1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
|
//=== AArch64PostLegalizerLowering.cpp --------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Post-legalization lowering for instructions.
///
/// This is used to offload pattern matching from the selector.
///
/// For example, this combiner will notice that a G_SHUFFLE_VECTOR is actually
/// a G_ZIP, G_UZP, etc.
///
/// General optimization combines should be handled by either the
/// AArch64PostLegalizerCombiner or the AArch64PreLegalizerCombiner.
///
//===----------------------------------------------------------------------===//
#include "AArch64TargetMachine.h"
#include "AArch64GlobalISelUtils.h"
#include "MCTargetDesc/AArch64MCTargetDesc.h"
#include "llvm/CodeGen/GlobalISel/Combiner.h"
#include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
#include "llvm/CodeGen/GlobalISel/CombinerInfo.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "aarch64-postlegalizer-lowering"
using namespace llvm;
using namespace MIPatternMatch;
using namespace AArch64GISelUtils;
/// Represents a pseudo instruction which replaces a G_SHUFFLE_VECTOR.
///
/// Used for matching target-supported shuffles before codegen.
struct ShuffleVectorPseudo {
unsigned Opc; ///< Opcode for the instruction. (E.g. G_ZIP1)
Register Dst; ///< Destination register.
SmallVector<SrcOp, 2> SrcOps; ///< Source registers.
ShuffleVectorPseudo(unsigned Opc, Register Dst,
std::initializer_list<SrcOp> SrcOps)
: Opc(Opc), Dst(Dst), SrcOps(SrcOps){};
ShuffleVectorPseudo() {}
};
/// Check if a vector shuffle corresponds to a REV instruction with the
/// specified blocksize.
static bool isREVMask(ArrayRef<int> M, unsigned EltSize, unsigned NumElts,
unsigned BlockSize) {
assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
"Only possible block sizes for REV are: 16, 32, 64");
assert(EltSize != 64 && "EltSize cannot be 64 for REV mask.");
unsigned BlockElts = M[0] + 1;
// If the first shuffle index is UNDEF, be optimistic.
if (M[0] < 0)
BlockElts = BlockSize / EltSize;
if (BlockSize <= EltSize || BlockSize != BlockElts * EltSize)
return false;
for (unsigned i = 0; i < NumElts; ++i) {
// Ignore undef indices.
if (M[i] < 0)
continue;
if (static_cast<unsigned>(M[i]) !=
(i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
return false;
}
return true;
}
/// Determines if \p M is a shuffle vector mask for a TRN of \p NumElts.
/// Whether or not G_TRN1 or G_TRN2 should be used is stored in \p WhichResult.
static bool isTRNMask(ArrayRef<int> M, unsigned NumElts,
unsigned &WhichResult) {
if (NumElts % 2 != 0)
return false;
WhichResult = (M[0] == 0 ? 0 : 1);
for (unsigned i = 0; i < NumElts; i += 2) {
if ((M[i] >= 0 && static_cast<unsigned>(M[i]) != i + WhichResult) ||
(M[i + 1] >= 0 &&
static_cast<unsigned>(M[i + 1]) != i + NumElts + WhichResult))
return false;
}
return true;
}
/// Check if a G_EXT instruction can handle a shuffle mask \p M when the vector
/// sources of the shuffle are different.
static Optional<std::pair<bool, uint64_t>> getExtMask(ArrayRef<int> M,
unsigned NumElts) {
// Look for the first non-undef element.
auto FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; });
if (FirstRealElt == M.end())
return None;
// Use APInt to handle overflow when calculating expected element.
unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
// The following shuffle indices must be the successive elements after the
// first real element.
if (any_of(
make_range(std::next(FirstRealElt), M.end()),
[&ExpectedElt](int Elt) { return Elt != ExpectedElt++ && Elt >= 0; }))
return None;
// The index of an EXT is the first element if it is not UNDEF.
// Watch out for the beginning UNDEFs. The EXT index should be the expected
// value of the first element. E.g.
// <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
// <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
// ExpectedElt is the last mask index plus 1.
uint64_t Imm = ExpectedElt.getZExtValue();
bool ReverseExt = false;
// There are two difference cases requiring to reverse input vectors.
// For example, for vector <4 x i32> we have the following cases,
// Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
// Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
// For both cases, we finally use mask <5, 6, 7, 0>, which requires
// to reverse two input vectors.
if (Imm < NumElts)
ReverseExt = true;
else
Imm -= NumElts;
return std::make_pair(ReverseExt, Imm);
}
/// Determines if \p M is a shuffle vector mask for a UZP of \p NumElts.
/// Whether or not G_UZP1 or G_UZP2 should be used is stored in \p WhichResult.
static bool isUZPMask(ArrayRef<int> M, unsigned NumElts,
unsigned &WhichResult) {
WhichResult = (M[0] == 0 ? 0 : 1);
for (unsigned i = 0; i != NumElts; ++i) {
// Skip undef indices.
if (M[i] < 0)
continue;
if (static_cast<unsigned>(M[i]) != 2 * i + WhichResult)
return false;
}
return true;
}
/// \return true if \p M is a zip mask for a shuffle vector of \p NumElts.
/// Whether or not G_ZIP1 or G_ZIP2 should be used is stored in \p WhichResult.
static bool isZipMask(ArrayRef<int> M, unsigned NumElts,
unsigned &WhichResult) {
if (NumElts % 2 != 0)
return false;
// 0 means use ZIP1, 1 means use ZIP2.
WhichResult = (M[0] == 0 ? 0 : 1);
unsigned Idx = WhichResult * NumElts / 2;
for (unsigned i = 0; i != NumElts; i += 2) {
if ((M[i] >= 0 && static_cast<unsigned>(M[i]) != Idx) ||
(M[i + 1] >= 0 && static_cast<unsigned>(M[i + 1]) != Idx + NumElts))
return false;
Idx += 1;
}
return true;
}
/// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with a
/// G_REV instruction. Returns the appropriate G_REV opcode in \p Opc.
static bool matchREV(MachineInstr &MI, MachineRegisterInfo &MRI,
ShuffleVectorPseudo &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
LLT Ty = MRI.getType(Dst);
unsigned EltSize = Ty.getScalarSizeInBits();
// Element size for a rev cannot be 64.
if (EltSize == 64)
return false;
unsigned NumElts = Ty.getNumElements();
// Try to produce G_REV64
if (isREVMask(ShuffleMask, EltSize, NumElts, 64)) {
MatchInfo = ShuffleVectorPseudo(AArch64::G_REV64, Dst, {Src});
return true;
}
// TODO: Produce G_REV32 and G_REV16 once we have proper legalization support.
// This should be identical to above, but with a constant 32 and constant
// 16.
return false;
}
/// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with
/// a G_TRN1 or G_TRN2 instruction.
static bool matchTRN(MachineInstr &MI, MachineRegisterInfo &MRI,
ShuffleVectorPseudo &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
unsigned WhichResult;
ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
Register Dst = MI.getOperand(0).getReg();
unsigned NumElts = MRI.getType(Dst).getNumElements();
if (!isTRNMask(ShuffleMask, NumElts, WhichResult))
return false;
unsigned Opc = (WhichResult == 0) ? AArch64::G_TRN1 : AArch64::G_TRN2;
Register V1 = MI.getOperand(1).getReg();
Register V2 = MI.getOperand(2).getReg();
MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
return true;
}
/// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with
/// a G_UZP1 or G_UZP2 instruction.
///
/// \param [in] MI - The shuffle vector instruction.
/// \param [out] MatchInfo - Either G_UZP1 or G_UZP2 on success.
static bool matchUZP(MachineInstr &MI, MachineRegisterInfo &MRI,
ShuffleVectorPseudo &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
unsigned WhichResult;
ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
Register Dst = MI.getOperand(0).getReg();
unsigned NumElts = MRI.getType(Dst).getNumElements();
if (!isUZPMask(ShuffleMask, NumElts, WhichResult))
return false;
unsigned Opc = (WhichResult == 0) ? AArch64::G_UZP1 : AArch64::G_UZP2;
Register V1 = MI.getOperand(1).getReg();
Register V2 = MI.getOperand(2).getReg();
MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
return true;
}
static bool matchZip(MachineInstr &MI, MachineRegisterInfo &MRI,
ShuffleVectorPseudo &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
unsigned WhichResult;
ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
Register Dst = MI.getOperand(0).getReg();
unsigned NumElts = MRI.getType(Dst).getNumElements();
if (!isZipMask(ShuffleMask, NumElts, WhichResult))
return false;
unsigned Opc = (WhichResult == 0) ? AArch64::G_ZIP1 : AArch64::G_ZIP2;
Register V1 = MI.getOperand(1).getReg();
Register V2 = MI.getOperand(2).getReg();
MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
return true;
}
/// Helper function for matchDup.
static bool matchDupFromInsertVectorElt(int Lane, MachineInstr &MI,
MachineRegisterInfo &MRI,
ShuffleVectorPseudo &MatchInfo) {
if (Lane != 0)
return false;
// Try to match a vector splat operation into a dup instruction.
// We're looking for this pattern:
//
// %scalar:gpr(s64) = COPY $x0
// %undef:fpr(<2 x s64>) = G_IMPLICIT_DEF
// %cst0:gpr(s32) = G_CONSTANT i32 0
// %zerovec:fpr(<2 x s32>) = G_BUILD_VECTOR %cst0(s32), %cst0(s32)
// %ins:fpr(<2 x s64>) = G_INSERT_VECTOR_ELT %undef, %scalar(s64), %cst0(s32)
// %splat:fpr(<2 x s64>) = G_SHUFFLE_VECTOR %ins(<2 x s64>), %undef, %zerovec(<2 x s32>)
//
// ...into:
// %splat = G_DUP %scalar
// Begin matching the insert.
auto *InsMI = getOpcodeDef(TargetOpcode::G_INSERT_VECTOR_ELT,
MI.getOperand(1).getReg(), MRI);
if (!InsMI)
return false;
// Match the undef vector operand.
if (!getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, InsMI->getOperand(1).getReg(),
MRI))
return false;
// Match the index constant 0.
if (!mi_match(InsMI->getOperand(3).getReg(), MRI, m_ZeroInt()))
return false;
MatchInfo = ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(),
{InsMI->getOperand(2).getReg()});
return true;
}
/// Helper function for matchDup.
static bool matchDupFromBuildVector(int Lane, MachineInstr &MI,
MachineRegisterInfo &MRI,
ShuffleVectorPseudo &MatchInfo) {
assert(Lane >= 0 && "Expected positive lane?");
// Test if the LHS is a BUILD_VECTOR. If it is, then we can just reference the
// lane's definition directly.
auto *BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR,
MI.getOperand(1).getReg(), MRI);
if (!BuildVecMI)
return false;
Register Reg = BuildVecMI->getOperand(Lane + 1).getReg();
MatchInfo =
ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(), {Reg});
return true;
}
static bool matchDup(MachineInstr &MI, MachineRegisterInfo &MRI,
ShuffleVectorPseudo &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
auto MaybeLane = getSplatIndex(MI);
if (!MaybeLane)
return false;
int Lane = *MaybeLane;
// If this is undef splat, generate it via "just" vdup, if possible.
if (Lane < 0)
Lane = 0;
if (matchDupFromInsertVectorElt(Lane, MI, MRI, MatchInfo))
return true;
if (matchDupFromBuildVector(Lane, MI, MRI, MatchInfo))
return true;
return false;
}
static bool matchEXT(MachineInstr &MI, MachineRegisterInfo &MRI,
ShuffleVectorPseudo &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
Register Dst = MI.getOperand(0).getReg();
auto ExtInfo = getExtMask(MI.getOperand(3).getShuffleMask(),
MRI.getType(Dst).getNumElements());
if (!ExtInfo)
return false;
bool ReverseExt;
uint64_t Imm;
std::tie(ReverseExt, Imm) = *ExtInfo;
Register V1 = MI.getOperand(1).getReg();
Register V2 = MI.getOperand(2).getReg();
if (ReverseExt)
std::swap(V1, V2);
uint64_t ExtFactor = MRI.getType(V1).getScalarSizeInBits() / 8;
Imm *= ExtFactor;
MatchInfo = ShuffleVectorPseudo(AArch64::G_EXT, Dst, {V1, V2, Imm});
return true;
}
/// Replace a G_SHUFFLE_VECTOR instruction with a pseudo.
/// \p Opc is the opcode to use. \p MI is the G_SHUFFLE_VECTOR.
static bool applyShuffleVectorPseudo(MachineInstr &MI,
ShuffleVectorPseudo &MatchInfo) {
MachineIRBuilder MIRBuilder(MI);
MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst}, MatchInfo.SrcOps);
MI.eraseFromParent();
return true;
}
/// Replace a G_SHUFFLE_VECTOR instruction with G_EXT.
/// Special-cased because the constant operand must be emitted as a G_CONSTANT
/// for the imported tablegen patterns to work.
static bool applyEXT(MachineInstr &MI, ShuffleVectorPseudo &MatchInfo) {
MachineIRBuilder MIRBuilder(MI);
// Tablegen patterns expect an i32 G_CONSTANT as the final op.
auto Cst =
MIRBuilder.buildConstant(LLT::scalar(32), MatchInfo.SrcOps[2].getImm());
MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst},
{MatchInfo.SrcOps[0], MatchInfo.SrcOps[1], Cst});
MI.eraseFromParent();
return true;
}
/// isVShiftRImm - Check if this is a valid vector for the immediate
/// operand of a vector shift right operation. The value must be in the range:
/// 1 <= Value <= ElementBits for a right shift.
static bool isVShiftRImm(Register Reg, MachineRegisterInfo &MRI, LLT Ty,
int64_t &Cnt) {
assert(Ty.isVector() && "vector shift count is not a vector type");
MachineInstr *MI = MRI.getVRegDef(Reg);
auto Cst = getBuildVectorConstantSplat(*MI, MRI);
if (!Cst)
return false;
Cnt = *Cst;
int64_t ElementBits = Ty.getScalarSizeInBits();
return Cnt >= 1 && Cnt <= ElementBits;
}
/// Match a vector G_ASHR or G_LSHR with a valid immediate shift.
static bool matchVAshrLshrImm(MachineInstr &MI, MachineRegisterInfo &MRI,
int64_t &Imm) {
assert(MI.getOpcode() == TargetOpcode::G_ASHR ||
MI.getOpcode() == TargetOpcode::G_LSHR);
LLT Ty = MRI.getType(MI.getOperand(1).getReg());
if (!Ty.isVector())
return false;
return isVShiftRImm(MI.getOperand(2).getReg(), MRI, Ty, Imm);
}
static bool applyVAshrLshrImm(MachineInstr &MI, MachineRegisterInfo &MRI,
int64_t &Imm) {
unsigned Opc = MI.getOpcode();
assert(Opc == TargetOpcode::G_ASHR || Opc == TargetOpcode::G_LSHR);
unsigned NewOpc =
Opc == TargetOpcode::G_ASHR ? AArch64::G_VASHR : AArch64::G_VLSHR;
MachineIRBuilder MIB(MI);
auto ImmDef = MIB.buildConstant(LLT::scalar(32), Imm);
MIB.buildInstr(NewOpc, {MI.getOperand(0)}, {MI.getOperand(1), ImmDef});
MI.eraseFromParent();
return true;
}
/// Determine if it is possible to modify the \p RHS and predicate \p P of a
/// G_ICMP instruction such that the right-hand side is an arithmetic immediate.
///
/// \returns A pair containing the updated immediate and predicate which may
/// be used to optimize the instruction.
///
/// \note This assumes that the comparison has been legalized.
Optional<std::pair<uint64_t, CmpInst::Predicate>>
tryAdjustICmpImmAndPred(Register RHS, CmpInst::Predicate P,
const MachineRegisterInfo &MRI) {
const auto &Ty = MRI.getType(RHS);
if (Ty.isVector())
return None;
unsigned Size = Ty.getSizeInBits();
assert((Size == 32 || Size == 64) && "Expected 32 or 64 bit compare only?");
// If the RHS is not a constant, or the RHS is already a valid arithmetic
// immediate, then there is nothing to change.
auto ValAndVReg = getConstantVRegValWithLookThrough(RHS, MRI);
if (!ValAndVReg)
return None;
uint64_t C = ValAndVReg->Value.getZExtValue();
if (isLegalArithImmed(C))
return None;
// We have a non-arithmetic immediate. Check if adjusting the immediate and
// adjusting the predicate will result in a legal arithmetic immediate.
switch (P) {
default:
return None;
case CmpInst::ICMP_SLT:
case CmpInst::ICMP_SGE:
// Check for
//
// x slt c => x sle c - 1
// x sge c => x sgt c - 1
//
// When c is not the smallest possible negative number.
if ((Size == 64 && static_cast<int64_t>(C) == INT64_MIN) ||
(Size == 32 && static_cast<int32_t>(C) == INT32_MIN))
return None;
P = (P == CmpInst::ICMP_SLT) ? CmpInst::ICMP_SLE : CmpInst::ICMP_SGT;
C -= 1;
break;
case CmpInst::ICMP_ULT:
case CmpInst::ICMP_UGE:
// Check for
//
// x ult c => x ule c - 1
// x uge c => x ugt c - 1
//
// When c is not zero.
if (C == 0)
return None;
P = (P == CmpInst::ICMP_ULT) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
C -= 1;
break;
case CmpInst::ICMP_SLE:
case CmpInst::ICMP_SGT:
// Check for
//
// x sle c => x slt c + 1
// x sgt c => s sge c + 1
//
// When c is not the largest possible signed integer.
if ((Size == 32 && static_cast<int32_t>(C) == INT32_MAX) ||
(Size == 64 && static_cast<int64_t>(C) == INT64_MAX))
return None;
P = (P == CmpInst::ICMP_SLE) ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGE;
C += 1;
break;
case CmpInst::ICMP_ULE:
case CmpInst::ICMP_UGT:
// Check for
//
// x ule c => x ult c + 1
// x ugt c => s uge c + 1
//
// When c is not the largest possible unsigned integer.
if ((Size == 32 && static_cast<uint32_t>(C) == UINT32_MAX) ||
(Size == 64 && C == UINT64_MAX))
return None;
P = (P == CmpInst::ICMP_ULE) ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
C += 1;
break;
}
// Check if the new constant is valid, and return the updated constant and
// predicate if it is.
if (Size == 32)
C = static_cast<uint32_t>(C);
if (!isLegalArithImmed(C))
return None;
return {{C, P}};
}
/// Determine whether or not it is possible to update the RHS and predicate of
/// a G_ICMP instruction such that the RHS will be selected as an arithmetic
/// immediate.
///
/// \p MI - The G_ICMP instruction
/// \p MatchInfo - The new RHS immediate and predicate on success
///
/// See tryAdjustICmpImmAndPred for valid transformations.
bool matchAdjustICmpImmAndPred(
MachineInstr &MI, const MachineRegisterInfo &MRI,
std::pair<uint64_t, CmpInst::Predicate> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_ICMP);
Register RHS = MI.getOperand(3).getReg();
auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
if (auto MaybeNewImmAndPred = tryAdjustICmpImmAndPred(RHS, Pred, MRI)) {
MatchInfo = *MaybeNewImmAndPred;
return true;
}
return false;
}
bool applyAdjustICmpImmAndPred(
MachineInstr &MI, std::pair<uint64_t, CmpInst::Predicate> &MatchInfo,
MachineIRBuilder &MIB, GISelChangeObserver &Observer) {
MIB.setInstrAndDebugLoc(MI);
MachineOperand &RHS = MI.getOperand(3);
MachineRegisterInfo &MRI = *MIB.getMRI();
auto Cst = MIB.buildConstant(MRI.cloneVirtualRegister(RHS.getReg()),
MatchInfo.first);
Observer.changingInstr(MI);
RHS.setReg(Cst->getOperand(0).getReg());
MI.getOperand(1).setPredicate(MatchInfo.second);
Observer.changedInstr(MI);
return true;
}
bool matchDupLane(MachineInstr &MI, MachineRegisterInfo &MRI,
std::pair<unsigned, int> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
Register Src1Reg = MI.getOperand(1).getReg();
const LLT SrcTy = MRI.getType(Src1Reg);
const LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
auto LaneIdx = getSplatIndex(MI);
if (!LaneIdx)
return false;
// The lane idx should be within the first source vector.
if (*LaneIdx >= SrcTy.getNumElements())
return false;
if (DstTy != SrcTy)
return false;
LLT ScalarTy = SrcTy.getElementType();
unsigned ScalarSize = ScalarTy.getSizeInBits();
unsigned Opc = 0;
switch (SrcTy.getNumElements()) {
case 2:
if (ScalarSize == 64)
Opc = AArch64::G_DUPLANE64;
break;
case 4:
if (ScalarSize == 32)
Opc = AArch64::G_DUPLANE32;
break;
case 8:
if (ScalarSize == 16)
Opc = AArch64::G_DUPLANE16;
break;
case 16:
if (ScalarSize == 8)
Opc = AArch64::G_DUPLANE8;
break;
default:
break;
}
if (!Opc)
return false;
MatchInfo.first = Opc;
MatchInfo.second = *LaneIdx;
return true;
}
bool applyDupLane(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B, std::pair<unsigned, int> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
B.setInstrAndDebugLoc(MI);
auto Lane = B.buildConstant(LLT::scalar(64), MatchInfo.second);
B.buildInstr(MatchInfo.first, {MI.getOperand(0).getReg()},
{MI.getOperand(1).getReg(), Lane});
MI.eraseFromParent();
return true;
}
#define AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_DEPS
#include "AArch64GenPostLegalizeGILowering.inc"
#undef AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_DEPS
namespace {
#define AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_H
#include "AArch64GenPostLegalizeGILowering.inc"
#undef AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_H
class AArch64PostLegalizerLoweringInfo : public CombinerInfo {
public:
AArch64GenPostLegalizerLoweringHelperRuleConfig GeneratedRuleCfg;
AArch64PostLegalizerLoweringInfo(bool OptSize, bool MinSize)
: CombinerInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false,
/*LegalizerInfo*/ nullptr, /*OptEnabled = */ true, OptSize,
MinSize) {
if (!GeneratedRuleCfg.parseCommandLineOption())
report_fatal_error("Invalid rule identifier");
}
virtual bool combine(GISelChangeObserver &Observer, MachineInstr &MI,
MachineIRBuilder &B) const override;
};
bool AArch64PostLegalizerLoweringInfo::combine(GISelChangeObserver &Observer,
MachineInstr &MI,
MachineIRBuilder &B) const {
CombinerHelper Helper(Observer, B);
AArch64GenPostLegalizerLoweringHelper Generated(GeneratedRuleCfg);
return Generated.tryCombineAll(Observer, MI, B, Helper);
}
#define AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_CPP
#include "AArch64GenPostLegalizeGILowering.inc"
#undef AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_CPP
class AArch64PostLegalizerLowering : public MachineFunctionPass {
public:
static char ID;
AArch64PostLegalizerLowering();
StringRef getPassName() const override {
return "AArch64PostLegalizerLowering";
}
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
};
} // end anonymous namespace
void AArch64PostLegalizerLowering::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetPassConfig>();
AU.setPreservesCFG();
getSelectionDAGFallbackAnalysisUsage(AU);
MachineFunctionPass::getAnalysisUsage(AU);
}
AArch64PostLegalizerLowering::AArch64PostLegalizerLowering()
: MachineFunctionPass(ID) {
initializeAArch64PostLegalizerLoweringPass(*PassRegistry::getPassRegistry());
}
bool AArch64PostLegalizerLowering::runOnMachineFunction(MachineFunction &MF) {
if (MF.getProperties().hasProperty(
MachineFunctionProperties::Property::FailedISel))
return false;
assert(MF.getProperties().hasProperty(
MachineFunctionProperties::Property::Legalized) &&
"Expected a legalized function?");
auto *TPC = &getAnalysis<TargetPassConfig>();
const Function &F = MF.getFunction();
AArch64PostLegalizerLoweringInfo PCInfo(F.hasOptSize(), F.hasMinSize());
Combiner C(PCInfo, TPC);
return C.combineMachineInstrs(MF, /*CSEInfo*/ nullptr);
}
char AArch64PostLegalizerLowering::ID = 0;
INITIALIZE_PASS_BEGIN(AArch64PostLegalizerLowering, DEBUG_TYPE,
"Lower AArch64 MachineInstrs after legalization", false,
false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(AArch64PostLegalizerLowering, DEBUG_TYPE,
"Lower AArch64 MachineInstrs after legalization", false,
false)
namespace llvm {
FunctionPass *createAArch64PostLegalizerLowering() {
return new AArch64PostLegalizerLowering();
}
} // end namespace llvm
|