1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
|
//=- ARMScheduleM7.td - ARM Cortex-M7 Scheduling Definitions -*- tablegen -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the SchedRead/Write data for the ARM Cortex-M7 processor.
//
//===----------------------------------------------------------------------===//
def CortexM7Model : SchedMachineModel {
let IssueWidth = 2; // Dual issue for most instructions.
let MicroOpBufferSize = 0; // The Cortex-M7 is in-order.
let LoadLatency = 2; // Best case for load-use case.
let MispredictPenalty = 4; // Mispredict cost for forward branches is 6,
// but 4 works better
let CompleteModel = 0;
}
//===--------------------------------------------------------------------===//
// The Cortex-M7 has two ALU, two LOAD, a STORE, a MAC, a BRANCH and a VFP
// pipe. The stages relevant to scheduling are as follows:
//
// EX1: address generation shifts
// EX2: fast load data ALUs FP operation
// EX3: slow load data integer writeback FP operation
// EX4: store data FP writeback
//
// There are shifters in both EX1 and EX2, and some instructions can be
// flexibly allocated between them. EX2 is used as the "zero" point
// for scheduling, so simple ALU operations executing in EX2 will have
// ReadAdvance<0> (the default) for their source operands and Latency = 1.
def M7UnitLoad : ProcResource<2> { let BufferSize = 0; }
def M7UnitStore : ProcResource<1> { let BufferSize = 0; }
def M7UnitALU : ProcResource<2>;
def M7UnitShift1 : ProcResource<1> { let BufferSize = 0; }
def M7UnitShift2 : ProcResource<1> { let BufferSize = 0; }
def M7UnitMAC : ProcResource<1> { let BufferSize = 0; }
def M7UnitBranch : ProcResource<1> { let BufferSize = 0; }
def M7UnitVFP : ProcResource<1> { let BufferSize = 0; }
def M7UnitVPort : ProcResource<2> { let BufferSize = 0; }
def M7UnitSIMD : ProcResource<1> { let BufferSize = 0; }
//===---------------------------------------------------------------------===//
// Subtarget-specific SchedWrite types with map ProcResources and set latency.
let SchedModel = CortexM7Model in {
def : WriteRes<WriteALU, [M7UnitALU]> { let Latency = 1; }
// Basic ALU with shifts.
let Latency = 1 in {
def : WriteRes<WriteALUsi, [M7UnitALU, M7UnitShift1]>;
def : WriteRes<WriteALUsr, [M7UnitALU, M7UnitShift1]>;
def : WriteRes<WriteALUSsr, [M7UnitALU, M7UnitShift1]>;
}
// Compares.
def : WriteRes<WriteCMP, [M7UnitALU]> { let Latency = 1; }
def : WriteRes<WriteCMPsi, [M7UnitALU, M7UnitShift1]> { let Latency = 2; }
def : WriteRes<WriteCMPsr, [M7UnitALU, M7UnitShift1]> { let Latency = 2; }
// Multiplies.
let Latency = 2 in {
def : WriteRes<WriteMUL16, [M7UnitMAC]>;
def : WriteRes<WriteMUL32, [M7UnitMAC]>;
def : WriteRes<WriteMUL64Lo, [M7UnitMAC]>;
def : WriteRes<WriteMUL64Hi, []> { let NumMicroOps = 0; }
}
// Multiply-accumulates.
let Latency = 2 in {
def : WriteRes<WriteMAC16, [M7UnitMAC]>;
def : WriteRes<WriteMAC32, [M7UnitMAC]>;
def : WriteRes<WriteMAC64Lo, [M7UnitMAC]> { let Latency = 2; }
def : WriteRes<WriteMAC64Hi, []> { let NumMicroOps = 0; }
}
// Divisions.
// These cannot be dual-issued with any instructions.
def : WriteRes<WriteDIV, [M7UnitALU]> {
let Latency = 7;
let SingleIssue = 1;
}
// Loads/Stores.
def : WriteRes<WriteLd, [M7UnitLoad]> { let Latency = 1; }
def : WriteRes<WritePreLd, [M7UnitLoad]> { let Latency = 2; }
def : WriteRes<WriteST, [M7UnitStore]> { let Latency = 2; }
// Branches.
def : WriteRes<WriteBr, [M7UnitBranch]> { let Latency = 2; }
def : WriteRes<WriteBrL, [M7UnitBranch]> { let Latency = 2; }
def : WriteRes<WriteBrTbl, [M7UnitBranch]> { let Latency = 2; }
// Noop.
def : WriteRes<WriteNoop, []> { let Latency = 0; }
//===---------------------------------------------------------------------===//
// Sched definitions for floating-point instructions
//
// Floating point conversions.
def : WriteRes<WriteFPCVT, [M7UnitVFP, M7UnitVPort]> { let Latency = 3; }
def : WriteRes<WriteFPMOV, [M7UnitVPort]> { let Latency = 3; }
// The FP pipeline has a latency of 3 cycles.
// ALU operations (32/64-bit). These go down the FP pipeline.
def : WriteRes<WriteFPALU32, [M7UnitVFP, M7UnitVPort]> { let Latency = 3; }
def : WriteRes<WriteFPALU64, [M7UnitVFP, M7UnitVPort, M7UnitVPort]> {
let Latency = 4;
let BeginGroup = 1;
}
// Multiplication
def : WriteRes<WriteFPMUL32, [M7UnitVFP, M7UnitVPort]> { let Latency = 3; }
def : WriteRes<WriteFPMUL64, [M7UnitVFP, M7UnitVPort, M7UnitVPort]> {
let Latency = 7;
let BeginGroup = 1;
}
// Multiply-accumulate. FPMAC goes down the FP Pipeline.
def : WriteRes<WriteFPMAC32, [M7UnitVFP, M7UnitVPort]> { let Latency = 6; }
def : WriteRes<WriteFPMAC64, [M7UnitVFP, M7UnitVPort, M7UnitVPort]> {
let Latency = 11;
let BeginGroup = 1;
}
// Division. Effective scheduling latency is 3, though real latency is larger
def : WriteRes<WriteFPDIV32, [M7UnitVFP, M7UnitVPort]> { let Latency = 16; }
def : WriteRes<WriteFPDIV64, [M7UnitVFP, M7UnitVPort, M7UnitVPort]> {
let Latency = 30;
let BeginGroup = 1;
}
// Square-root. Effective scheduling latency is 3; real latency is larger
def : WriteRes<WriteFPSQRT32, [M7UnitVFP, M7UnitVPort]> { let Latency = 16; }
def : WriteRes<WriteFPSQRT64, [M7UnitVFP, M7UnitVPort, M7UnitVPort]> {
let Latency = 30;
let BeginGroup = 1;
}
def M7WriteShift2 : SchedWriteRes<[M7UnitALU, M7UnitShift2]> {}
// Not used for M7, but needing definitions anyway
def : WriteRes<WriteVLD1, []>;
def : WriteRes<WriteVLD2, []>;
def : WriteRes<WriteVLD3, []>;
def : WriteRes<WriteVLD4, []>;
def : WriteRes<WriteVST1, []>;
def : WriteRes<WriteVST2, []>;
def : WriteRes<WriteVST3, []>;
def : WriteRes<WriteVST4, []>;
def M7SingleIssue : SchedWriteRes<[]> {
let SingleIssue = 1;
let NumMicroOps = 0;
}
def M7Slot0Only : SchedWriteRes<[]> {
let BeginGroup = 1;
let NumMicroOps = 0;
}
// What pipeline stage operands need to be ready for depending on
// where they come from.
def : ReadAdvance<ReadALUsr, 0>;
def : ReadAdvance<ReadMUL, 0>;
def : ReadAdvance<ReadMAC, 1>;
def : ReadAdvance<ReadALU, 0>;
def : ReadAdvance<ReadFPMUL, 0>;
def : ReadAdvance<ReadFPMAC, 3>;
def M7Read_ISS : SchedReadAdvance<-1>; // operands needed at EX1
def M7Read_EX2 : SchedReadAdvance<1>; // operands needed at EX3
def M7Read_EX3 : SchedReadAdvance<2>; // operands needed at EX4
// Non general purpose instructions may not be dual issued. These
// use both issue units.
def M7NonGeneralPurpose : SchedWriteRes<[]> {
// Assume that these will go down the main ALU pipeline.
// In reality, many look likely to stall the whole pipeline.
let Latency = 3;
let SingleIssue = 1;
}
// List the non general purpose instructions.
def : InstRW<[M7NonGeneralPurpose], (instregex "t2MRS", "tSVC", "tBKPT",
"t2MSR", "t2DMB", "t2DSB", "t2ISB",
"t2HVC", "t2SMC", "t2UDF", "ERET",
"tHINT", "t2HINT", "t2CLREX", "BUNDLE")>;
//===---------------------------------------------------------------------===//
// Sched definitions for load/store
//
// Mark whether the loads/stores must be single-issue
// Address operands are needed earlier
// Data operands are needed later
def M7BaseUpdate : SchedWriteRes<[]> {
let Latency = 0; // Update is bypassable out of EX1
let NumMicroOps = 0;
}
def M7LoadLatency1 : SchedWriteRes<[]> {
let Latency = 1;
let NumMicroOps = 0;
}
def M7SlowLoad : SchedWriteRes<[M7UnitLoad]> { let Latency = 2; }
// Byte and half-word loads should have greater latency than other loads.
// So should load exclusive.
def : InstRW<[M7SlowLoad],
(instregex "t2LDR(B|H|SB|SH)pc")>;
def : InstRW<[M7SlowLoad, M7Read_ISS],
(instregex "t2LDR(B|H|SB|SH)T", "t2LDR(B|H|SB|SH)i",
"tLDR(B|H)i")>;
def : InstRW<[M7SlowLoad, M7Read_ISS, M7Read_ISS],
(instregex "t2LDR(B|H|SB|SH)s", "tLDR(B|H)r", "tLDR(SB|SH)")>;
def : InstRW<[M7SlowLoad, M7BaseUpdate, M7Read_ISS],
(instregex "t2LDR(B|H|SB|SH)_(POST|PRE)")>;
// Exclusive loads/stores cannot be dual-issued
def : InstRW<[WriteLd, M7Slot0Only, M7Read_ISS],
(instregex "t2LDREX$")>;
def : InstRW<[M7SlowLoad, M7Slot0Only, M7Read_ISS],
(instregex "t2LDREX(B|H)")>;
def : InstRW<[WriteST, M7SingleIssue, M7Read_EX2, M7Read_ISS],
(instregex "t2STREX(B|H)?$")>;
// Load/store multiples cannot be dual-issued. Note that default scheduling
// occurs around read/write times of individual registers in the list; read
// time for STM cannot be overridden because it is a variadic source operand.
def : InstRW<[WriteLd, M7SingleIssue, M7Read_ISS],
(instregex "(t|t2)LDM(DB|IA)$")>;
def : InstRW<[WriteST, M7SingleIssue, M7Read_ISS],
(instregex "(t|t2)STM(DB|IA)$")>;
def : InstRW<[M7BaseUpdate, WriteLd, M7SingleIssue, M7Read_ISS],
(instregex "(t|t2)LDM(DB|IA)_UPD$", "tPOP")>;
def : InstRW<[M7BaseUpdate, WriteST, M7SingleIssue, M7Read_ISS],
(instregex "(t|t2)STM(DB|IA)_UPD$", "tPUSH")>;
// Load/store doubles cannot be dual-issued.
def : InstRW<[M7BaseUpdate, WriteST, M7SingleIssue,
M7Read_EX2, M7Read_EX2, M7Read_ISS],
(instregex "t2STRD_(PRE|POST)")>;
def : InstRW<[WriteST, M7SingleIssue, M7Read_EX2, M7Read_EX2, M7Read_ISS],
(instregex "t2STRDi")>;
def : InstRW<[WriteLd, M7LoadLatency1, M7SingleIssue, M7BaseUpdate, M7Read_ISS],
(instregex "t2LDRD_(PRE|POST)")>;
def : InstRW<[WriteLd, M7LoadLatency1, M7SingleIssue, M7Read_ISS],
(instregex "t2LDRDi")>;
// Word load / preload
def : InstRW<[WriteLd],
(instregex "t2LDRpc", "t2PL[DI]pci", "tLDRpci")>;
def : InstRW<[WriteLd, M7Read_ISS],
(instregex "t2LDR(i|T)", "t2PL[DI](W)?i", "tLDRi", "tLDRspi")>;
def : InstRW<[WriteLd, M7Read_ISS, M7Read_ISS],
(instregex "t2LDRs", "t2PL[DI](w)?s", "tLDRr")>;
def : InstRW<[WriteLd, M7BaseUpdate, M7Read_ISS],
(instregex "t2LDR_(POST|PRE)")>;
// Stores
def : InstRW<[M7BaseUpdate, WriteST, M7Read_EX2, M7Read_ISS],
(instregex "t2STR(B|H)?_(POST|PRE)")>;
def : InstRW<[WriteST, M7Read_EX2, M7Read_ISS, M7Read_ISS],
(instregex "t2STR(B|H)?s$", "tSTR(B|H)?r$")>;
def : InstRW<[WriteST, M7Read_EX2, M7Read_ISS],
(instregex "t2STR(B|H)?(i|T)", "tSTR(B|H)?i$", "tSTRspi")>;
// TBB/TBH - single-issue only; takes two cycles to issue
def M7TableLoad : SchedWriteRes<[M7UnitLoad]> {
let NumMicroOps = 2;
let SingleIssue = 1;
}
def : InstRW<[M7TableLoad, M7Read_ISS, M7Read_ISS], (instregex "t2TB")>;
// VFP loads and stores
def M7LoadSP : SchedWriteRes<[M7UnitLoad, M7UnitVPort]> { let Latency = 1; }
def M7LoadDP : SchedWriteRes<[M7UnitLoad, M7UnitVPort, M7UnitVPort]> {
let Latency = 2;
let SingleIssue = 1;
}
def M7StoreSP : SchedWriteRes<[M7UnitStore, M7UnitVPort]>;
def M7StoreDP : SchedWriteRes<[M7UnitStore, M7UnitVPort, M7UnitVPort]> {
let SingleIssue = 1;
}
def : InstRW<[M7LoadSP, M7Read_ISS], (instregex "VLDR(S|H)$")>;
def : InstRW<[M7LoadDP, M7Read_ISS], (instregex "VLDRD$")>;
def : InstRW<[M7StoreSP, M7Read_EX3, M7Read_ISS], (instregex "VSTR(S|H)$")>;
def : InstRW<[M7StoreDP, M7Read_EX3, M7Read_ISS], (instregex "VSTRD$")>;
// Load/store multiples cannot be dual-issued.
def : InstRW<[WriteLd, M7SingleIssue, M7Read_ISS],
(instregex "VLDM(S|D|Q)(DB|IA)$")>;
def : InstRW<[WriteST, M7SingleIssue, M7Read_ISS],
(instregex "VSTM(S|D|Q)(DB|IA)$")>;
def : InstRW<[M7BaseUpdate, WriteLd, M7SingleIssue, M7Read_ISS],
(instregex "VLDM(S|D|Q)(DB|IA)_UPD$")>;
def : InstRW<[M7BaseUpdate, WriteST, M7SingleIssue, M7Read_ISS],
(instregex "VSTM(S|D|Q)(DB|IA)_UPD$")>;
//===---------------------------------------------------------------------===//
// Sched definitions for ALU
//
// Shifted ALU operands are read a cycle early.
def M7Ex1ReadNoFastBypass : SchedReadAdvance<-1, [WriteLd, M7LoadLatency1]>;
def : InstRW<[WriteALUsi, M7Ex1ReadNoFastBypass, M7Read_ISS],
(instregex "t2(ADC|ADDS|ADD|BIC|EOR|ORN|ORR|RSBS|RSB|SBC|SUBS)rs$",
"t2(SUB|CMP|CMNz|TEQ|TST)rs$",
"t2MOVsr(a|l)")>;
def : InstRW<[WriteALUsi, M7Read_ISS],
(instregex "t2MVNs")>;
// Treat pure shift operations (except for RRX) as if they used the EX1
// shifter but have timing as if they used the EX2 shifter as they usually
// can choose the EX2 shifter when needed. Will miss a few dual-issue cases,
// but the results prove to be better than trying to get them exact.
def : InstRW<[M7WriteShift2, M7Read_ISS], (instregex "t2RRX$")>;
def : InstRW<[WriteALUsi], (instregex "(t|t2)(LSL|LSR|ASR|ROR)")>;
// Instructions that use the shifter, but have normal timing.
def : InstRW<[WriteALUsi,M7Slot0Only], (instregex "t2(BFC|BFI)$")>;
// Instructions which are slot zero only but otherwise normal.
def : InstRW<[WriteALU, M7Slot0Only], (instregex "t2CLZ")>;
// MAC operations that don't have SchedRW set.
def : InstRW<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC], (instregex "t2SML[AS]D")>;
// Divides are special because they stall for their latency, and so look like a
// single-cycle as far as scheduling opportunities go. By putting WriteALU
// first, we make the operand latency 1, but keep the instruction latency 7.
def : InstRW<[WriteALU, WriteDIV], (instregex "t2(S|U)DIV")>;
// DSP extension operations
def M7WriteSIMD1 : SchedWriteRes<[M7UnitSIMD, M7UnitALU]> {
let Latency = 1;
let BeginGroup = 1;
}
def M7WriteSIMD2 : SchedWriteRes<[M7UnitSIMD, M7UnitALU]> {
let Latency = 2;
let BeginGroup = 1;
}
def M7WriteShSIMD1 : SchedWriteRes<[M7UnitSIMD, M7UnitALU, M7UnitShift1]> {
let Latency = 1;
let BeginGroup = 1;
}
def M7WriteShSIMD0 : SchedWriteRes<[M7UnitSIMD, M7UnitALU, M7UnitShift1]> {
let Latency = 0; // Bypassable out of EX1
let BeginGroup = 1;
}
def M7WriteShSIMD2 : SchedWriteRes<[M7UnitSIMD, M7UnitALU, M7UnitShift1]> {
let Latency = 2;
let BeginGroup = 1;
}
def : InstRW<[M7WriteShSIMD2, M7Read_ISS],
(instregex "t2(S|U)SAT")>;
def : InstRW<[M7WriteSIMD1, ReadALU],
(instregex "(t|t2)(S|U)XT(B|H)")>;
def : InstRW<[M7WriteSIMD1, ReadALU, ReadALU],
(instregex "t2(S|SH|U|UH)(ADD16|ADD8|ASX|SAX|SUB16|SUB8)",
"t2SEL")>;
def : InstRW<[M7WriteSIMD2, ReadALU, ReadALU],
(instregex "t2(Q|UQ)(ADD|ASX|SAX|SUB)", "t2USAD8")>;
def : InstRW<[M7WriteShSIMD2, M7Read_ISS, M7Read_ISS],
(instregex "t2QD(ADD|SUB)")>;
def : InstRW<[M7WriteShSIMD0, M7Read_ISS],
(instregex "t2(RBIT|REV)", "tREV")>;
def : InstRW<[M7WriteShSIMD1, M7Read_ISS],
(instregex "t2(SBFX|UBFX)")>;
def : InstRW<[M7WriteShSIMD1, ReadALU, M7Read_ISS],
(instregex "t2PKH(BT|TB)", "t2(S|U)XTA")>;
def : InstRW<[M7WriteSIMD2, ReadALU, ReadALU, M7Read_EX2],
(instregex "t2USADA8")>;
// MSR/MRS
def : InstRW<[M7NonGeneralPurpose], (instregex "MSR", "MRS")>;
//===---------------------------------------------------------------------===//
// Sched definitions for FP operations
//
// Effective scheduling latency is really 3 for nearly all FP operations,
// even if their true latency is higher.
def M7WriteVFPLatOverride : SchedWriteRes<[]> {
let Latency = 3;
let NumMicroOps = 0;
}
def M7WriteVFPExtraVPort : SchedWriteRes<[M7UnitVPort]> {
let Latency = 3;
let NumMicroOps = 0;
}
// Instructions which are missing default schedules.
def : InstRW<[WriteFPALU32],
(instregex "V(ABS|CVT.*|NEG|FP_VMAX.*|FP_VMIN.*|RINT.*)S$")>;
def : InstRW<[M7WriteVFPLatOverride, WriteFPALU64],
(instregex "V(ABS|CVT.*|NEG|FP_VMAX.*|FP_VMIN.*|RINT.*)D$")>;
// VCMP
def M7WriteVCMPS : SchedWriteRes<[M7UnitVFP, M7UnitVPort]> { let Latency = 0; }
def M7WriteVCMPD : SchedWriteRes<[M7UnitVFP, M7UnitVPort, M7UnitVPort]> {
let Latency = 0;
let BeginGroup = 1;
}
def : InstRW<[M7WriteVCMPS], (instregex "VCMPS$")>;
def : InstRW<[M7WriteVCMPD], (instregex "VCMPD$")>;
// VMRS/VMSR
def M7VMRS : SchedWriteRes<[M7UnitVFP, M7UnitVPort]> { let SingleIssue = 1; }
def M7VMSR : SchedWriteRes<[M7UnitVFP, M7UnitVPort]> { let SingleIssue = 1; }
def : InstRW<[M7VMRS], (instregex "FMSTAT")>;
def : InstRW<[M7VMSR], (instregex "VMSR")>;
// VSEL cannot bypass in its implied $cpsr operand; model as earlier read
def : InstRW<[WriteFPALU32, M7Slot0Only, ReadALU, ReadALU, M7Read_ISS],
(instregex "VSEL.*S$")>;
def : InstRW<[M7WriteVFPLatOverride, WriteFPALU64, M7Slot0Only,
ReadALU, ReadALU, M7Read_ISS],
(instregex "VSEL.*D$")>;
// VMOV
def : InstRW<[WriteFPMOV],
(instregex "VMOV(H|S)$", "FCONST(H|S)")>;
def : InstRW<[WriteFPMOV, M7WriteVFPExtraVPort, M7Slot0Only],
(instregex "VMOVD$")>;
def : InstRW<[WriteFPMOV, M7WriteVFPExtraVPort, M7Slot0Only],
(instregex "FCONSTD")>;
def : InstRW<[WriteFPMOV, M7WriteVFPExtraVPort, M7SingleIssue],
(instregex "VMOV(DRR|RRD|RRS|SRR)")>;
// Larger-latency overrides.
def : InstRW<[M7WriteVFPLatOverride, WriteFPDIV32], (instregex "VDIVS")>;
def : InstRW<[M7WriteVFPLatOverride, WriteFPDIV64], (instregex "VDIVD")>;
def : InstRW<[M7WriteVFPLatOverride, WriteFPSQRT32], (instregex "VSQRTS")>;
def : InstRW<[M7WriteVFPLatOverride, WriteFPSQRT64], (instregex "VSQRTD")>;
def : InstRW<[M7WriteVFPLatOverride, WriteFPMUL64],
(instregex "V(MUL|NMUL)D")>;
def : InstRW<[M7WriteVFPLatOverride, WriteFPALU64],
(instregex "V(ADD|SUB)D")>;
// Multiply-accumulate. Chained SP timing is correct; rest need overrides
// Double-precision chained MAC stalls the pipeline behind it for 3 cycles,
// making it appear to have 3 cycle latency for scheduling.
def : InstRW<[M7WriteVFPLatOverride, WriteFPMAC64,
ReadFPMAC, ReadFPMUL, ReadFPMUL],
(instregex "V(N)?ML(A|S)D$")>;
// Single-precision fused MACs look like latency 5 with advance of 2.
def M7WriteVFPLatOverride5 : SchedWriteRes<[]> {
let Latency = 5;
let NumMicroOps = 0;
}
def M7ReadFPMAC2 : SchedReadAdvance<2>;
def : InstRW<[M7WriteVFPLatOverride5, WriteFPMAC32,
M7ReadFPMAC2, ReadFPMUL, ReadFPMUL],
(instregex "VF(N)?M(A|S)S$")>;
// Double-precision fused MAC stalls the pipeline behind it for 2 cycles, making
// it appear to have 3 cycle latency for scheduling.
def : InstRW<[M7WriteVFPLatOverride, WriteFPMAC64,
ReadFPMAC, ReadFPMUL, ReadFPMUL],
(instregex "VF(N)?M(A|S)D$")>;
} // SchedModel = CortexM7Model
|