {
    if (Depth >= MAX_DEPTH)
       return false;

    assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());

    Register SrcReg1 = MI.getOperand(1).getReg();
    Register SrcReg2 = MI.getOperand(2).getReg();

    if (!Register::isVirtualRegister(SrcReg1) ||
        !Register::isVirtualRegister(SrcReg2))
      return false;

    const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
    const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
    if (!MISrc1 || !MISrc2)
        return false;

    if(SignExt)
        return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
               isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
    else
        return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
               isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
  }

  default:
    break;
  }
  return false;
}

bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
  return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
}

namespace {
class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
  MachineInstr *Loop, *EndLoop, *LoopCount;
  MachineFunction *MF;
  const TargetInstrInfo *TII;
  int64_t TripCount;

public:
  PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop,
                       MachineInstr *LoopCount)
      : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount),
        MF(Loop->getParent()->getParent()),
        TII(MF->getSubtarget().getInstrInfo()) {
    // Inspect the Loop instruction up-front, as it may be deleted when we call
    // createTripCountGreaterCondition.
    if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI)
      TripCount = LoopCount->getOperand(1).getImm();
    else
      TripCount = -1;
  }

  bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
    // Only ignore the terminator.
    return MI == EndLoop;
  }

  Optional<bool>
  createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
                                  SmallVectorImpl<MachineOperand> &Cond) override {
    if (TripCount == -1) {
      // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
      // so we don't need to generate any thing here.
      Cond.push_back(MachineOperand::CreateImm(0));
      Cond.push_back(MachineOperand::CreateReg(
          MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR,
          true));
      return {};
    }

    return TripCount > TC;
  }

  void setPreheader(MachineBasicBlock *NewPreheader) override {
    // Do nothing. We want the LOOP setup instruction to stay in the *old*
    // preheader, so we can use BDZ in the prologs to adapt the loop trip count.
  }

  void adjustTripCount(int TripCountAdjust) override {
    // If the loop trip count is a compile-time value, then just change the
    // value.
    if (LoopCount->getOpcode() == PPC::LI8 ||
        LoopCount->getOpcode() == PPC::LI) {
      int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust;
      LoopCount->getOperand(1).setImm(TripCount);
      return;
    }

    // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
    // so we don't need to generate any thing here.
  }

  void disposed() override {
    Loop->eraseFromParent();
    // Ensure the loop setup instruction is deleted too.
    LoopCount->eraseFromParent();
  }
};
} // namespace

std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
  // We really "analyze" only hardware loops right now.
  MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
  MachineBasicBlock *Preheader = *LoopBB->pred_begin();
  if (Preheader == LoopBB)
    Preheader = *std::next(LoopBB->pred_begin());
  MachineFunction *MF = Preheader->getParent();

  if (I != LoopBB->end() && isBDNZ(I->getOpcode())) {
    SmallPtrSet<MachineBasicBlock *, 8> Visited;
    if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) {
      Register LoopCountReg = LoopInst->getOperand(0).getReg();
      MachineRegisterInfo &MRI = MF->getRegInfo();
      MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
      return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount);
    }
  }
  return nullptr;
}

MachineInstr *PPCInstrInfo::findLoopInstr(
    MachineBasicBlock &PreHeader,
    SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {

  unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);

  // The loop set-up instruction should be in preheader
  for (auto &I : PreHeader.instrs())
    if (I.getOpcode() == LOOPi)
      return &I;
  return nullptr;
}

// Return true if get the base operand, byte offset of an instruction and the
// memory width. Width is the size of memory that is being loaded/stored.
bool PPCInstrInfo::getMemOperandWithOffsetWidth(
    const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
    unsigned &Width, const TargetRegisterInfo *TRI) const {
  if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3) 
    return false;

  // Handle only loads/stores with base register followed by immediate offset.
  if (!LdSt.getOperand(1).isImm() || 
      (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 
    return false;
  if (!LdSt.getOperand(1).isImm() || 
      (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 
    return false;

  if (!LdSt.hasOneMemOperand())
    return false;

  Width = (*LdSt.memoperands_begin())->getSize();
  Offset = LdSt.getOperand(1).getImm();
  BaseReg = &LdSt.getOperand(2);
  return true;
}

bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
    const MachineInstr &MIa, const MachineInstr &MIb) const {
  assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
  assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");

  if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
      MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
    return false;

  // Retrieve the base register, offset from the base register and width. Width
  // is the size of memory that is being loaded/stored (e.g. 1, 2, 4).  If
  // base registers are identical, and the offset of a lower memory access +
  // the width doesn't overlap the offset of a higher memory access,
  // then the memory accesses are different.
  const TargetRegisterInfo *TRI = &getRegisterInfo();
  const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
  int64_t OffsetA = 0, OffsetB = 0;
  unsigned int WidthA = 0, WidthB = 0;
  if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
      getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
    if (BaseOpA->isIdenticalTo(*BaseOpB)) {
      int LowOffset = std::min(OffsetA, OffsetB);
      int HighOffset = std::max(OffsetA, OffsetB);
      int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
      if (LowOffset + LowWidth <= HighOffset)
        return true;
    }
  }
  return false;
}