1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
//===-- BPFInstrInfo.cpp - BPF Instruction Information ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the BPF implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "BPFInstrInfo.h"
#include "BPF.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <iterator>
#define GET_INSTRINFO_CTOR_DTOR
#include "BPFGenInstrInfo.inc"
using namespace llvm;
BPFInstrInfo::BPFInstrInfo()
: BPFGenInstrInfo(BPF::ADJCALLSTACKDOWN, BPF::ADJCALLSTACKUP) {}
void BPFInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
const DebugLoc &DL, MCRegister DestReg,
MCRegister SrcReg, bool KillSrc) const {
if (BPF::GPRRegClass.contains(DestReg, SrcReg))
BuildMI(MBB, I, DL, get(BPF::MOV_rr), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
else if (BPF::GPR32RegClass.contains(DestReg, SrcReg))
BuildMI(MBB, I, DL, get(BPF::MOV_rr_32), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
else
llvm_unreachable("Impossible reg-to-reg copy");
}
void BPFInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
Register DstReg = MI->getOperand(0).getReg();
Register SrcReg = MI->getOperand(1).getReg();
uint64_t CopyLen = MI->getOperand(2).getImm();
uint64_t Alignment = MI->getOperand(3).getImm();
Register ScratchReg = MI->getOperand(4).getReg();
MachineBasicBlock *BB = MI->getParent();
DebugLoc dl = MI->getDebugLoc();
unsigned LdOpc, StOpc;
switch (Alignment) {
case 1:
LdOpc = BPF::LDB;
StOpc = BPF::STB;
break;
case 2:
LdOpc = BPF::LDH;
StOpc = BPF::STH;
break;
case 4:
LdOpc = BPF::LDW;
StOpc = BPF::STW;
break;
case 8:
LdOpc = BPF::LDD;
StOpc = BPF::STD;
break;
default:
llvm_unreachable("unsupported memcpy alignment");
}
unsigned IterationNum = CopyLen >> Log2_64(Alignment);
for(unsigned I = 0; I < IterationNum; ++I) {
BuildMI(*BB, MI, dl, get(LdOpc))
.addReg(ScratchReg, RegState::Define).addReg(SrcReg)
.addImm(I * Alignment);
BuildMI(*BB, MI, dl, get(StOpc))
.addReg(ScratchReg, RegState::Kill).addReg(DstReg)
.addImm(I * Alignment);
}
unsigned BytesLeft = CopyLen & (Alignment - 1);
unsigned Offset = IterationNum * Alignment;
bool Hanging4Byte = BytesLeft & 0x4;
bool Hanging2Byte = BytesLeft & 0x2;
bool Hanging1Byte = BytesLeft & 0x1;
if (Hanging4Byte) {
BuildMI(*BB, MI, dl, get(BPF::LDW))
.addReg(ScratchReg, RegState::Define).addReg(SrcReg).addImm(Offset);
BuildMI(*BB, MI, dl, get(BPF::STW))
.addReg(ScratchReg, RegState::Kill).addReg(DstReg).addImm(Offset);
Offset += 4;
}
if (Hanging2Byte) {
BuildMI(*BB, MI, dl, get(BPF::LDH))
.addReg(ScratchReg, RegState::Define).addReg(SrcReg).addImm(Offset);
BuildMI(*BB, MI, dl, get(BPF::STH))
.addReg(ScratchReg, RegState::Kill).addReg(DstReg).addImm(Offset);
Offset += 2;
}
if (Hanging1Byte) {
BuildMI(*BB, MI, dl, get(BPF::LDB))
.addReg(ScratchReg, RegState::Define).addReg(SrcReg).addImm(Offset);
BuildMI(*BB, MI, dl, get(BPF::STB))
.addReg(ScratchReg, RegState::Kill).addReg(DstReg).addImm(Offset);
}
BB->erase(MI);
}
bool BPFInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
if (MI.getOpcode() == BPF::MEMCPY) {
expandMEMCPY(MI);
return true;
}
return false;
}
void BPFInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
Register SrcReg, bool IsKill, int FI,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
DebugLoc DL;
if (I != MBB.end())
DL = I->getDebugLoc();
if (RC == &BPF::GPRRegClass)
BuildMI(MBB, I, DL, get(BPF::STD))
.addReg(SrcReg, getKillRegState(IsKill))
.addFrameIndex(FI)
.addImm(0);
else if (RC == &BPF::GPR32RegClass)
BuildMI(MBB, I, DL, get(BPF::STW32))
.addReg(SrcReg, getKillRegState(IsKill))
.addFrameIndex(FI)
.addImm(0);
else
llvm_unreachable("Can't store this register to stack slot");
}
void BPFInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
Register DestReg, int FI,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
DebugLoc DL;
if (I != MBB.end())
DL = I->getDebugLoc();
if (RC == &BPF::GPRRegClass)
BuildMI(MBB, I, DL, get(BPF::LDD), DestReg).addFrameIndex(FI).addImm(0);
else if (RC == &BPF::GPR32RegClass)
BuildMI(MBB, I, DL, get(BPF::LDW32), DestReg).addFrameIndex(FI).addImm(0);
else
llvm_unreachable("Can't load this register from stack slot");
}
bool BPFInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const {
// Start from the bottom of the block and work up, examining the
// terminator instructions.
MachineBasicBlock::iterator I = MBB.end();
while (I != MBB.begin()) {
--I;
if (I->isDebugInstr())
continue;
// Working from the bottom, when we see a non-terminator
// instruction, we're done.
if (!isUnpredicatedTerminator(*I))
break;
// A terminator that isn't a branch can't easily be handled
// by this analysis.
if (!I->isBranch())
return true;
// Handle unconditional branches.
if (I->getOpcode() == BPF::JMP) {
if (!AllowModify) {
TBB = I->getOperand(0).getMBB();
continue;
}
// If the block has any instructions after a J, delete them.
while (std::next(I) != MBB.end())
std::next(I)->eraseFromParent();
Cond.clear();
FBB = nullptr;
// Delete the J if it's equivalent to a fall-through.
if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
TBB = nullptr;
I->eraseFromParent();
I = MBB.end();
continue;
}
// TBB is used to indicate the unconditinal destination.
TBB = I->getOperand(0).getMBB();
continue;
}
// Cannot handle conditional branches
return true;
}
return false;
}
unsigned BPFInstrInfo::insertBranch(MachineBasicBlock &MBB,
MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
ArrayRef<MachineOperand> Cond,
const DebugLoc &DL,
int *BytesAdded) const {
assert(!BytesAdded && "code size not handled");
// Shouldn't be a fall through.
assert(TBB && "insertBranch must not be told to insert a fallthrough");
if (Cond.empty()) {
// Unconditional branch
assert(!FBB && "Unconditional branch with multiple successors!");
BuildMI(&MBB, DL, get(BPF::JMP)).addMBB(TBB);
return 1;
}
llvm_unreachable("Unexpected conditional branch");
}
unsigned BPFInstrInfo::removeBranch(MachineBasicBlock &MBB,
int *BytesRemoved) const {
assert(!BytesRemoved && "code size not handled");
MachineBasicBlock::iterator I = MBB.end();
unsigned Count = 0;
while (I != MBB.begin()) {
--I;
if (I->isDebugInstr())
continue;
if (I->getOpcode() != BPF::JMP)
break;
// Remove the branch.
I->eraseFromParent();
I = MBB.end();
++Count;
}
return Count;
}
|