aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Target/AArch64/GISel/AArch64InstructionSelector.cpp
blob: 72f92065f3904250c2162769651eef4e3afd16e8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
//===- AArch64InstructionSelector.cpp ----------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the InstructionSelector class for
/// AArch64.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//

#include "AArch64InstrInfo.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64RegisterBankInfo.h"
#include "AArch64RegisterInfo.h"
#include "AArch64Subtarget.h"
#include "AArch64TargetMachine.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "MCTargetDesc/AArch64MCTargetDesc.h" 
#include "llvm/ADT/Optional.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelectorImpl.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h" 
#include "llvm/IR/PatternMatch.h" 
#include "llvm/IR/Type.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/Pass.h" 
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

#define DEBUG_TYPE "aarch64-isel"

using namespace llvm;
using namespace MIPatternMatch; 

namespace {

#define GET_GLOBALISEL_PREDICATE_BITSET
#include "AArch64GenGlobalISel.inc"
#undef GET_GLOBALISEL_PREDICATE_BITSET

class AArch64InstructionSelector : public InstructionSelector {
public:
  AArch64InstructionSelector(const AArch64TargetMachine &TM,
                             const AArch64Subtarget &STI,
                             const AArch64RegisterBankInfo &RBI);

  bool select(MachineInstr &I) override;
  static const char *getName() { return DEBUG_TYPE; }

  void setupMF(MachineFunction &MF, GISelKnownBits &KB,
               CodeGenCoverage &CoverageInfo) override {
    InstructionSelector::setupMF(MF, KB, CoverageInfo);

    // hasFnAttribute() is expensive to call on every BRCOND selection, so
    // cache it here for each run of the selector.
    ProduceNonFlagSettingCondBr =
        !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening);
    MFReturnAddr = Register();

    processPHIs(MF);
  }

private:
  /// tblgen-erated 'select' implementation, used as the initial selector for
  /// the patterns that don't require complex C++.
  bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const;

  // A lowering phase that runs before any selection attempts.
  // Returns true if the instruction was modified.
  bool preISelLower(MachineInstr &I);

  // An early selection function that runs before the selectImpl() call.
  bool earlySelect(MachineInstr &I) const;

  // Do some preprocessing of G_PHIs before we begin selection.
  void processPHIs(MachineFunction &MF);

  bool earlySelectSHL(MachineInstr &I, MachineRegisterInfo &MRI) const;

  /// Eliminate same-sized cross-bank copies into stores before selectImpl().
  bool contractCrossBankCopyIntoStore(MachineInstr &I,
                                      MachineRegisterInfo &MRI);

  bool convertPtrAddToAdd(MachineInstr &I, MachineRegisterInfo &MRI);

  bool selectVaStartAAPCS(MachineInstr &I, MachineFunction &MF,
                          MachineRegisterInfo &MRI) const;
  bool selectVaStartDarwin(MachineInstr &I, MachineFunction &MF,
                           MachineRegisterInfo &MRI) const;

  ///@{ 
  /// Helper functions for selectCompareBranch. 
  bool selectCompareBranchFedByFCmp(MachineInstr &I, MachineInstr &FCmp, 
                                    MachineIRBuilder &MIB) const; 
  bool selectCompareBranchFedByICmp(MachineInstr &I, MachineInstr &ICmp, 
                                    MachineIRBuilder &MIB) const; 
  bool tryOptCompareBranchFedByICmp(MachineInstr &I, MachineInstr &ICmp, 
                                    MachineIRBuilder &MIB) const; 
  bool tryOptAndIntoCompareBranch(MachineInstr &AndInst, bool Invert, 
                                  MachineBasicBlock *DstMBB,
                                  MachineIRBuilder &MIB) const;
  ///@} 
 
  bool selectCompareBranch(MachineInstr &I, MachineFunction &MF,
                           MachineRegisterInfo &MRI) const;

  bool selectVectorAshrLshr(MachineInstr &I, MachineRegisterInfo &MRI) const; 
  bool selectVectorSHL(MachineInstr &I, MachineRegisterInfo &MRI) const;

  // Helper to generate an equivalent of scalar_to_vector into a new register,
  // returned via 'Dst'.
  MachineInstr *emitScalarToVector(unsigned EltSize,
                                   const TargetRegisterClass *DstRC,
                                   Register Scalar,
                                   MachineIRBuilder &MIRBuilder) const;

  /// Emit a lane insert into \p DstReg, or a new vector register if None is
  /// provided.
  ///
  /// The lane inserted into is defined by \p LaneIdx. The vector source
  /// register is given by \p SrcReg. The register containing the element is
  /// given by \p EltReg.
  MachineInstr *emitLaneInsert(Optional<Register> DstReg, Register SrcReg,
                               Register EltReg, unsigned LaneIdx,
                               const RegisterBank &RB,
                               MachineIRBuilder &MIRBuilder) const;
  bool selectInsertElt(MachineInstr &I, MachineRegisterInfo &MRI) const;
  bool tryOptConstantBuildVec(MachineInstr &MI, LLT DstTy,
                              MachineRegisterInfo &MRI) const;
  bool selectBuildVector(MachineInstr &I, MachineRegisterInfo &MRI) const;
  bool selectMergeValues(MachineInstr &I, MachineRegisterInfo &MRI) const;
  bool selectUnmergeValues(MachineInstr &I, MachineRegisterInfo &MRI) const;

  bool selectShuffleVector(MachineInstr &I, MachineRegisterInfo &MRI) const;
  bool selectExtractElt(MachineInstr &I, MachineRegisterInfo &MRI) const;
  bool selectConcatVectors(MachineInstr &I, MachineRegisterInfo &MRI) const;
  bool selectSplitVectorUnmerge(MachineInstr &I,
                                MachineRegisterInfo &MRI) const;
  bool selectIntrinsicWithSideEffects(MachineInstr &I,
                                      MachineRegisterInfo &MRI) const;
  bool selectIntrinsic(MachineInstr &I, MachineRegisterInfo &MRI);
  bool selectVectorICmp(MachineInstr &I, MachineRegisterInfo &MRI) const;
  bool selectIntrinsicTrunc(MachineInstr &I, MachineRegisterInfo &MRI) const;
  bool selectIntrinsicRound(MachineInstr &I, MachineRegisterInfo &MRI) const;
  bool selectJumpTable(MachineInstr &I, MachineRegisterInfo &MRI) const;
  bool selectBrJT(MachineInstr &I, MachineRegisterInfo &MRI) const;
  bool selectTLSGlobalValue(MachineInstr &I, MachineRegisterInfo &MRI) const;
  bool selectReduction(MachineInstr &I, MachineRegisterInfo &MRI) const; 

  unsigned emitConstantPoolEntry(const Constant *CPVal,
                                 MachineFunction &MF) const;
  MachineInstr *emitLoadFromConstantPool(const Constant *CPVal,
                                         MachineIRBuilder &MIRBuilder) const;

  // Emit a vector concat operation.
  MachineInstr *emitVectorConcat(Optional<Register> Dst, Register Op1,
                                 Register Op2,
                                 MachineIRBuilder &MIRBuilder) const;

  // Emit an integer compare between LHS and RHS, which checks for Predicate.
  MachineInstr *emitIntegerCompare(MachineOperand &LHS, MachineOperand &RHS, 
                                   MachineOperand &Predicate, 
                                   MachineIRBuilder &MIRBuilder) const; 
 
  /// Emit a floating point comparison between \p LHS and \p RHS. 
  /// \p Pred if given is the intended predicate to use. 
  MachineInstr *emitFPCompare(Register LHS, Register RHS, 
                              MachineIRBuilder &MIRBuilder, 
                              Optional<CmpInst::Predicate> = None) const; 
 
  MachineInstr *emitInstr(unsigned Opcode, 
                          std::initializer_list<llvm::DstOp> DstOps, 
                          std::initializer_list<llvm::SrcOp> SrcOps, 
                          MachineIRBuilder &MIRBuilder, 
                          const ComplexRendererFns &RenderFns = None) const; 
  /// Helper function to emit an add or sub instruction. 
  /// 
  /// \p AddrModeAndSizeToOpcode must contain each of the opcode variants above 
  /// in a specific order. 
  /// 
  /// Below is an example of the expected input to \p AddrModeAndSizeToOpcode. 
  /// 
  /// \code 
  ///   const std::array<std::array<unsigned, 2>, 4> Table { 
  ///    {{AArch64::ADDXri, AArch64::ADDWri}, 
  ///     {AArch64::ADDXrs, AArch64::ADDWrs}, 
  ///     {AArch64::ADDXrr, AArch64::ADDWrr}, 
  ///     {AArch64::SUBXri, AArch64::SUBWri}, 
  ///     {AArch64::ADDXrx, AArch64::ADDWrx}}}; 
  /// \endcode 
  /// 
  /// Each row in the table corresponds to a different addressing mode. Each 
  /// column corresponds to a different register size. 
  /// 
  /// \attention Rows must be structured as follows: 
  ///   - Row 0: The ri opcode variants 
  ///   - Row 1: The rs opcode variants 
  ///   - Row 2: The rr opcode variants 
  ///   - Row 3: The ri opcode variants for negative immediates 
  ///   - Row 4: The rx opcode variants 
  /// 
  /// \attention Columns must be structured as follows: 
  ///   - Column 0: The 64-bit opcode variants 
  ///   - Column 1: The 32-bit opcode variants 
  /// 
  /// \p Dst is the destination register of the binop to emit. 
  /// \p LHS is the left-hand operand of the binop to emit. 
  /// \p RHS is the right-hand operand of the binop to emit. 
  MachineInstr *emitAddSub( 
      const std::array<std::array<unsigned, 2>, 5> &AddrModeAndSizeToOpcode, 
      Register Dst, MachineOperand &LHS, MachineOperand &RHS, 
      MachineIRBuilder &MIRBuilder) const; 
  MachineInstr *emitADD(Register DefReg, MachineOperand &LHS, 
                        MachineOperand &RHS, 
                        MachineIRBuilder &MIRBuilder) const;
  MachineInstr *emitADDS(Register Dst, MachineOperand &LHS, MachineOperand &RHS, 
                         MachineIRBuilder &MIRBuilder) const; 
  MachineInstr *emitSUBS(Register Dst, MachineOperand &LHS, MachineOperand &RHS, 
                         MachineIRBuilder &MIRBuilder) const; 
  MachineInstr *emitCMN(MachineOperand &LHS, MachineOperand &RHS,
                        MachineIRBuilder &MIRBuilder) const;
  MachineInstr *emitTST(MachineOperand &LHS, MachineOperand &RHS, 
                        MachineIRBuilder &MIRBuilder) const;
  MachineInstr *emitSelect(Register Dst, Register LHS, Register RHS, 
                           AArch64CC::CondCode CC, 
                           MachineIRBuilder &MIRBuilder) const; 
  MachineInstr *emitExtractVectorElt(Optional<Register> DstReg,
                                     const RegisterBank &DstRB, LLT ScalarTy,
                                     Register VecReg, unsigned LaneIdx,
                                     MachineIRBuilder &MIRBuilder) const;

  /// Helper function for selecting G_FCONSTANT. If the G_FCONSTANT can be
  /// materialized using a FMOV instruction, then update MI and return it.
  /// Otherwise, do nothing and return a nullptr.
  MachineInstr *emitFMovForFConstant(MachineInstr &MI,
                                     MachineRegisterInfo &MRI) const;

  /// Emit a CSet for an integer compare. 
  /// 
  /// \p DefReg is expected to be a 32-bit scalar register. 
  MachineInstr *emitCSetForICMP(Register DefReg, unsigned Pred,
                                MachineIRBuilder &MIRBuilder) const;
  /// Emit a CSet for a FP compare. 
  /// 
  /// \p Dst is expected to be a 32-bit scalar register. 
  MachineInstr *emitCSetForFCmp(Register Dst, CmpInst::Predicate Pred, 
                                MachineIRBuilder &MIRBuilder) const; 

  /// Emit the overflow op for \p Opcode. 
  /// 
  /// \p Opcode is expected to be an overflow op's opcode, e.g. G_UADDO, 
  /// G_USUBO, etc. 
  std::pair<MachineInstr *, AArch64CC::CondCode> 
  emitOverflowOp(unsigned Opcode, Register Dst, MachineOperand &LHS, 
                 MachineOperand &RHS, MachineIRBuilder &MIRBuilder) const; 
 
  /// Emit a TB(N)Z instruction which tests \p Bit in \p TestReg.
  /// \p IsNegative is true if the test should be "not zero".
  /// This will also optimize the test bit instruction when possible.
  MachineInstr *emitTestBit(Register TestReg, uint64_t Bit, bool IsNegative,
                            MachineBasicBlock *DstMBB,
                            MachineIRBuilder &MIB) const;

  /// Emit a CB(N)Z instruction which branches to \p DestMBB. 
  MachineInstr *emitCBZ(Register CompareReg, bool IsNegative, 
                        MachineBasicBlock *DestMBB, 
                        MachineIRBuilder &MIB) const; 
 
  // Equivalent to the i32shift_a and friends from AArch64InstrInfo.td.
  // We use these manually instead of using the importer since it doesn't
  // support SDNodeXForm.
  ComplexRendererFns selectShiftA_32(const MachineOperand &Root) const;
  ComplexRendererFns selectShiftB_32(const MachineOperand &Root) const;
  ComplexRendererFns selectShiftA_64(const MachineOperand &Root) const;
  ComplexRendererFns selectShiftB_64(const MachineOperand &Root) const;

  ComplexRendererFns select12BitValueWithLeftShift(uint64_t Immed) const;
  ComplexRendererFns selectArithImmed(MachineOperand &Root) const;
  ComplexRendererFns selectNegArithImmed(MachineOperand &Root) const;

  ComplexRendererFns selectAddrModeUnscaled(MachineOperand &Root,
                                            unsigned Size) const;

  ComplexRendererFns selectAddrModeUnscaled8(MachineOperand &Root) const {
    return selectAddrModeUnscaled(Root, 1);
  }
  ComplexRendererFns selectAddrModeUnscaled16(MachineOperand &Root) const {
    return selectAddrModeUnscaled(Root, 2);
  }
  ComplexRendererFns selectAddrModeUnscaled32(MachineOperand &Root) const {
    return selectAddrModeUnscaled(Root, 4);
  }
  ComplexRendererFns selectAddrModeUnscaled64(MachineOperand &Root) const {
    return selectAddrModeUnscaled(Root, 8);
  }
  ComplexRendererFns selectAddrModeUnscaled128(MachineOperand &Root) const {
    return selectAddrModeUnscaled(Root, 16);
  }

  /// Helper to try to fold in a GISEL_ADD_LOW into an immediate, to be used
  /// from complex pattern matchers like selectAddrModeIndexed().
  ComplexRendererFns tryFoldAddLowIntoImm(MachineInstr &RootDef, unsigned Size,
                                          MachineRegisterInfo &MRI) const;

  ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root,
                                           unsigned Size) const;
  template <int Width>
  ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root) const {
    return selectAddrModeIndexed(Root, Width / 8);
  }

  bool isWorthFoldingIntoExtendedReg(MachineInstr &MI,
                                     const MachineRegisterInfo &MRI) const;
  ComplexRendererFns
  selectAddrModeShiftedExtendXReg(MachineOperand &Root,
                                  unsigned SizeInBytes) const;

  /// Returns a \p ComplexRendererFns which contains a base, offset, and whether
  /// or not a shift + extend should be folded into an addressing mode. Returns
  /// None when this is not profitable or possible.
  ComplexRendererFns
  selectExtendedSHL(MachineOperand &Root, MachineOperand &Base,
                    MachineOperand &Offset, unsigned SizeInBytes,
                    bool WantsExt) const;
  ComplexRendererFns selectAddrModeRegisterOffset(MachineOperand &Root) const;
  ComplexRendererFns selectAddrModeXRO(MachineOperand &Root,
                                       unsigned SizeInBytes) const;
  template <int Width>
  ComplexRendererFns selectAddrModeXRO(MachineOperand &Root) const {
    return selectAddrModeXRO(Root, Width / 8);
  }

  ComplexRendererFns selectAddrModeWRO(MachineOperand &Root,
                                       unsigned SizeInBytes) const;
  template <int Width>
  ComplexRendererFns selectAddrModeWRO(MachineOperand &Root) const {
    return selectAddrModeWRO(Root, Width / 8);
  }

  ComplexRendererFns selectShiftedRegister(MachineOperand &Root) const;

  ComplexRendererFns selectArithShiftedRegister(MachineOperand &Root) const {
    return selectShiftedRegister(Root);
  }

  ComplexRendererFns selectLogicalShiftedRegister(MachineOperand &Root) const {
    // TODO: selectShiftedRegister should allow for rotates on logical shifts.
    // For now, make them the same. The only difference between the two is that
    // logical shifts are allowed to fold in rotates. Otherwise, these are
    // functionally the same.
    return selectShiftedRegister(Root);
  }

  /// Given an extend instruction, determine the correct shift-extend type for
  /// that instruction.
  ///
  /// If the instruction is going to be used in a load or store, pass
  /// \p IsLoadStore = true.
  AArch64_AM::ShiftExtendType
  getExtendTypeForInst(MachineInstr &MI, MachineRegisterInfo &MRI,
                       bool IsLoadStore = false) const;

  /// Move \p Reg to \p RC if \p Reg is not already on \p RC.
  ///
  /// \returns Either \p Reg if no change was necessary, or the new register
  /// created by moving \p Reg.
  ///
  /// Note: This uses emitCopy right now.
  Register moveScalarRegClass(Register Reg, const TargetRegisterClass &RC,
                              MachineIRBuilder &MIB) const;

  ComplexRendererFns selectArithExtendedRegister(MachineOperand &Root) const;

  void renderTruncImm(MachineInstrBuilder &MIB, const MachineInstr &MI,
                      int OpIdx = -1) const;
  void renderLogicalImm32(MachineInstrBuilder &MIB, const MachineInstr &I,
                          int OpIdx = -1) const;
  void renderLogicalImm64(MachineInstrBuilder &MIB, const MachineInstr &I,
                          int OpIdx = -1) const;

  // Materialize a GlobalValue or BlockAddress using a movz+movk sequence.
  void materializeLargeCMVal(MachineInstr &I, const Value *V,
                             unsigned OpFlags) const;

  // Optimization methods.
  bool tryOptSelect(MachineInstr &MI) const;
  MachineInstr *tryFoldIntegerCompare(MachineOperand &LHS, MachineOperand &RHS,
                                      MachineOperand &Predicate,
                                      MachineIRBuilder &MIRBuilder) const;

  /// Return true if \p MI is a load or store of \p NumBytes bytes.
  bool isLoadStoreOfNumBytes(const MachineInstr &MI, unsigned NumBytes) const;

  /// Returns true if \p MI is guaranteed to have the high-half of a 64-bit
  /// register zeroed out. In other words, the result of MI has been explicitly
  /// zero extended.
  bool isDef32(const MachineInstr &MI) const;

  const AArch64TargetMachine &TM;
  const AArch64Subtarget &STI;
  const AArch64InstrInfo &TII;
  const AArch64RegisterInfo &TRI;
  const AArch64RegisterBankInfo &RBI;

  bool ProduceNonFlagSettingCondBr = false;

  // Some cached values used during selection.
  // We use LR as a live-in register, and we keep track of it here as it can be
  // clobbered by calls.
  Register MFReturnAddr;

#define GET_GLOBALISEL_PREDICATES_DECL
#include "AArch64GenGlobalISel.inc"
#undef GET_GLOBALISEL_PREDICATES_DECL

// We declare the temporaries used by selectImpl() in the class to minimize the
// cost of constructing placeholder values.
#define GET_GLOBALISEL_TEMPORARIES_DECL
#include "AArch64GenGlobalISel.inc"
#undef GET_GLOBALISEL_TEMPORARIES_DECL
};

} // end anonymous namespace

#define GET_GLOBALISEL_IMPL
#include "AArch64GenGlobalISel.inc"
#undef GET_GLOBALISEL_IMPL

AArch64InstructionSelector::AArch64InstructionSelector(
    const AArch64TargetMachine &TM, const AArch64Subtarget &STI,
    const AArch64RegisterBankInfo &RBI)
    : InstructionSelector(), TM(TM), STI(STI), TII(*STI.getInstrInfo()),
      TRI(*STI.getRegisterInfo()), RBI(RBI),
#define GET_GLOBALISEL_PREDICATES_INIT
#include "AArch64GenGlobalISel.inc"
#undef GET_GLOBALISEL_PREDICATES_INIT
#define GET_GLOBALISEL_TEMPORARIES_INIT
#include "AArch64GenGlobalISel.inc"
#undef GET_GLOBALISEL_TEMPORARIES_INIT
{
}

// FIXME: This should be target-independent, inferred from the types declared
// for each class in the bank.
static const TargetRegisterClass *
getRegClassForTypeOnBank(LLT Ty, const RegisterBank &RB,
                         const RegisterBankInfo &RBI,
                         bool GetAllRegSet = false) {
  if (RB.getID() == AArch64::GPRRegBankID) {
    if (Ty.getSizeInBits() <= 32)
      return GetAllRegSet ? &AArch64::GPR32allRegClass
                          : &AArch64::GPR32RegClass;
    if (Ty.getSizeInBits() == 64)
      return GetAllRegSet ? &AArch64::GPR64allRegClass
                          : &AArch64::GPR64RegClass;
    return nullptr;
  }

  if (RB.getID() == AArch64::FPRRegBankID) {
    if (Ty.getSizeInBits() <= 16)
      return &AArch64::FPR16RegClass;
    if (Ty.getSizeInBits() == 32)
      return &AArch64::FPR32RegClass;
    if (Ty.getSizeInBits() == 64)
      return &AArch64::FPR64RegClass;
    if (Ty.getSizeInBits() == 128)
      return &AArch64::FPR128RegClass;
    return nullptr;
  }

  return nullptr;
}

/// Given a register bank, and size in bits, return the smallest register class
/// that can represent that combination.
static const TargetRegisterClass *
getMinClassForRegBank(const RegisterBank &RB, unsigned SizeInBits,
                      bool GetAllRegSet = false) {
  unsigned RegBankID = RB.getID();

  if (RegBankID == AArch64::GPRRegBankID) {
    if (SizeInBits <= 32)
      return GetAllRegSet ? &AArch64::GPR32allRegClass
                          : &AArch64::GPR32RegClass;
    if (SizeInBits == 64)
      return GetAllRegSet ? &AArch64::GPR64allRegClass
                          : &AArch64::GPR64RegClass;
  }

  if (RegBankID == AArch64::FPRRegBankID) {
    switch (SizeInBits) {
    default:
      return nullptr;
    case 8:
      return &AArch64::FPR8RegClass;
    case 16:
      return &AArch64::FPR16RegClass;
    case 32:
      return &AArch64::FPR32RegClass;
    case 64:
      return &AArch64::FPR64RegClass;
    case 128:
      return &AArch64::FPR128RegClass;
    }
  }

  return nullptr;
}

/// Returns the correct subregister to use for a given register class.
static bool getSubRegForClass(const TargetRegisterClass *RC,
                              const TargetRegisterInfo &TRI, unsigned &SubReg) {
  switch (TRI.getRegSizeInBits(*RC)) {
  case 8:
    SubReg = AArch64::bsub;
    break;
  case 16:
    SubReg = AArch64::hsub;
    break;
  case 32:
    if (RC != &AArch64::FPR32RegClass)
      SubReg = AArch64::sub_32;
    else
      SubReg = AArch64::ssub;
    break;
  case 64:
    SubReg = AArch64::dsub;
    break;
  default:
    LLVM_DEBUG(
        dbgs() << "Couldn't find appropriate subregister for register class.");
    return false;
  }

  return true;
}

/// Returns the minimum size the given register bank can hold.
static unsigned getMinSizeForRegBank(const RegisterBank &RB) {
  switch (RB.getID()) {
  case AArch64::GPRRegBankID:
    return 32;
  case AArch64::FPRRegBankID:
    return 8;
  default:
    llvm_unreachable("Tried to get minimum size for unknown register bank.");
  }
}

static Optional<uint64_t> getImmedFromMO(const MachineOperand &Root) {
  auto &MI = *Root.getParent();
  auto &MBB = *MI.getParent();
  auto &MF = *MBB.getParent();
  auto &MRI = MF.getRegInfo();
  uint64_t Immed;
  if (Root.isImm())
    Immed = Root.getImm();
  else if (Root.isCImm())
    Immed = Root.getCImm()->getZExtValue();
  else if (Root.isReg()) {
    auto ValAndVReg =
        getConstantVRegValWithLookThrough(Root.getReg(), MRI, true);
    if (!ValAndVReg)
      return None;
    Immed = ValAndVReg->Value.getSExtValue(); 
  } else
    return None;
  return Immed;
}

/// Check whether \p I is a currently unsupported binary operation:
/// - it has an unsized type
/// - an operand is not a vreg
/// - all operands are not in the same bank
/// These are checks that should someday live in the verifier, but right now,
/// these are mostly limitations of the aarch64 selector.
static bool unsupportedBinOp(const MachineInstr &I,
                             const AArch64RegisterBankInfo &RBI,
                             const MachineRegisterInfo &MRI,
                             const AArch64RegisterInfo &TRI) {
  LLT Ty = MRI.getType(I.getOperand(0).getReg());
  if (!Ty.isValid()) {
    LLVM_DEBUG(dbgs() << "Generic binop register should be typed\n");
    return true;
  }

  const RegisterBank *PrevOpBank = nullptr;
  for (auto &MO : I.operands()) {
    // FIXME: Support non-register operands.
    if (!MO.isReg()) {
      LLVM_DEBUG(dbgs() << "Generic inst non-reg operands are unsupported\n");
      return true;
    }

    // FIXME: Can generic operations have physical registers operands? If
    // so, this will need to be taught about that, and we'll need to get the
    // bank out of the minimal class for the register.
    // Either way, this needs to be documented (and possibly verified).
    if (!Register::isVirtualRegister(MO.getReg())) {
      LLVM_DEBUG(dbgs() << "Generic inst has physical register operand\n");
      return true;
    }

    const RegisterBank *OpBank = RBI.getRegBank(MO.getReg(), MRI, TRI);
    if (!OpBank) {
      LLVM_DEBUG(dbgs() << "Generic register has no bank or class\n");
      return true;
    }

    if (PrevOpBank && OpBank != PrevOpBank) {
      LLVM_DEBUG(dbgs() << "Generic inst operands have different banks\n");
      return true;
    }
    PrevOpBank = OpBank;
  }
  return false;
}

/// Select the AArch64 opcode for the basic binary operation \p GenericOpc
/// (such as G_OR or G_SDIV), appropriate for the register bank \p RegBankID
/// and of size \p OpSize.
/// \returns \p GenericOpc if the combination is unsupported.
static unsigned selectBinaryOp(unsigned GenericOpc, unsigned RegBankID,
                               unsigned OpSize) {
  switch (RegBankID) {
  case AArch64::GPRRegBankID:
    if (OpSize == 32) {
      switch (GenericOpc) {
      case TargetOpcode::G_SHL:
        return AArch64::LSLVWr;
      case TargetOpcode::G_LSHR:
        return AArch64::LSRVWr;
      case TargetOpcode::G_ASHR:
        return AArch64::ASRVWr;
      default:
        return GenericOpc;
      }
    } else if (OpSize == 64) {
      switch (GenericOpc) {
      case TargetOpcode::G_PTR_ADD:
        return AArch64::ADDXrr;
      case TargetOpcode::G_SHL:
        return AArch64::LSLVXr;
      case TargetOpcode::G_LSHR:
        return AArch64::LSRVXr;
      case TargetOpcode::G_ASHR:
        return AArch64::ASRVXr;
      default:
        return GenericOpc;
      }
    }
    break;
  case AArch64::FPRRegBankID:
    switch (OpSize) {
    case 32:
      switch (GenericOpc) {
      case TargetOpcode::G_FADD:
        return AArch64::FADDSrr;
      case TargetOpcode::G_FSUB:
        return AArch64::FSUBSrr;
      case TargetOpcode::G_FMUL:
        return AArch64::FMULSrr;
      case TargetOpcode::G_FDIV:
        return AArch64::FDIVSrr;
      default:
        return GenericOpc;
      }
    case 64:
      switch (GenericOpc) {
      case TargetOpcode::G_FADD:
        return AArch64::FADDDrr;
      case TargetOpcode::G_FSUB:
        return AArch64::FSUBDrr;
      case TargetOpcode::G_FMUL:
        return AArch64::FMULDrr;
      case TargetOpcode::G_FDIV:
        return AArch64::FDIVDrr;
      case TargetOpcode::G_OR:
        return AArch64::ORRv8i8;
      default:
        return GenericOpc;
      }
    }
    break;
  }
  return GenericOpc;
}

/// Select the AArch64 opcode for the G_LOAD or G_STORE operation \p GenericOpc,
/// appropriate for the (value) register bank \p RegBankID and of memory access
/// size \p OpSize.  This returns the variant with the base+unsigned-immediate
/// addressing mode (e.g., LDRXui).
/// \returns \p GenericOpc if the combination is unsupported.
static unsigned selectLoadStoreUIOp(unsigned GenericOpc, unsigned RegBankID,
                                    unsigned OpSize) {
  const bool isStore = GenericOpc == TargetOpcode::G_STORE;
  switch (RegBankID) {
  case AArch64::GPRRegBankID:
    switch (OpSize) {
    case 8:
      return isStore ? AArch64::STRBBui : AArch64::LDRBBui;
    case 16:
      return isStore ? AArch64::STRHHui : AArch64::LDRHHui;
    case 32:
      return isStore ? AArch64::STRWui : AArch64::LDRWui;
    case 64:
      return isStore ? AArch64::STRXui : AArch64::LDRXui;
    }
    break;
  case AArch64::FPRRegBankID:
    switch (OpSize) {
    case 8:
      return isStore ? AArch64::STRBui : AArch64::LDRBui;
    case 16:
      return isStore ? AArch64::STRHui : AArch64::LDRHui;
    case 32:
      return isStore ? AArch64::STRSui : AArch64::LDRSui;
    case 64:
      return isStore ? AArch64::STRDui : AArch64::LDRDui;
    }
    break;
  }
  return GenericOpc;
}

#ifndef NDEBUG
/// Helper function that verifies that we have a valid copy at the end of
/// selectCopy. Verifies that the source and dest have the expected sizes and
/// then returns true.
static bool isValidCopy(const MachineInstr &I, const RegisterBank &DstBank,
                        const MachineRegisterInfo &MRI,
                        const TargetRegisterInfo &TRI,
                        const RegisterBankInfo &RBI) {
  const Register DstReg = I.getOperand(0).getReg();
  const Register SrcReg = I.getOperand(1).getReg();
  const unsigned DstSize = RBI.getSizeInBits(DstReg, MRI, TRI);
  const unsigned SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI);

  // Make sure the size of the source and dest line up.
  assert(
      (DstSize == SrcSize ||
       // Copies are a mean to setup initial types, the number of
       // bits may not exactly match.
       (Register::isPhysicalRegister(SrcReg) && DstSize <= SrcSize) ||
       // Copies are a mean to copy bits around, as long as we are
       // on the same register class, that's fine. Otherwise, that
       // means we need some SUBREG_TO_REG or AND & co.
       (((DstSize + 31) / 32 == (SrcSize + 31) / 32) && DstSize > SrcSize)) &&
      "Copy with different width?!");

  // Check the size of the destination.
  assert((DstSize <= 64 || DstBank.getID() == AArch64::FPRRegBankID) &&
         "GPRs cannot get more than 64-bit width values");

  return true;
}
#endif

/// Helper function for selectCopy. Inserts a subregister copy from \p SrcReg
/// to \p *To.
///
/// E.g "To = COPY SrcReg:SubReg"
static bool copySubReg(MachineInstr &I, MachineRegisterInfo &MRI,
                       const RegisterBankInfo &RBI, Register SrcReg,
                       const TargetRegisterClass *To, unsigned SubReg) {
  assert(SrcReg.isValid() && "Expected a valid source register?");
  assert(To && "Destination register class cannot be null");
  assert(SubReg && "Expected a valid subregister");

  MachineIRBuilder MIB(I);
  auto SubRegCopy =
      MIB.buildInstr(TargetOpcode::COPY, {To}, {}).addReg(SrcReg, 0, SubReg);
  MachineOperand &RegOp = I.getOperand(1);
  RegOp.setReg(SubRegCopy.getReg(0));

  // It's possible that the destination register won't be constrained. Make
  // sure that happens.
  if (!Register::isPhysicalRegister(I.getOperand(0).getReg()))
    RBI.constrainGenericRegister(I.getOperand(0).getReg(), *To, MRI);

  return true;
}

/// Helper function to get the source and destination register classes for a
/// copy. Returns a std::pair containing the source register class for the
/// copy, and the destination register class for the copy. If a register class
/// cannot be determined, then it will be nullptr.
static std::pair<const TargetRegisterClass *, const TargetRegisterClass *>
getRegClassesForCopy(MachineInstr &I, const TargetInstrInfo &TII,
                     MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
                     const RegisterBankInfo &RBI) {
  Register DstReg = I.getOperand(0).getReg();
  Register SrcReg = I.getOperand(1).getReg();
  const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI);
  const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI);
  unsigned DstSize = RBI.getSizeInBits(DstReg, MRI, TRI);
  unsigned SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI);

  // Special casing for cross-bank copies of s1s. We can technically represent
  // a 1-bit value with any size of register. The minimum size for a GPR is 32
  // bits. So, we need to put the FPR on 32 bits as well.
  //
  // FIXME: I'm not sure if this case holds true outside of copies. If it does,
  // then we can pull it into the helpers that get the appropriate class for a
  // register bank. Or make a new helper that carries along some constraint
  // information.
  if (SrcRegBank != DstRegBank && (DstSize == 1 && SrcSize == 1))
    SrcSize = DstSize = 32;

  return {getMinClassForRegBank(SrcRegBank, SrcSize, true),
          getMinClassForRegBank(DstRegBank, DstSize, true)};
}

static bool selectCopy(MachineInstr &I, const TargetInstrInfo &TII,
                       MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
                       const RegisterBankInfo &RBI) {
  Register DstReg = I.getOperand(0).getReg();
  Register SrcReg = I.getOperand(1).getReg();
  const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI);
  const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI);

  // Find the correct register classes for the source and destination registers.
  const TargetRegisterClass *SrcRC;
  const TargetRegisterClass *DstRC;
  std::tie(SrcRC, DstRC) = getRegClassesForCopy(I, TII, MRI, TRI, RBI);

  if (!DstRC) {
    LLVM_DEBUG(dbgs() << "Unexpected dest size "
                      << RBI.getSizeInBits(DstReg, MRI, TRI) << '\n');
    return false;
  }

  // A couple helpers below, for making sure that the copy we produce is valid.

  // Set to true if we insert a SUBREG_TO_REG. If we do this, then we don't want
  // to verify that the src and dst are the same size, since that's handled by
  // the SUBREG_TO_REG.
  bool KnownValid = false;

  // Returns true, or asserts if something we don't expect happens. Instead of
  // returning true, we return isValidCopy() to ensure that we verify the
  // result.
  auto CheckCopy = [&]() {
    // If we have a bitcast or something, we can't have physical registers.
    assert((I.isCopy() ||
            (!Register::isPhysicalRegister(I.getOperand(0).getReg()) &&
             !Register::isPhysicalRegister(I.getOperand(1).getReg()))) &&
           "No phys reg on generic operator!");
    bool ValidCopy = true;
#ifndef NDEBUG
    ValidCopy = KnownValid || isValidCopy(I, DstRegBank, MRI, TRI, RBI);
    assert(ValidCopy && "Invalid copy.");
    (void)KnownValid; 
#endif
    return ValidCopy;
  };

  // Is this a copy? If so, then we may need to insert a subregister copy.
  if (I.isCopy()) {
    // Yes. Check if there's anything to fix up.
    if (!SrcRC) {
      LLVM_DEBUG(dbgs() << "Couldn't determine source register class\n");
      return false;
    }

    unsigned SrcSize = TRI.getRegSizeInBits(*SrcRC);
    unsigned DstSize = TRI.getRegSizeInBits(*DstRC);
    unsigned SubReg;

    // If the source bank doesn't support a subregister copy small enough,
    // then we first need to copy to the destination bank.
    if (getMinSizeForRegBank(SrcRegBank) > DstSize) {
      const TargetRegisterClass *DstTempRC =
          getMinClassForRegBank(DstRegBank, SrcSize, /* GetAllRegSet */ true);
      getSubRegForClass(DstRC, TRI, SubReg);

      MachineIRBuilder MIB(I);
      auto Copy = MIB.buildCopy({DstTempRC}, {SrcReg});
      copySubReg(I, MRI, RBI, Copy.getReg(0), DstRC, SubReg);
    } else if (SrcSize > DstSize) {
      // If the source register is bigger than the destination we need to
      // perform a subregister copy.
      const TargetRegisterClass *SubRegRC =
          getMinClassForRegBank(SrcRegBank, DstSize, /* GetAllRegSet */ true);
      getSubRegForClass(SubRegRC, TRI, SubReg);
      copySubReg(I, MRI, RBI, SrcReg, DstRC, SubReg);
    } else if (DstSize > SrcSize) {
      // If the destination register is bigger than the source we need to do
      // a promotion using SUBREG_TO_REG.
      const TargetRegisterClass *PromotionRC =
          getMinClassForRegBank(SrcRegBank, DstSize, /* GetAllRegSet */ true);
      getSubRegForClass(SrcRC, TRI, SubReg);

      Register PromoteReg = MRI.createVirtualRegister(PromotionRC);
      BuildMI(*I.getParent(), I, I.getDebugLoc(),
              TII.get(AArch64::SUBREG_TO_REG), PromoteReg)
          .addImm(0)
          .addUse(SrcReg)
          .addImm(SubReg);
      MachineOperand &RegOp = I.getOperand(1);
      RegOp.setReg(PromoteReg);

      // Promise that the copy is implicitly validated by the SUBREG_TO_REG.
      KnownValid = true;
    }

    // If the destination is a physical register, then there's nothing to
    // change, so we're done.
    if (Register::isPhysicalRegister(DstReg))
      return CheckCopy();
  }

  // No need to constrain SrcReg. It will get constrained when we hit another
  // of its use or its defs. Copies do not have constraints.
  if (!RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
    LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
                      << " operand\n");
    return false;
  }
  I.setDesc(TII.get(AArch64::COPY));
  return CheckCopy();
}

static unsigned selectFPConvOpc(unsigned GenericOpc, LLT DstTy, LLT SrcTy) {
  if (!DstTy.isScalar() || !SrcTy.isScalar())
    return GenericOpc;

  const unsigned DstSize = DstTy.getSizeInBits();
  const unsigned SrcSize = SrcTy.getSizeInBits();

  switch (DstSize) {
  case 32:
    switch (SrcSize) {
    case 32:
      switch (GenericOpc) {
      case TargetOpcode::G_SITOFP:
        return AArch64::SCVTFUWSri;
      case TargetOpcode::G_UITOFP:
        return AArch64::UCVTFUWSri;
      case TargetOpcode::G_FPTOSI:
        return AArch64::FCVTZSUWSr;
      case TargetOpcode::G_FPTOUI:
        return AArch64::FCVTZUUWSr;
      default:
        return GenericOpc;
      }
    case 64:
      switch (GenericOpc) {
      case TargetOpcode::G_SITOFP:
        return AArch64::SCVTFUXSri;
      case TargetOpcode::G_UITOFP:
        return AArch64::UCVTFUXSri;
      case TargetOpcode::G_FPTOSI:
        return AArch64::FCVTZSUWDr;
      case TargetOpcode::G_FPTOUI:
        return AArch64::FCVTZUUWDr;
      default:
        return GenericOpc;
      }
    default:
      return GenericOpc;
    }
  case 64:
    switch (SrcSize) {
    case 32:
      switch (GenericOpc) {
      case TargetOpcode::G_SITOFP:
        return AArch64::SCVTFUWDri;
      case TargetOpcode::G_UITOFP:
        return AArch64::UCVTFUWDri;
      case TargetOpcode::G_FPTOSI:
        return AArch64::FCVTZSUXSr;
      case TargetOpcode::G_FPTOUI:
        return AArch64::FCVTZUUXSr;
      default:
        return GenericOpc;
      }
    case 64:
      switch (GenericOpc) {
      case TargetOpcode::G_SITOFP:
        return AArch64::SCVTFUXDri;
      case TargetOpcode::G_UITOFP:
        return AArch64::UCVTFUXDri;
      case TargetOpcode::G_FPTOSI:
        return AArch64::FCVTZSUXDr;
      case TargetOpcode::G_FPTOUI:
        return AArch64::FCVTZUUXDr;
      default:
        return GenericOpc;
      }
    default:
      return GenericOpc;
    }
  default:
    return GenericOpc;
  };
  return GenericOpc;
}

MachineInstr * 
AArch64InstructionSelector::emitSelect(Register Dst, Register True, 
                                       Register False, AArch64CC::CondCode CC, 
                                       MachineIRBuilder &MIB) const { 
  MachineRegisterInfo &MRI = *MIB.getMRI(); 
  assert(RBI.getRegBank(False, MRI, TRI)->getID() == 
             RBI.getRegBank(True, MRI, TRI)->getID() && 
         "Expected both select operands to have the same regbank?"); 
  LLT Ty = MRI.getType(True); 
  if (Ty.isVector()) 
    return nullptr; 
  const unsigned Size = Ty.getSizeInBits(); 
  assert((Size == 32 || Size == 64) && 
         "Expected 32 bit or 64 bit select only?"); 
  const bool Is32Bit = Size == 32; 
  if (RBI.getRegBank(True, MRI, TRI)->getID() != AArch64::GPRRegBankID) { 
    unsigned Opc = Is32Bit ? AArch64::FCSELSrrr : AArch64::FCSELDrrr; 
    auto FCSel = MIB.buildInstr(Opc, {Dst}, {True, False}).addImm(CC); 
    constrainSelectedInstRegOperands(*FCSel, TII, TRI, RBI); 
    return &*FCSel; 
  } 

  // By default, we'll try and emit a CSEL. 
  unsigned Opc = Is32Bit ? AArch64::CSELWr : AArch64::CSELXr; 
  bool Optimized = false; 
  auto TryFoldBinOpIntoSelect = [&Opc, Is32Bit, &CC, &MRI, 
                                 &Optimized](Register &Reg, Register &OtherReg, 
                                             bool Invert) { 
    if (Optimized) 
      return false; 

    // Attempt to fold: 
    // 
    // %sub = G_SUB 0, %x 
    // %select = G_SELECT cc, %reg, %sub 
    // 
    // Into: 
    // %select = CSNEG %reg, %x, cc 
    Register MatchReg; 
    if (mi_match(Reg, MRI, m_Neg(m_Reg(MatchReg)))) { 
      Opc = Is32Bit ? AArch64::CSNEGWr : AArch64::CSNEGXr; 
      Reg = MatchReg; 
      if (Invert) { 
        CC = AArch64CC::getInvertedCondCode(CC); 
        std::swap(Reg, OtherReg); 
      } 
      return true; 
    } 
 
    // Attempt to fold: 
    // 
    // %xor = G_XOR %x, -1 
    // %select = G_SELECT cc, %reg, %xor 
    // 
    // Into: 
    // %select = CSINV %reg, %x, cc 
    if (mi_match(Reg, MRI, m_Not(m_Reg(MatchReg)))) { 
      Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr; 
      Reg = MatchReg; 
      if (Invert) { 
        CC = AArch64CC::getInvertedCondCode(CC); 
        std::swap(Reg, OtherReg); 
      } 
      return true; 
    } 
 
    // Attempt to fold: 
    // 
    // %add = G_ADD %x, 1 
    // %select = G_SELECT cc, %reg, %add 
    // 
    // Into: 
    // %select = CSINC %reg, %x, cc 
    if (mi_match(Reg, MRI, m_GAdd(m_Reg(MatchReg), m_SpecificICst(1)))) { 
      Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr; 
      Reg = MatchReg; 
      if (Invert) { 
        CC = AArch64CC::getInvertedCondCode(CC); 
        std::swap(Reg, OtherReg); 
      } 
      return true; 
    } 
 
    return false;
  }; 
 
  // Helper lambda which tries to use CSINC/CSINV for the instruction when its 
  // true/false values are constants. 
  // FIXME: All of these patterns already exist in tablegen. We should be 
  // able to import these. 
  auto TryOptSelectCst = [&Opc, &True, &False, &CC, Is32Bit, &MRI, 
                          &Optimized]() { 
    if (Optimized) 
      return false; 
    auto TrueCst = getConstantVRegValWithLookThrough(True, MRI); 
    auto FalseCst = getConstantVRegValWithLookThrough(False, MRI); 
    if (!TrueCst && !FalseCst) 
      return false; 
 
    Register ZReg = Is32Bit ? AArch64::WZR : AArch64::XZR; 
    if (TrueCst && FalseCst) { 
      int64_t T = TrueCst->Value.getSExtValue(); 
      int64_t F = FalseCst->Value.getSExtValue(); 
 
      if (T == 0 && F == 1) { 
        // G_SELECT cc, 0, 1 -> CSINC zreg, zreg, cc 
        Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr; 
        True = ZReg; 
        False = ZReg; 
        return true; 
      } 
 
      if (T == 0 && F == -1) { 
        // G_SELECT cc 0, -1 -> CSINV zreg, zreg cc 
        Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr; 
        True = ZReg; 
        False = ZReg; 
        return true; 
      } 
    } 
 
    if (TrueCst) { 
      int64_t T = TrueCst->Value.getSExtValue(); 
      if (T == 1) { 
        // G_SELECT cc, 1, f -> CSINC f, zreg, inv_cc 
        Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr; 
        True = False; 
        False = ZReg; 
        CC = AArch64CC::getInvertedCondCode(CC); 
        return true; 
      } 
 
      if (T == -1) { 
        // G_SELECT cc, -1, f -> CSINV f, zreg, inv_cc 
        Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr; 
        True = False; 
        False = ZReg; 
        CC = AArch64CC::getInvertedCondCode(CC); 
        return true; 
      } 
    } 
 
    if (FalseCst) { 
      int64_t F = FalseCst->Value.getSExtValue(); 
      if (F == 1) { 
        // G_SELECT cc, t, 1 -> CSINC t, zreg, cc 
        Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr; 
        False = ZReg; 
        return true; 
      } 
 
      if (F == -1) { 
        // G_SELECT cc, t, -1 -> CSINC t, zreg, cc 
        Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr; 
        False = ZReg; 
        return true; 
      } 
    } 
    return false; 
  }; 
 
  Optimized |= TryFoldBinOpIntoSelect(False, True, /*Invert = */ false); 
  Optimized |= TryFoldBinOpIntoSelect(True, False, /*Invert = */ true); 
  Optimized |= TryOptSelectCst(); 
  auto SelectInst = MIB.buildInstr(Opc, {Dst}, {True, False}).addImm(CC); 
  constrainSelectedInstRegOperands(*SelectInst, TII, TRI, RBI); 
  return &*SelectInst; 
}

static AArch64CC::CondCode changeICMPPredToAArch64CC(CmpInst::Predicate P) {
  switch (P) {
  default:
    llvm_unreachable("Unknown condition code!");
  case CmpInst::ICMP_NE:
    return AArch64CC::NE;
  case CmpInst::ICMP_EQ:
    return AArch64CC::EQ;
  case CmpInst::ICMP_SGT:
    return AArch64CC::GT;
  case CmpInst::ICMP_SGE:
    return AArch64CC::GE;
  case CmpInst::ICMP_SLT:
    return AArch64CC::LT;
  case CmpInst::ICMP_SLE:
    return AArch64CC::LE;
  case CmpInst::ICMP_UGT:
    return AArch64CC::HI;
  case CmpInst::ICMP_UGE:
    return AArch64CC::HS;
  case CmpInst::ICMP_ULT:
    return AArch64CC::LO;
  case CmpInst::ICMP_ULE:
    return AArch64CC::LS;
  }
}

static void changeFCMPPredToAArch64CC(CmpInst::Predicate P,
                                      AArch64CC::CondCode &CondCode,
                                      AArch64CC::CondCode &CondCode2) {
  CondCode2 = AArch64CC::AL;
  switch (P) {
  default:
    llvm_unreachable("Unknown FP condition!");
  case CmpInst::FCMP_OEQ:
    CondCode = AArch64CC::EQ;
    break;
  case CmpInst::FCMP_OGT:
    CondCode = AArch64CC::GT;
    break;
  case CmpInst::FCMP_OGE:
    CondCode = AArch64CC::GE;
    break;
  case CmpInst::FCMP_OLT:
    CondCode = AArch64CC::MI;
    break;
  case CmpInst::FCMP_OLE:
    CondCode = AArch64CC::LS;
    break;
  case CmpInst::FCMP_ONE:
    CondCode = AArch64CC::MI;
    CondCode2 = AArch64CC::GT;
    break;
  case CmpInst::FCMP_ORD:
    CondCode = AArch64CC::VC;
    break;
  case CmpInst::FCMP_UNO:
    CondCode = AArch64CC::VS;
    break;
  case CmpInst::FCMP_UEQ:
    CondCode = AArch64CC::EQ;
    CondCode2 = AArch64CC::VS;
    break;
  case CmpInst::FCMP_UGT:
    CondCode = AArch64CC::HI;
    break;
  case CmpInst::FCMP_UGE:
    CondCode = AArch64CC::PL;
    break;
  case CmpInst::FCMP_ULT:
    CondCode = AArch64CC::LT;
    break;
  case CmpInst::FCMP_ULE:
    CondCode = AArch64CC::LE;
    break;
  case CmpInst::FCMP_UNE:
    CondCode = AArch64CC::NE;
    break;
  }
}

/// Return a register which can be used as a bit to test in a TB(N)Z.
static Register getTestBitReg(Register Reg, uint64_t &Bit, bool &Invert,
                              MachineRegisterInfo &MRI) {
  assert(Reg.isValid() && "Expected valid register!");
  while (MachineInstr *MI = getDefIgnoringCopies(Reg, MRI)) {
    unsigned Opc = MI->getOpcode();

    if (!MI->getOperand(0).isReg() ||
        !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
      break;

    // (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits.
    //
    // (tbz (trunc x), b) -> (tbz x, b) is always safe, because the bit number
    // on the truncated x is the same as the bit number on x.
    if (Opc == TargetOpcode::G_ANYEXT || Opc == TargetOpcode::G_ZEXT ||
        Opc == TargetOpcode::G_TRUNC) {
      Register NextReg = MI->getOperand(1).getReg();
      // Did we find something worth folding?
      if (!NextReg.isValid() || !MRI.hasOneNonDBGUse(NextReg))
        break;

      // NextReg is worth folding. Keep looking.
      Reg = NextReg;
      continue;
    }

    // Attempt to find a suitable operation with a constant on one side.
    Optional<uint64_t> C;
    Register TestReg;
    switch (Opc) {
    default:
      break;
    case TargetOpcode::G_AND:
    case TargetOpcode::G_XOR: {
      TestReg = MI->getOperand(1).getReg();
      Register ConstantReg = MI->getOperand(2).getReg();
      auto VRegAndVal = getConstantVRegValWithLookThrough(ConstantReg, MRI);
      if (!VRegAndVal) {
        // AND commutes, check the other side for a constant.
        // FIXME: Can we canonicalize the constant so that it's always on the
        // same side at some point earlier?
        std::swap(ConstantReg, TestReg);
        VRegAndVal = getConstantVRegValWithLookThrough(ConstantReg, MRI);
      }
      if (VRegAndVal)
        C = VRegAndVal->Value.getSExtValue(); 
      break;
    }
    case TargetOpcode::G_ASHR:
    case TargetOpcode::G_LSHR:
    case TargetOpcode::G_SHL: {
      TestReg = MI->getOperand(1).getReg();
      auto VRegAndVal =
          getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI);
      if (VRegAndVal)
        C = VRegAndVal->Value.getSExtValue(); 
      break;
    }
    }

    // Didn't find a constant or viable register. Bail out of the loop.
    if (!C || !TestReg.isValid())
      break;

    // We found a suitable instruction with a constant. Check to see if we can
    // walk through the instruction.
    Register NextReg;
    unsigned TestRegSize = MRI.getType(TestReg).getSizeInBits();
    switch (Opc) {
    default:
      break;
    case TargetOpcode::G_AND:
      // (tbz (and x, m), b) -> (tbz x, b) when the b-th bit of m is set.
      if ((*C >> Bit) & 1)
        NextReg = TestReg;
      break;
    case TargetOpcode::G_SHL:
      // (tbz (shl x, c), b) -> (tbz x, b-c) when b-c is positive and fits in
      // the type of the register.
      if (*C <= Bit && (Bit - *C) < TestRegSize) {
        NextReg = TestReg;
        Bit = Bit - *C;
      }
      break;
    case TargetOpcode::G_ASHR:
      // (tbz (ashr x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits
      // in x
      NextReg = TestReg;
      Bit = Bit + *C;
      if (Bit >= TestRegSize)
        Bit = TestRegSize - 1;
      break;
    case TargetOpcode::G_LSHR:
      // (tbz (lshr x, c), b) -> (tbz x, b+c) when b + c is < # bits in x
      if ((Bit + *C) < TestRegSize) {
        NextReg = TestReg;
        Bit = Bit + *C;
      }
      break;
    case TargetOpcode::G_XOR:
      // We can walk through a G_XOR by inverting whether we use tbz/tbnz when
      // appropriate.
      //
      // e.g. If x' = xor x, c, and the b-th bit is set in c then
      //
      // tbz x', b -> tbnz x, b
      //
      // Because x' only has the b-th bit set if x does not.
      if ((*C >> Bit) & 1)
        Invert = !Invert;
      NextReg = TestReg;
      break;
    }

    // Check if we found anything worth folding.
    if (!NextReg.isValid())
      return Reg;
    Reg = NextReg;
  }

  return Reg;
}

MachineInstr *AArch64InstructionSelector::emitTestBit(
    Register TestReg, uint64_t Bit, bool IsNegative, MachineBasicBlock *DstMBB,
    MachineIRBuilder &MIB) const {
  assert(TestReg.isValid());
  assert(ProduceNonFlagSettingCondBr &&
         "Cannot emit TB(N)Z with speculation tracking!");
  MachineRegisterInfo &MRI = *MIB.getMRI();

  // Attempt to optimize the test bit by walking over instructions.
  TestReg = getTestBitReg(TestReg, Bit, IsNegative, MRI);
  LLT Ty = MRI.getType(TestReg);
  unsigned Size = Ty.getSizeInBits();
  assert(!Ty.isVector() && "Expected a scalar!");
  assert(Bit < 64 && "Bit is too large!");

  // When the test register is a 64-bit register, we have to narrow to make
  // TBNZW work.
  bool UseWReg = Bit < 32;
  unsigned NecessarySize = UseWReg ? 32 : 64;
  if (Size != NecessarySize)
    TestReg = moveScalarRegClass(
        TestReg, UseWReg ? AArch64::GPR32RegClass : AArch64::GPR64RegClass,
        MIB);

  static const unsigned OpcTable[2][2] = {{AArch64::TBZX, AArch64::TBNZX},
                                          {AArch64::TBZW, AArch64::TBNZW}};
  unsigned Opc = OpcTable[UseWReg][IsNegative];
  auto TestBitMI =
      MIB.buildInstr(Opc).addReg(TestReg).addImm(Bit).addMBB(DstMBB);
  constrainSelectedInstRegOperands(*TestBitMI, TII, TRI, RBI);
  return &*TestBitMI;
}

bool AArch64InstructionSelector::tryOptAndIntoCompareBranch(
    MachineInstr &AndInst, bool Invert, MachineBasicBlock *DstMBB, 
    MachineIRBuilder &MIB) const { 
  assert(AndInst.getOpcode() == TargetOpcode::G_AND && "Expected G_AND only?"); 
  // Given something like this:
  //
  //  %x = ...Something...
  //  %one = G_CONSTANT i64 1
  //  %zero = G_CONSTANT i64 0
  //  %and = G_AND %x, %one
  //  %cmp = G_ICMP intpred(ne), %and, %zero
  //  %cmp_trunc = G_TRUNC %cmp
  //  G_BRCOND %cmp_trunc, %bb.3
  //
  // We want to try and fold the AND into the G_BRCOND and produce either a
  // TBNZ (when we have intpred(ne)) or a TBZ (when we have intpred(eq)).
  //
  // In this case, we'd get
  //
  // TBNZ %x %bb.3
  //

  // Check if the AND has a constant on its RHS which we can use as a mask.
  // If it's a power of 2, then it's the same as checking a specific bit.
  // (e.g, ANDing with 8 == ANDing with 000...100 == testing if bit 3 is set)
  auto MaybeBit = getConstantVRegValWithLookThrough( 
      AndInst.getOperand(2).getReg(), *MIB.getMRI()); 
  if (!MaybeBit) 
    return false;

  int32_t Bit = MaybeBit->Value.exactLogBase2(); 
  if (Bit < 0) 
    return false; 

  Register TestReg = AndInst.getOperand(1).getReg(); 
 
  // Emit a TB(N)Z.
  emitTestBit(TestReg, Bit, Invert, DstMBB, MIB);
  return true;
}

MachineInstr *AArch64InstructionSelector::emitCBZ(Register CompareReg, 
                                                  bool IsNegative, 
                                                  MachineBasicBlock *DestMBB, 
                                                  MachineIRBuilder &MIB) const { 
  assert(ProduceNonFlagSettingCondBr && "CBZ does not set flags!"); 
  MachineRegisterInfo &MRI = *MIB.getMRI(); 
  assert(RBI.getRegBank(CompareReg, MRI, TRI)->getID() == 
             AArch64::GPRRegBankID && 
         "Expected GPRs only?"); 
  auto Ty = MRI.getType(CompareReg); 
  unsigned Width = Ty.getSizeInBits(); 
  assert(!Ty.isVector() && "Expected scalar only?"); 
  assert(Width <= 64 && "Expected width to be at most 64?"); 
  static const unsigned OpcTable[2][2] = {{AArch64::CBZW, AArch64::CBZX}, 
                                          {AArch64::CBNZW, AArch64::CBNZX}}; 
  unsigned Opc = OpcTable[IsNegative][Width == 64]; 
  auto BranchMI = MIB.buildInstr(Opc, {}, {CompareReg}).addMBB(DestMBB); 
  constrainSelectedInstRegOperands(*BranchMI, TII, TRI, RBI); 
  return &*BranchMI; 
} 

bool AArch64InstructionSelector::selectCompareBranchFedByFCmp( 
    MachineInstr &I, MachineInstr &FCmp, MachineIRBuilder &MIB) const { 
  assert(FCmp.getOpcode() == TargetOpcode::G_FCMP); 
  assert(I.getOpcode() == TargetOpcode::G_BRCOND); 
  // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't 
  // totally clean.  Some of them require two branches to implement. 
  auto Pred = (CmpInst::Predicate)FCmp.getOperand(1).getPredicate(); 
  emitFPCompare(FCmp.getOperand(2).getReg(), FCmp.getOperand(3).getReg(), MIB, 
                Pred); 
  AArch64CC::CondCode CC1, CC2; 
  changeFCMPPredToAArch64CC(static_cast<CmpInst::Predicate>(Pred), CC1, CC2); 
  MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
  MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC1).addMBB(DestMBB); 
  if (CC2 != AArch64CC::AL) 
    MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC2).addMBB(DestMBB); 
  I.eraseFromParent(); 
  return true; 
} 
 
bool AArch64InstructionSelector::tryOptCompareBranchFedByICmp( 
    MachineInstr &I, MachineInstr &ICmp, MachineIRBuilder &MIB) const { 
  assert(ICmp.getOpcode() == TargetOpcode::G_ICMP); 
  assert(I.getOpcode() == TargetOpcode::G_BRCOND); 
  // Attempt to optimize the G_BRCOND + G_ICMP into a TB(N)Z/CB(N)Z. 
  // 
  // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z 
  // instructions will not be produced, as they are conditional branch 
  // instructions that do not set flags. 
  if (!ProduceNonFlagSettingCondBr) 
    return false;

  MachineRegisterInfo &MRI = *MIB.getMRI(); 
  MachineBasicBlock *DestMBB = I.getOperand(1).getMBB(); 
  auto Pred = 
      static_cast<CmpInst::Predicate>(ICmp.getOperand(1).getPredicate()); 
  Register LHS = ICmp.getOperand(2).getReg(); 
  Register RHS = ICmp.getOperand(3).getReg(); 
 
  // We're allowed to emit a TB(N)Z/CB(N)Z. Try to do that. 
  auto VRegAndVal = getConstantVRegValWithLookThrough(RHS, MRI);
  MachineInstr *AndInst = getOpcodeDef(TargetOpcode::G_AND, LHS, MRI); 

  // When we can emit a TB(N)Z, prefer that.
  //
  // Handle non-commutative condition codes first.
  // Note that we don't want to do this when we have a G_AND because it can
  // become a tst. The tst will make the test bit in the TB(N)Z redundant.
  if (VRegAndVal && !AndInst) { 
    int64_t C = VRegAndVal->Value.getSExtValue(); 

    // When we have a greater-than comparison, we can just test if the msb is
    // zero.
    if (C == -1 && Pred == CmpInst::ICMP_SGT) {
      uint64_t Bit = MRI.getType(LHS).getSizeInBits() - 1;
      emitTestBit(LHS, Bit, /*IsNegative = */ false, DestMBB, MIB);
      I.eraseFromParent();
      return true;
    }

    // When we have a less than comparison, we can just test if the msb is not
    // zero.
    if (C == 0 && Pred == CmpInst::ICMP_SLT) {
      uint64_t Bit = MRI.getType(LHS).getSizeInBits() - 1;
      emitTestBit(LHS, Bit, /*IsNegative = */ true, DestMBB, MIB);
      I.eraseFromParent();
      return true;
    }
  }

  // Attempt to handle commutative condition codes. Right now, that's only 
  // eq/ne. 
  if (ICmpInst::isEquality(Pred)) { 
    if (!VRegAndVal) { 
      std::swap(RHS, LHS); 
      VRegAndVal = getConstantVRegValWithLookThrough(RHS, MRI); 
      AndInst = getOpcodeDef(TargetOpcode::G_AND, LHS, MRI); 
    } 
 
    if (VRegAndVal && VRegAndVal->Value == 0) { 
      // If there's a G_AND feeding into this branch, try to fold it away by 
      // emitting a TB(N)Z instead. 
      // 
      // Note: If we have LT, then it *is* possible to fold, but it wouldn't be 
      // beneficial. When we have an AND and LT, we need a TST/ANDS, so folding 
      // would be redundant. 
      if (AndInst && 
          tryOptAndIntoCompareBranch( 
              *AndInst, /*Invert = */ Pred == CmpInst::ICMP_NE, DestMBB, MIB)) { 
        I.eraseFromParent(); 
        return true; 
      } 
 
      // Otherwise, try to emit a CB(N)Z instead. 
      auto LHSTy = MRI.getType(LHS); 
      if (!LHSTy.isVector() && LHSTy.getSizeInBits() <= 64) { 
        emitCBZ(LHS, /*IsNegative = */ Pred == CmpInst::ICMP_NE, DestMBB, MIB); 
        I.eraseFromParent(); 
        return true; 
      } 
    } 
  }

  return false; 
} 
 
bool AArch64InstructionSelector::selectCompareBranchFedByICmp( 
    MachineInstr &I, MachineInstr &ICmp, MachineIRBuilder &MIB) const { 
  assert(ICmp.getOpcode() == TargetOpcode::G_ICMP); 
  assert(I.getOpcode() == TargetOpcode::G_BRCOND); 
  if (tryOptCompareBranchFedByICmp(I, ICmp, MIB)) 
    return true;
 
  // Couldn't optimize. Emit a compare + a Bcc. 
  MachineBasicBlock *DestMBB = I.getOperand(1).getMBB(); 
  auto PredOp = ICmp.getOperand(1); 
  emitIntegerCompare(ICmp.getOperand(2), ICmp.getOperand(3), PredOp, MIB); 
  const AArch64CC::CondCode CC = changeICMPPredToAArch64CC( 
      static_cast<CmpInst::Predicate>(PredOp.getPredicate())); 
  MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC).addMBB(DestMBB); 
  I.eraseFromParent(); 
  return true; 
} 
 
bool AArch64InstructionSelector::selectCompareBranch( 
    MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const { 
  Register CondReg = I.getOperand(0).getReg(); 
  MachineInstr *CCMI = MRI.getVRegDef(CondReg); 
  if (CCMI->getOpcode() == TargetOpcode::G_TRUNC) { 
    CondReg = CCMI->getOperand(1).getReg(); 
    CCMI = MRI.getVRegDef(CondReg); 
  }

  // Try to select the G_BRCOND using whatever is feeding the condition if 
  // possible. 
  MachineIRBuilder MIB(I); 
  unsigned CCMIOpc = CCMI->getOpcode(); 
  if (CCMIOpc == TargetOpcode::G_FCMP) 
    return selectCompareBranchFedByFCmp(I, *CCMI, MIB); 
  if (CCMIOpc == TargetOpcode::G_ICMP) 
    return selectCompareBranchFedByICmp(I, *CCMI, MIB); 
 
  // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z 
  // instructions will not be produced, as they are conditional branch 
  // instructions that do not set flags. 
  if (ProduceNonFlagSettingCondBr) { 
    emitTestBit(CondReg, /*Bit = */ 0, /*IsNegative = */ true, 
                I.getOperand(1).getMBB(), MIB); 
    I.eraseFromParent();
    return true;
  }

  // Can't emit TB(N)Z/CB(N)Z. Emit a tst + bcc instead. 
  auto TstMI = 
      MIB.buildInstr(AArch64::ANDSWri, {LLT::scalar(32)}, {CondReg}).addImm(1); 
  constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI); 
  auto Bcc = MIB.buildInstr(AArch64::Bcc) 
                 .addImm(AArch64CC::EQ) 
                 .addMBB(I.getOperand(1).getMBB()); 
  I.eraseFromParent();
  return constrainSelectedInstRegOperands(*Bcc, TII, TRI, RBI); 
}

/// Returns the element immediate value of a vector shift operand if found.
/// This needs to detect a splat-like operation, e.g. a G_BUILD_VECTOR.
static Optional<int64_t> getVectorShiftImm(Register Reg,
                                           MachineRegisterInfo &MRI) {
  assert(MRI.getType(Reg).isVector() && "Expected a *vector* shift operand");
  MachineInstr *OpMI = MRI.getVRegDef(Reg);
  assert(OpMI && "Expected to find a vreg def for vector shift operand");
  if (OpMI->getOpcode() != TargetOpcode::G_BUILD_VECTOR)
    return None;

  // Check all operands are identical immediates.
  int64_t ImmVal = 0;
  for (unsigned Idx = 1; Idx < OpMI->getNumOperands(); ++Idx) {
    auto VRegAndVal = getConstantVRegValWithLookThrough(OpMI->getOperand(Idx).getReg(), MRI);
    if (!VRegAndVal)
      return None;

    if (Idx == 1)
      ImmVal = VRegAndVal->Value.getSExtValue(); 
    if (ImmVal != VRegAndVal->Value.getSExtValue()) 
      return None;
  }

  return ImmVal;
}

/// Matches and returns the shift immediate value for a SHL instruction given
/// a shift operand.
static Optional<int64_t> getVectorSHLImm(LLT SrcTy, Register Reg, MachineRegisterInfo &MRI) {
  Optional<int64_t> ShiftImm = getVectorShiftImm(Reg, MRI);
  if (!ShiftImm)
    return None;
  // Check the immediate is in range for a SHL.
  int64_t Imm = *ShiftImm;
  if (Imm < 0)
    return None;
  switch (SrcTy.getElementType().getSizeInBits()) {
  default:
    LLVM_DEBUG(dbgs() << "Unhandled element type for vector shift");
    return None;
  case 8:
    if (Imm > 7)
      return None;
    break;
  case 16:
    if (Imm > 15)
      return None;
    break;
  case 32:
    if (Imm > 31)
      return None;
    break;
  case 64:
    if (Imm > 63)
      return None;
    break;
  }
  return Imm;
}

bool AArch64InstructionSelector::selectVectorSHL(
    MachineInstr &I, MachineRegisterInfo &MRI) const {
  assert(I.getOpcode() == TargetOpcode::G_SHL);
  Register DstReg = I.getOperand(0).getReg();
  const LLT Ty = MRI.getType(DstReg);
  Register Src1Reg = I.getOperand(1).getReg();
  Register Src2Reg = I.getOperand(2).getReg();

  if (!Ty.isVector())
    return false;

  // Check if we have a vector of constants on RHS that we can select as the
  // immediate form.
  Optional<int64_t> ImmVal = getVectorSHLImm(Ty, Src2Reg, MRI);

  unsigned Opc = 0;
  if (Ty == LLT::vector(2, 64)) {
    Opc = ImmVal ? AArch64::SHLv2i64_shift : AArch64::USHLv2i64;
  } else if (Ty == LLT::vector(4, 32)) {
    Opc = ImmVal ? AArch64::SHLv4i32_shift : AArch64::USHLv4i32;
  } else if (Ty == LLT::vector(2, 32)) {
    Opc = ImmVal ? AArch64::SHLv2i32_shift : AArch64::USHLv2i32;
  } else if (Ty == LLT::vector(4, 16)) { 
    Opc = ImmVal ? AArch64::SHLv4i16_shift : AArch64::USHLv4i16; 
  } else if (Ty == LLT::vector(8, 16)) { 
    Opc = ImmVal ? AArch64::SHLv8i16_shift : AArch64::USHLv8i16; 
  } else if (Ty == LLT::vector(16, 8)) { 
    Opc = ImmVal ? AArch64::SHLv16i8_shift : AArch64::USHLv16i8; 
  } else if (Ty == LLT::vector(8, 8)) { 
    Opc = ImmVal ? AArch64::SHLv8i8_shift : AArch64::USHLv8i8; 
  } else {
    LLVM_DEBUG(dbgs() << "Unhandled G_SHL type");
    return false;
  }

  MachineIRBuilder MIB(I);
  auto Shl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg});
  if (ImmVal)
    Shl.addImm(*ImmVal);
  else
    Shl.addUse(Src2Reg);
  constrainSelectedInstRegOperands(*Shl, TII, TRI, RBI);
  I.eraseFromParent();
  return true;
}

bool AArch64InstructionSelector::selectVectorAshrLshr( 
    MachineInstr &I, MachineRegisterInfo &MRI) const {
  assert(I.getOpcode() == TargetOpcode::G_ASHR || 
         I.getOpcode() == TargetOpcode::G_LSHR); 
  Register DstReg = I.getOperand(0).getReg();
  const LLT Ty = MRI.getType(DstReg);
  Register Src1Reg = I.getOperand(1).getReg();
  Register Src2Reg = I.getOperand(2).getReg();

  if (!Ty.isVector())
    return false;

  bool IsASHR = I.getOpcode() == TargetOpcode::G_ASHR; 
 
  // We expect the immediate case to be lowered in the PostLegalCombiner to 
  // AArch64ISD::VASHR or AArch64ISD::VLSHR equivalents. 
 
  // There is not a shift right register instruction, but the shift left
  // register instruction takes a signed value, where negative numbers specify a
  // right shift.

  unsigned Opc = 0;
  unsigned NegOpc = 0;
  const TargetRegisterClass *RC = 
      getRegClassForTypeOnBank(Ty, RBI.getRegBank(AArch64::FPRRegBankID), RBI); 
  if (Ty == LLT::vector(2, 64)) {
    Opc = IsASHR ? AArch64::SSHLv2i64 : AArch64::USHLv2i64; 
    NegOpc = AArch64::NEGv2i64;
  } else if (Ty == LLT::vector(4, 32)) {
    Opc = IsASHR ? AArch64::SSHLv4i32 : AArch64::USHLv4i32; 
    NegOpc = AArch64::NEGv4i32;
  } else if (Ty == LLT::vector(2, 32)) {
    Opc = IsASHR ? AArch64::SSHLv2i32 : AArch64::USHLv2i32; 
    NegOpc = AArch64::NEGv2i32;
  } else if (Ty == LLT::vector(4, 16)) { 
    Opc = IsASHR ? AArch64::SSHLv4i16 : AArch64::USHLv4i16; 
    NegOpc = AArch64::NEGv4i16; 
  } else if (Ty == LLT::vector(8, 16)) { 
    Opc = IsASHR ? AArch64::SSHLv8i16 : AArch64::USHLv8i16; 
    NegOpc = AArch64::NEGv8i16; 
  } else if (Ty == LLT::vector(16, 8)) { 
    Opc = IsASHR ? AArch64::SSHLv16i8 : AArch64::USHLv16i8; 
    NegOpc = AArch64::NEGv16i8; 
  } else if (Ty == LLT::vector(8, 8)) { 
    Opc = IsASHR ? AArch64::SSHLv8i8 : AArch64::USHLv8i8; 
    NegOpc = AArch64::NEGv8i8; 
  } else {
    LLVM_DEBUG(dbgs() << "Unhandled G_ASHR type");
    return false;
  }

  MachineIRBuilder MIB(I);
  auto Neg = MIB.buildInstr(NegOpc, {RC}, {Src2Reg});
  constrainSelectedInstRegOperands(*Neg, TII, TRI, RBI);
  auto SShl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg, Neg});
  constrainSelectedInstRegOperands(*SShl, TII, TRI, RBI);
  I.eraseFromParent();
  return true;
}

bool AArch64InstructionSelector::selectVaStartAAPCS(
    MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
  return false;
}

bool AArch64InstructionSelector::selectVaStartDarwin(
    MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
  Register ListReg = I.getOperand(0).getReg();

  Register ArgsAddrReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);

  auto MIB =
      BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::ADDXri))
          .addDef(ArgsAddrReg)
          .addFrameIndex(FuncInfo->getVarArgsStackIndex())
          .addImm(0)
          .addImm(0);

  constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);

  MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::STRXui))
            .addUse(ArgsAddrReg)
            .addUse(ListReg)
            .addImm(0)
            .addMemOperand(*I.memoperands_begin());

  constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
  I.eraseFromParent();
  return true;
}

void AArch64InstructionSelector::materializeLargeCMVal(
    MachineInstr &I, const Value *V, unsigned OpFlags) const {
  MachineBasicBlock &MBB = *I.getParent();
  MachineFunction &MF = *MBB.getParent();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  MachineIRBuilder MIB(I);

  auto MovZ = MIB.buildInstr(AArch64::MOVZXi, {&AArch64::GPR64RegClass}, {});
  MovZ->addOperand(MF, I.getOperand(1));
  MovZ->getOperand(1).setTargetFlags(OpFlags | AArch64II::MO_G0 |
                                     AArch64II::MO_NC);
  MovZ->addOperand(MF, MachineOperand::CreateImm(0));
  constrainSelectedInstRegOperands(*MovZ, TII, TRI, RBI);

  auto BuildMovK = [&](Register SrcReg, unsigned char Flags, unsigned Offset,
                       Register ForceDstReg) {
    Register DstReg = ForceDstReg
                          ? ForceDstReg
                          : MRI.createVirtualRegister(&AArch64::GPR64RegClass);
    auto MovI = MIB.buildInstr(AArch64::MOVKXi).addDef(DstReg).addUse(SrcReg);
    if (auto *GV = dyn_cast<GlobalValue>(V)) {
      MovI->addOperand(MF, MachineOperand::CreateGA(
                               GV, MovZ->getOperand(1).getOffset(), Flags));
    } else {
      MovI->addOperand(
          MF, MachineOperand::CreateBA(cast<BlockAddress>(V),
                                       MovZ->getOperand(1).getOffset(), Flags));
    }
    MovI->addOperand(MF, MachineOperand::CreateImm(Offset));
    constrainSelectedInstRegOperands(*MovI, TII, TRI, RBI);
    return DstReg;
  };
  Register DstReg = BuildMovK(MovZ.getReg(0),
                              AArch64II::MO_G1 | AArch64II::MO_NC, 16, 0);
  DstReg = BuildMovK(DstReg, AArch64II::MO_G2 | AArch64II::MO_NC, 32, 0);
  BuildMovK(DstReg, AArch64II::MO_G3, 48, I.getOperand(0).getReg());
}

bool AArch64InstructionSelector::preISelLower(MachineInstr &I) {
  MachineBasicBlock &MBB = *I.getParent();
  MachineFunction &MF = *MBB.getParent();
  MachineRegisterInfo &MRI = MF.getRegInfo();

  switch (I.getOpcode()) {
  case TargetOpcode::G_SHL:
  case TargetOpcode::G_ASHR:
  case TargetOpcode::G_LSHR: {
    // These shifts are legalized to have 64 bit shift amounts because we want
    // to take advantage of the existing imported selection patterns that assume
    // the immediates are s64s. However, if the shifted type is 32 bits and for
    // some reason we receive input GMIR that has an s64 shift amount that's not
    // a G_CONSTANT, insert a truncate so that we can still select the s32
    // register-register variant.
    Register SrcReg = I.getOperand(1).getReg();
    Register ShiftReg = I.getOperand(2).getReg();
    const LLT ShiftTy = MRI.getType(ShiftReg);
    const LLT SrcTy = MRI.getType(SrcReg);
    if (SrcTy.isVector())
      return false;
    assert(!ShiftTy.isVector() && "unexpected vector shift ty");
    if (SrcTy.getSizeInBits() != 32 || ShiftTy.getSizeInBits() != 64)
      return false;
    auto *AmtMI = MRI.getVRegDef(ShiftReg);
    assert(AmtMI && "could not find a vreg definition for shift amount");
    if (AmtMI->getOpcode() != TargetOpcode::G_CONSTANT) {
      // Insert a subregister copy to implement a 64->32 trunc
      MachineIRBuilder MIB(I);
      auto Trunc = MIB.buildInstr(TargetOpcode::COPY, {SrcTy}, {})
                       .addReg(ShiftReg, 0, AArch64::sub_32);
      MRI.setRegBank(Trunc.getReg(0), RBI.getRegBank(AArch64::GPRRegBankID));
      I.getOperand(2).setReg(Trunc.getReg(0));
    }
    return true;
  }
  case TargetOpcode::G_STORE:
    return contractCrossBankCopyIntoStore(I, MRI);
  case TargetOpcode::G_PTR_ADD:
    return convertPtrAddToAdd(I, MRI);
  case TargetOpcode::G_LOAD: {
    // For scalar loads of pointers, we try to convert the dest type from p0
    // to s64 so that our imported patterns can match. Like with the G_PTR_ADD
    // conversion, this should be ok because all users should have been
    // selected already, so the type doesn't matter for them.
    Register DstReg = I.getOperand(0).getReg();
    const LLT DstTy = MRI.getType(DstReg);
    if (!DstTy.isPointer())
      return false;
    MRI.setType(DstReg, LLT::scalar(64));
    return true;
  }
  case AArch64::G_DUP: { 
    // Convert the type from p0 to s64 to help selection. 
    LLT DstTy = MRI.getType(I.getOperand(0).getReg()); 
    if (!DstTy.getElementType().isPointer()) 
      return false; 
    MachineIRBuilder MIB(I); 
    auto NewSrc = MIB.buildCopy(LLT::scalar(64), I.getOperand(1).getReg()); 
    MRI.setType(I.getOperand(0).getReg(), 
                DstTy.changeElementType(LLT::scalar(64))); 
    MRI.setRegBank(NewSrc.getReg(0), RBI.getRegBank(AArch64::GPRRegBankID)); 
    I.getOperand(1).setReg(NewSrc.getReg(0)); 
    return true; 
  } 
  case TargetOpcode::G_UITOFP: 
  case TargetOpcode::G_SITOFP: { 
    // If both source and destination regbanks are FPR, then convert the opcode 
    // to G_SITOF so that the importer can select it to an fpr variant. 
    // Otherwise, it ends up matching an fpr/gpr variant and adding a cross-bank 
    // copy. 
    Register SrcReg = I.getOperand(1).getReg(); 
    LLT SrcTy = MRI.getType(SrcReg); 
    LLT DstTy = MRI.getType(I.getOperand(0).getReg()); 
    if (SrcTy.isVector() || SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 
      return false; 
 
    if (RBI.getRegBank(SrcReg, MRI, TRI)->getID() == AArch64::FPRRegBankID) { 
      if (I.getOpcode() == TargetOpcode::G_SITOFP) 
        I.setDesc(TII.get(AArch64::G_SITOF)); 
      else 
        I.setDesc(TII.get(AArch64::G_UITOF)); 
      return true; 
    } 
    return false; 
  } 
  default:
    return false;
  }
}

/// This lowering tries to look for G_PTR_ADD instructions and then converts
/// them to a standard G_ADD with a COPY on the source.
///
/// The motivation behind this is to expose the add semantics to the imported
/// tablegen patterns. We shouldn't need to check for uses being loads/stores,
/// because the selector works bottom up, uses before defs. By the time we
/// end up trying to select a G_PTR_ADD, we should have already attempted to
/// fold this into addressing modes and were therefore unsuccessful.
bool AArch64InstructionSelector::convertPtrAddToAdd(
    MachineInstr &I, MachineRegisterInfo &MRI) {
  assert(I.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD");
  Register DstReg = I.getOperand(0).getReg();
  Register AddOp1Reg = I.getOperand(1).getReg();
  const LLT PtrTy = MRI.getType(DstReg);
  if (PtrTy.getAddressSpace() != 0)
    return false;

  MachineIRBuilder MIB(I);
  const LLT CastPtrTy = PtrTy.isVector() ? LLT::vector(2, 64) : LLT::scalar(64);
  auto PtrToInt = MIB.buildPtrToInt(CastPtrTy, AddOp1Reg);
  // Set regbanks on the registers.
  if (PtrTy.isVector())
    MRI.setRegBank(PtrToInt.getReg(0), RBI.getRegBank(AArch64::FPRRegBankID));
  else
    MRI.setRegBank(PtrToInt.getReg(0), RBI.getRegBank(AArch64::GPRRegBankID));

  // Now turn the %dst(p0) = G_PTR_ADD %base, off into:
  // %dst(intty) = G_ADD %intbase, off
  I.setDesc(TII.get(TargetOpcode::G_ADD));
  MRI.setType(DstReg, CastPtrTy);
  I.getOperand(1).setReg(PtrToInt.getReg(0));
  if (!select(*PtrToInt)) {
    LLVM_DEBUG(dbgs() << "Failed to select G_PTRTOINT in convertPtrAddToAdd");
    return false;
  }
 
  // Also take the opportunity here to try to do some optimization. 
  // Try to convert this into a G_SUB if the offset is a 0-x negate idiom. 
  Register NegatedReg; 
  if (!mi_match(I.getOperand(2).getReg(), MRI, m_Neg(m_Reg(NegatedReg)))) 
    return true; 
  I.getOperand(2).setReg(NegatedReg); 
  I.setDesc(TII.get(TargetOpcode::G_SUB)); 
  return true;
}

bool AArch64InstructionSelector::earlySelectSHL(
    MachineInstr &I, MachineRegisterInfo &MRI) const {
  // We try to match the immediate variant of LSL, which is actually an alias
  // for a special case of UBFM. Otherwise, we fall back to the imported
  // selector which will match the register variant.
  assert(I.getOpcode() == TargetOpcode::G_SHL && "unexpected op");
  const auto &MO = I.getOperand(2);
  auto VRegAndVal = getConstantVRegVal(MO.getReg(), MRI);
  if (!VRegAndVal)
    return false;

  const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
  if (DstTy.isVector())
    return false;
  bool Is64Bit = DstTy.getSizeInBits() == 64;
  auto Imm1Fn = Is64Bit ? selectShiftA_64(MO) : selectShiftA_32(MO);
  auto Imm2Fn = Is64Bit ? selectShiftB_64(MO) : selectShiftB_32(MO);
  MachineIRBuilder MIB(I);

  if (!Imm1Fn || !Imm2Fn)
    return false;

  auto NewI =
      MIB.buildInstr(Is64Bit ? AArch64::UBFMXri : AArch64::UBFMWri,
                     {I.getOperand(0).getReg()}, {I.getOperand(1).getReg()});

  for (auto &RenderFn : *Imm1Fn)
    RenderFn(NewI);
  for (auto &RenderFn : *Imm2Fn)
    RenderFn(NewI);

  I.eraseFromParent();
  return constrainSelectedInstRegOperands(*NewI, TII, TRI, RBI);
}

bool AArch64InstructionSelector::contractCrossBankCopyIntoStore(
    MachineInstr &I, MachineRegisterInfo &MRI) {
  assert(I.getOpcode() == TargetOpcode::G_STORE && "Expected G_STORE");
  // If we're storing a scalar, it doesn't matter what register bank that
  // scalar is on. All that matters is the size.
  //
  // So, if we see something like this (with a 32-bit scalar as an example):
  //
  // %x:gpr(s32) = ... something ...
  // %y:fpr(s32) = COPY %x:gpr(s32)
  // G_STORE %y:fpr(s32)
  //
  // We can fix this up into something like this:
  //
  // G_STORE %x:gpr(s32)
  //
  // And then continue the selection process normally.
  Register DefDstReg = getSrcRegIgnoringCopies(I.getOperand(0).getReg(), MRI);
  if (!DefDstReg.isValid())
    return false;
  LLT DefDstTy = MRI.getType(DefDstReg);
  Register StoreSrcReg = I.getOperand(0).getReg();
  LLT StoreSrcTy = MRI.getType(StoreSrcReg);

  // If we get something strange like a physical register, then we shouldn't
  // go any further.
  if (!DefDstTy.isValid())
    return false;

  // Are the source and dst types the same size?
  if (DefDstTy.getSizeInBits() != StoreSrcTy.getSizeInBits())
    return false;

  if (RBI.getRegBank(StoreSrcReg, MRI, TRI) ==
      RBI.getRegBank(DefDstReg, MRI, TRI))
    return false;

  // We have a cross-bank copy, which is entering a store. Let's fold it.
  I.getOperand(0).setReg(DefDstReg);
  return true;
}

bool AArch64InstructionSelector::earlySelect(MachineInstr &I) const {
  assert(I.getParent() && "Instruction should be in a basic block!");
  assert(I.getParent()->getParent() && "Instruction should be in a function!");

  MachineBasicBlock &MBB = *I.getParent();
  MachineFunction &MF = *MBB.getParent();
  MachineRegisterInfo &MRI = MF.getRegInfo();

  switch (I.getOpcode()) {
  case TargetOpcode::G_BR: { 
    // If the branch jumps to the fallthrough block, don't bother emitting it. 
    // Only do this for -O0 for a good code size improvement, because when 
    // optimizations are enabled we want to leave this choice to 
    // MachineBlockPlacement. 
    bool EnableOpt = MF.getTarget().getOptLevel() != CodeGenOpt::None; 
    if (EnableOpt || !MBB.isLayoutSuccessor(I.getOperand(0).getMBB())) 
      return false; 
    I.eraseFromParent(); 
    return true; 
  } 
  case TargetOpcode::G_SHL:
    return earlySelectSHL(I, MRI);
  case TargetOpcode::G_CONSTANT: {
    bool IsZero = false;
    if (I.getOperand(1).isCImm())
      IsZero = I.getOperand(1).getCImm()->getZExtValue() == 0;
    else if (I.getOperand(1).isImm())
      IsZero = I.getOperand(1).getImm() == 0;

    if (!IsZero)
      return false;

    Register DefReg = I.getOperand(0).getReg();
    LLT Ty = MRI.getType(DefReg);
    if (Ty.getSizeInBits() == 64) {
      I.getOperand(1).ChangeToRegister(AArch64::XZR, false);
      RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass, MRI);
    } else if (Ty.getSizeInBits() == 32) {
      I.getOperand(1).ChangeToRegister(AArch64::WZR, false);
      RBI.constrainGenericRegister(DefReg, AArch64::GPR32RegClass, MRI);
    } else
      return false;

    I.setDesc(TII.get(TargetOpcode::COPY));
    return true;
  }
  default:
    return false;
  }
}

bool AArch64InstructionSelector::select(MachineInstr &I) {
  assert(I.getParent() && "Instruction should be in a basic block!");
  assert(I.getParent()->getParent() && "Instruction should be in a function!");

  MachineBasicBlock &MBB = *I.getParent();
  MachineFunction &MF = *MBB.getParent();
  MachineRegisterInfo &MRI = MF.getRegInfo();

  const AArch64Subtarget *Subtarget =
      &static_cast<const AArch64Subtarget &>(MF.getSubtarget());
  if (Subtarget->requiresStrictAlign()) {
    // We don't support this feature yet.
    LLVM_DEBUG(dbgs() << "AArch64 GISel does not support strict-align yet\n");
    return false;
  }

  unsigned Opcode = I.getOpcode();
  // G_PHI requires same handling as PHI
  if (!I.isPreISelOpcode() || Opcode == TargetOpcode::G_PHI) {
    // Certain non-generic instructions also need some special handling.

    if (Opcode ==  TargetOpcode::LOAD_STACK_GUARD)
      return constrainSelectedInstRegOperands(I, TII, TRI, RBI);

    if (Opcode == TargetOpcode::PHI || Opcode == TargetOpcode::G_PHI) {
      const Register DefReg = I.getOperand(0).getReg();
      const LLT DefTy = MRI.getType(DefReg);

      const RegClassOrRegBank &RegClassOrBank =
        MRI.getRegClassOrRegBank(DefReg);

      const TargetRegisterClass *DefRC
        = RegClassOrBank.dyn_cast<const TargetRegisterClass *>();
      if (!DefRC) {
        if (!DefTy.isValid()) {
          LLVM_DEBUG(dbgs() << "PHI operand has no type, not a gvreg?\n");
          return false;
        }
        const RegisterBank &RB = *RegClassOrBank.get<const RegisterBank *>();
        DefRC = getRegClassForTypeOnBank(DefTy, RB, RBI);
        if (!DefRC) {
          LLVM_DEBUG(dbgs() << "PHI operand has unexpected size/bank\n");
          return false;
        }
      }

      I.setDesc(TII.get(TargetOpcode::PHI));

      return RBI.constrainGenericRegister(DefReg, *DefRC, MRI);
    }

    if (I.isCopy())
      return selectCopy(I, TII, MRI, TRI, RBI);

    return true;
  }


  if (I.getNumOperands() != I.getNumExplicitOperands()) {
    LLVM_DEBUG(
        dbgs() << "Generic instruction has unexpected implicit operands\n");
    return false;
  }

  // Try to do some lowering before we start instruction selecting. These
  // lowerings are purely transformations on the input G_MIR and so selection
  // must continue after any modification of the instruction.
  if (preISelLower(I)) {
    Opcode = I.getOpcode(); // The opcode may have been modified, refresh it.
  }

  // There may be patterns where the importer can't deal with them optimally,
  // but does select it to a suboptimal sequence so our custom C++ selection
  // code later never has a chance to work on it. Therefore, we have an early
  // selection attempt here to give priority to certain selection routines
  // over the imported ones.
  if (earlySelect(I))
    return true;

  if (selectImpl(I, *CoverageInfo))
    return true;

  LLT Ty =
      I.getOperand(0).isReg() ? MRI.getType(I.getOperand(0).getReg()) : LLT{};

  MachineIRBuilder MIB(I);

  switch (Opcode) {
  case TargetOpcode::G_BRCOND: 
    return selectCompareBranch(I, MF, MRI); 

  case TargetOpcode::G_BRINDIRECT: {
    I.setDesc(TII.get(AArch64::BR));
    return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
  }

  case TargetOpcode::G_BRJT:
    return selectBrJT(I, MRI);

  case AArch64::G_ADD_LOW: {
    // This op may have been separated from it's ADRP companion by the localizer
    // or some other code motion pass. Given that many CPUs will try to
    // macro fuse these operations anyway, select this into a MOVaddr pseudo
    // which will later be expanded into an ADRP+ADD pair after scheduling.
    MachineInstr *BaseMI = MRI.getVRegDef(I.getOperand(1).getReg());
    if (BaseMI->getOpcode() != AArch64::ADRP) {
      I.setDesc(TII.get(AArch64::ADDXri));
      I.addOperand(MachineOperand::CreateImm(0));
      return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
    }
    assert(TM.getCodeModel() == CodeModel::Small &&
           "Expected small code model");
    MachineIRBuilder MIB(I);
    auto Op1 = BaseMI->getOperand(1);
    auto Op2 = I.getOperand(2);
    auto MovAddr = MIB.buildInstr(AArch64::MOVaddr, {I.getOperand(0)}, {})
                       .addGlobalAddress(Op1.getGlobal(), Op1.getOffset(),
                                         Op1.getTargetFlags())
                       .addGlobalAddress(Op2.getGlobal(), Op2.getOffset(),
                                         Op2.getTargetFlags());
    I.eraseFromParent();
    return constrainSelectedInstRegOperands(*MovAddr, TII, TRI, RBI);
  }

  case TargetOpcode::G_BSWAP: {
    // Handle vector types for G_BSWAP directly.
    Register DstReg = I.getOperand(0).getReg();
    LLT DstTy = MRI.getType(DstReg);

    // We should only get vector types here; everything else is handled by the
    // importer right now.
    if (!DstTy.isVector() || DstTy.getSizeInBits() > 128) {
      LLVM_DEBUG(dbgs() << "Dst type for G_BSWAP currently unsupported.\n");
      return false;
    }

    // Only handle 4 and 2 element vectors for now.
    // TODO: 16-bit elements.
    unsigned NumElts = DstTy.getNumElements();
    if (NumElts != 4 && NumElts != 2) {
      LLVM_DEBUG(dbgs() << "Unsupported number of elements for G_BSWAP.\n");
      return false;
    }

    // Choose the correct opcode for the supported types. Right now, that's
    // v2s32, v4s32, and v2s64.
    unsigned Opc = 0;
    unsigned EltSize = DstTy.getElementType().getSizeInBits();
    if (EltSize == 32)
      Opc = (DstTy.getNumElements() == 2) ? AArch64::REV32v8i8
                                          : AArch64::REV32v16i8;
    else if (EltSize == 64)
      Opc = AArch64::REV64v16i8;

    // We should always get something by the time we get here...
    assert(Opc != 0 && "Didn't get an opcode for G_BSWAP?");

    I.setDesc(TII.get(Opc));
    return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
  }

  case TargetOpcode::G_FCONSTANT:
  case TargetOpcode::G_CONSTANT: {
    const bool isFP = Opcode == TargetOpcode::G_FCONSTANT;

    const LLT s8 = LLT::scalar(8);
    const LLT s16 = LLT::scalar(16);
    const LLT s32 = LLT::scalar(32);
    const LLT s64 = LLT::scalar(64);
    const LLT s128 = LLT::scalar(128); 
    const LLT p0 = LLT::pointer(0, 64);

    const Register DefReg = I.getOperand(0).getReg();
    const LLT DefTy = MRI.getType(DefReg);
    const unsigned DefSize = DefTy.getSizeInBits();
    const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);

    // FIXME: Redundant check, but even less readable when factored out.
    if (isFP) {
      if (Ty != s32 && Ty != s64 && Ty != s128) { 
        LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty
                          << " constant, expected: " << s32 << " or " << s64
                          << " or " << s128 << '\n'); 
        return false;
      }

      if (RB.getID() != AArch64::FPRRegBankID) {
        LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty
                          << " constant on bank: " << RB
                          << ", expected: FPR\n");
        return false;
      }

      // The case when we have 0.0 is covered by tablegen. Reject it here so we
      // can be sure tablegen works correctly and isn't rescued by this code.
      // 0.0 is not covered by tablegen for FP128. So we will handle this  
      // scenario in the code here. 
      if (DefSize != 128 && I.getOperand(1).getFPImm()->isExactlyValue(0.0)) 
        return false;
    } else {
      // s32 and s64 are covered by tablegen.
      if (Ty != p0 && Ty != s8 && Ty != s16) {
        LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty
                          << " constant, expected: " << s32 << ", " << s64
                          << ", or " << p0 << '\n');
        return false;
      }

      if (RB.getID() != AArch64::GPRRegBankID) {
        LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty
                          << " constant on bank: " << RB
                          << ", expected: GPR\n");
        return false;
      }
    }

    // We allow G_CONSTANT of types < 32b.
    const unsigned MovOpc =
        DefSize == 64 ? AArch64::MOVi64imm : AArch64::MOVi32imm;

    if (isFP) {
      // Either emit a FMOV, or emit a copy to emit a normal mov.
      const TargetRegisterClass &GPRRC =
          DefSize == 32 ? AArch64::GPR32RegClass : AArch64::GPR64RegClass;
      const TargetRegisterClass &FPRRC =  
          DefSize == 32 ? AArch64::FPR32RegClass  
                        : (DefSize == 64 ? AArch64::FPR64RegClass  
                                         : AArch64::FPR128RegClass); 

      // Can we use a FMOV instruction to represent the immediate?
      if (emitFMovForFConstant(I, MRI))
        return true;

      // For 64b values, emit a constant pool load instead.
      if (DefSize == 64 || DefSize == 128) { 
        auto *FPImm = I.getOperand(1).getFPImm();
        MachineIRBuilder MIB(I);
        auto *LoadMI = emitLoadFromConstantPool(FPImm, MIB);
        if (!LoadMI) {
          LLVM_DEBUG(dbgs() << "Failed to load double constant pool entry\n");
          return false;
        }
        MIB.buildCopy({DefReg}, {LoadMI->getOperand(0).getReg()});
        I.eraseFromParent();
        return RBI.constrainGenericRegister(DefReg, FPRRC, MRI);
      }

      // Nope. Emit a copy and use a normal mov instead.
      const Register DefGPRReg = MRI.createVirtualRegister(&GPRRC);
      MachineOperand &RegOp = I.getOperand(0);
      RegOp.setReg(DefGPRReg);
      MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator()));
      MIB.buildCopy({DefReg}, {DefGPRReg});

      if (!RBI.constrainGenericRegister(DefReg, FPRRC, MRI)) {
        LLVM_DEBUG(dbgs() << "Failed to constrain G_FCONSTANT def operand\n");
        return false;
      }

      MachineOperand &ImmOp = I.getOperand(1);
      // FIXME: Is going through int64_t always correct?
      ImmOp.ChangeToImmediate(
          ImmOp.getFPImm()->getValueAPF().bitcastToAPInt().getZExtValue());
    } else if (I.getOperand(1).isCImm()) {
      uint64_t Val = I.getOperand(1).getCImm()->getZExtValue();
      I.getOperand(1).ChangeToImmediate(Val);
    } else if (I.getOperand(1).isImm()) {
      uint64_t Val = I.getOperand(1).getImm();
      I.getOperand(1).ChangeToImmediate(Val);
    }

    I.setDesc(TII.get(MovOpc));
    constrainSelectedInstRegOperands(I, TII, TRI, RBI);
    return true;
  }
  case TargetOpcode::G_EXTRACT: {
    Register DstReg = I.getOperand(0).getReg();
    Register SrcReg = I.getOperand(1).getReg();
    LLT SrcTy = MRI.getType(SrcReg);
    LLT DstTy = MRI.getType(DstReg);
    (void)DstTy;
    unsigned SrcSize = SrcTy.getSizeInBits();

    if (SrcTy.getSizeInBits() > 64) {
      // This should be an extract of an s128, which is like a vector extract.
      if (SrcTy.getSizeInBits() != 128)
        return false;
      // Only support extracting 64 bits from an s128 at the moment.
      if (DstTy.getSizeInBits() != 64)
        return false;

      const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
      const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
      // Check we have the right regbank always.
      assert(SrcRB.getID() == AArch64::FPRRegBankID &&
             DstRB.getID() == AArch64::FPRRegBankID &&
             "Wrong extract regbank!");
      (void)SrcRB;

      // Emit the same code as a vector extract.
      // Offset must be a multiple of 64.
      unsigned Offset = I.getOperand(2).getImm();
      if (Offset % 64 != 0)
        return false;
      unsigned LaneIdx = Offset / 64;
      MachineIRBuilder MIB(I);
      MachineInstr *Extract = emitExtractVectorElt(
          DstReg, DstRB, LLT::scalar(64), SrcReg, LaneIdx, MIB);
      if (!Extract)
        return false;
      I.eraseFromParent();
      return true;
    }

    I.setDesc(TII.get(SrcSize == 64 ? AArch64::UBFMXri : AArch64::UBFMWri));
    MachineInstrBuilder(MF, I).addImm(I.getOperand(2).getImm() +
                                      Ty.getSizeInBits() - 1);

    if (SrcSize < 64) {
      assert(SrcSize == 32 && DstTy.getSizeInBits() == 16 &&
             "unexpected G_EXTRACT types");
      return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
    }

    DstReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
    MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator()));
    MIB.buildInstr(TargetOpcode::COPY, {I.getOperand(0).getReg()}, {})
        .addReg(DstReg, 0, AArch64::sub_32);
    RBI.constrainGenericRegister(I.getOperand(0).getReg(),
                                 AArch64::GPR32RegClass, MRI);
    I.getOperand(0).setReg(DstReg);

    return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
  }

  case TargetOpcode::G_INSERT: {
    LLT SrcTy = MRI.getType(I.getOperand(2).getReg());
    LLT DstTy = MRI.getType(I.getOperand(0).getReg());
    unsigned DstSize = DstTy.getSizeInBits();
    // Larger inserts are vectors, same-size ones should be something else by
    // now (split up or turned into COPYs).
    if (Ty.getSizeInBits() > 64 || SrcTy.getSizeInBits() > 32)
      return false;

    I.setDesc(TII.get(DstSize == 64 ? AArch64::BFMXri : AArch64::BFMWri));
    unsigned LSB = I.getOperand(3).getImm();
    unsigned Width = MRI.getType(I.getOperand(2).getReg()).getSizeInBits();
    I.getOperand(3).setImm((DstSize - LSB) % DstSize);
    MachineInstrBuilder(MF, I).addImm(Width - 1);

    if (DstSize < 64) {
      assert(DstSize == 32 && SrcTy.getSizeInBits() == 16 &&
             "unexpected G_INSERT types");
      return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
    }

    Register SrcReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
    BuildMI(MBB, I.getIterator(), I.getDebugLoc(),
            TII.get(AArch64::SUBREG_TO_REG))
        .addDef(SrcReg)
        .addImm(0)
        .addUse(I.getOperand(2).getReg())
        .addImm(AArch64::sub_32);
    RBI.constrainGenericRegister(I.getOperand(2).getReg(),
                                 AArch64::GPR32RegClass, MRI);
    I.getOperand(2).setReg(SrcReg);

    return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
  }
  case TargetOpcode::G_FRAME_INDEX: {
    // allocas and G_FRAME_INDEX are only supported in addrspace(0).
    if (Ty != LLT::pointer(0, 64)) {
      LLVM_DEBUG(dbgs() << "G_FRAME_INDEX pointer has type: " << Ty
                        << ", expected: " << LLT::pointer(0, 64) << '\n');
      return false;
    }
    I.setDesc(TII.get(AArch64::ADDXri));

    // MOs for a #0 shifted immediate.
    I.addOperand(MachineOperand::CreateImm(0));
    I.addOperand(MachineOperand::CreateImm(0));

    return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
  }

  case TargetOpcode::G_GLOBAL_VALUE: {
    auto GV = I.getOperand(1).getGlobal();
    if (GV->isThreadLocal())
      return selectTLSGlobalValue(I, MRI);

    unsigned OpFlags = STI.ClassifyGlobalReference(GV, TM);
    if (OpFlags & AArch64II::MO_GOT) {
      I.setDesc(TII.get(AArch64::LOADgot));
      I.getOperand(1).setTargetFlags(OpFlags);
    } else if (TM.getCodeModel() == CodeModel::Large) {
      // Materialize the global using movz/movk instructions.
      materializeLargeCMVal(I, GV, OpFlags);
      I.eraseFromParent();
      return true;
    } else if (TM.getCodeModel() == CodeModel::Tiny) {
      I.setDesc(TII.get(AArch64::ADR));
      I.getOperand(1).setTargetFlags(OpFlags);
    } else {
      I.setDesc(TII.get(AArch64::MOVaddr));
      I.getOperand(1).setTargetFlags(OpFlags | AArch64II::MO_PAGE);
      MachineInstrBuilder MIB(MF, I);
      MIB.addGlobalAddress(GV, I.getOperand(1).getOffset(),
                           OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
    }
    return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
  }

  case TargetOpcode::G_ZEXTLOAD:
  case TargetOpcode::G_LOAD:
  case TargetOpcode::G_STORE: {
    bool IsZExtLoad = I.getOpcode() == TargetOpcode::G_ZEXTLOAD;
    MachineIRBuilder MIB(I);

    LLT PtrTy = MRI.getType(I.getOperand(1).getReg());

    if (PtrTy != LLT::pointer(0, 64)) {
      LLVM_DEBUG(dbgs() << "Load/Store pointer has type: " << PtrTy
                        << ", expected: " << LLT::pointer(0, 64) << '\n');
      return false;
    }

    auto &MemOp = **I.memoperands_begin();
    uint64_t MemSizeInBytes = MemOp.getSize(); 
    if (MemOp.isAtomic()) {
      // For now we just support s8 acquire loads to be able to compile stack
      // protector code.
      if (MemOp.getOrdering() == AtomicOrdering::Acquire &&
          MemSizeInBytes == 1) { 
        I.setDesc(TII.get(AArch64::LDARB));
        return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
      }
      LLVM_DEBUG(dbgs() << "Atomic load/store not fully supported yet\n");
      return false;
    }
    unsigned MemSizeInBits = MemSizeInBytes * 8; 

#ifndef NDEBUG 
    const Register PtrReg = I.getOperand(1).getReg();
    const RegisterBank &PtrRB = *RBI.getRegBank(PtrReg, MRI, TRI);
    // Sanity-check the pointer register.
    assert(PtrRB.getID() == AArch64::GPRRegBankID &&
           "Load/Store pointer operand isn't a GPR");
    assert(MRI.getType(PtrReg).isPointer() &&
           "Load/Store pointer operand isn't a pointer");
#endif

    const Register ValReg = I.getOperand(0).getReg();
    const RegisterBank &RB = *RBI.getRegBank(ValReg, MRI, TRI);

    // Helper lambda for partially selecting I. Either returns the original 
    // instruction with an updated opcode, or a new instruction. 
    auto SelectLoadStoreAddressingMode = [&]() -> MachineInstr * { 
      bool IsStore = I.getOpcode() == TargetOpcode::G_STORE; 
      const unsigned NewOpc = 
          selectLoadStoreUIOp(I.getOpcode(), RB.getID(), MemSizeInBits); 
      if (NewOpc == I.getOpcode()) 
        return nullptr; 
      // Check if we can fold anything into the addressing mode. 
      auto AddrModeFns = 
          selectAddrModeIndexed(I.getOperand(1), MemSizeInBytes); 
      if (!AddrModeFns) { 
        // Can't fold anything. Use the original instruction. 
        I.setDesc(TII.get(NewOpc)); 
        I.addOperand(MachineOperand::CreateImm(0)); 
        return &I; 
      }

      // Folded something. Create a new instruction and return it. 
      auto NewInst = MIB.buildInstr(NewOpc, {}, {}, I.getFlags()); 
      IsStore ? NewInst.addUse(ValReg) : NewInst.addDef(ValReg); 
      NewInst.cloneMemRefs(I); 
      for (auto &Fn : *AddrModeFns) 
        Fn(NewInst); 
      I.eraseFromParent(); 
      return &*NewInst; 
    }; 

    MachineInstr *LoadStore = SelectLoadStoreAddressingMode(); 
    if (!LoadStore) 
      return false; 

    // If we're storing a 0, use WZR/XZR.
    if (Opcode == TargetOpcode::G_STORE) { 
      auto CVal = getConstantVRegValWithLookThrough( 
          LoadStore->getOperand(0).getReg(), MRI, /*LookThroughInstrs = */ true, 
          /*HandleFConstants = */ false); 
      if (CVal && CVal->Value == 0) { 
        switch (LoadStore->getOpcode()) { 
        case AArch64::STRWui: 
        case AArch64::STRHHui: 
        case AArch64::STRBBui: 
          LoadStore->getOperand(0).setReg(AArch64::WZR); 
          break; 
        case AArch64::STRXui: 
          LoadStore->getOperand(0).setReg(AArch64::XZR); 
          break; 
        } 
      }
    }

    if (IsZExtLoad) {
      // The zextload from a smaller type to i32 should be handled by the 
      // importer. 
      if (MRI.getType(LoadStore->getOperand(0).getReg()).getSizeInBits() != 64) 
        return false;
      // If we have a ZEXTLOAD then change the load's type to be a narrower reg
      // and zero_extend with SUBREG_TO_REG. 
      Register LdReg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
      Register DstReg = LoadStore->getOperand(0).getReg(); 
      LoadStore->getOperand(0).setReg(LdReg); 

      MIB.setInsertPt(MIB.getMBB(), std::next(LoadStore->getIterator())); 
      MIB.buildInstr(AArch64::SUBREG_TO_REG, {DstReg}, {})
          .addImm(0)
          .addUse(LdReg)
          .addImm(AArch64::sub_32);
      constrainSelectedInstRegOperands(*LoadStore, TII, TRI, RBI); 
      return RBI.constrainGenericRegister(DstReg, AArch64::GPR64allRegClass,
                                          MRI);
    }
    return constrainSelectedInstRegOperands(*LoadStore, TII, TRI, RBI); 
  }

  case TargetOpcode::G_SMULH:
  case TargetOpcode::G_UMULH: {
    // Reject the various things we don't support yet.
    if (unsupportedBinOp(I, RBI, MRI, TRI))
      return false;

    const Register DefReg = I.getOperand(0).getReg();
    const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);

    if (RB.getID() != AArch64::GPRRegBankID) {
      LLVM_DEBUG(dbgs() << "G_[SU]MULH on bank: " << RB << ", expected: GPR\n");
      return false;
    }

    if (Ty != LLT::scalar(64)) {
      LLVM_DEBUG(dbgs() << "G_[SU]MULH has type: " << Ty
                        << ", expected: " << LLT::scalar(64) << '\n');
      return false;
    }

    unsigned NewOpc = I.getOpcode() == TargetOpcode::G_SMULH ? AArch64::SMULHrr
                                                             : AArch64::UMULHrr;
    I.setDesc(TII.get(NewOpc));

    // Now that we selected an opcode, we need to constrain the register
    // operands to use appropriate classes.
    return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
  }
  case TargetOpcode::G_LSHR: 
  case TargetOpcode::G_ASHR:
    if (MRI.getType(I.getOperand(0).getReg()).isVector())
      return selectVectorAshrLshr(I, MRI); 
    LLVM_FALLTHROUGH;
  case TargetOpcode::G_SHL:
    if (Opcode == TargetOpcode::G_SHL &&
        MRI.getType(I.getOperand(0).getReg()).isVector())
      return selectVectorSHL(I, MRI);
    LLVM_FALLTHROUGH;
  case TargetOpcode::G_FADD: 
  case TargetOpcode::G_FSUB: 
  case TargetOpcode::G_FMUL: 
  case TargetOpcode::G_FDIV: 
  case TargetOpcode::G_OR: { 
    // Reject the various things we don't support yet.
    if (unsupportedBinOp(I, RBI, MRI, TRI))
      return false;

    const unsigned OpSize = Ty.getSizeInBits();

    const Register DefReg = I.getOperand(0).getReg();
    const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);

    const unsigned NewOpc = selectBinaryOp(I.getOpcode(), RB.getID(), OpSize);
    if (NewOpc == I.getOpcode())
      return false;

    I.setDesc(TII.get(NewOpc));
    // FIXME: Should the type be always reset in setDesc?

    // Now that we selected an opcode, we need to constrain the register
    // operands to use appropriate classes.
    return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
  }

  case TargetOpcode::G_PTR_ADD: {
    MachineIRBuilder MIRBuilder(I);
    emitADD(I.getOperand(0).getReg(), I.getOperand(1), I.getOperand(2),
            MIRBuilder);
    I.eraseFromParent();
    return true;
  }
  case TargetOpcode::G_SADDO: 
  case TargetOpcode::G_UADDO: 
  case TargetOpcode::G_SSUBO: 
  case TargetOpcode::G_USUBO: { 
    // Emit the operation and get the correct condition code. 
    MachineIRBuilder MIRBuilder(I);
    auto OpAndCC = emitOverflowOp(Opcode, I.getOperand(0).getReg(), 
                                  I.getOperand(2), I.getOperand(3), MIRBuilder); 

    // Now, put the overflow result in the register given by the first operand
    // to the overflow op. CSINC increments the result when the predicate is 
    // false, so to get the increment when it's true, we need to use the 
    // inverse. In this case, we want to increment when carry is set. 
    Register ZReg = AArch64::WZR; 
    auto CsetMI = MIRBuilder
                      .buildInstr(AArch64::CSINCWr, {I.getOperand(1).getReg()},
                                  {ZReg, ZReg}) 
                      .addImm(getInvertedCondCode(OpAndCC.second)); 
    constrainSelectedInstRegOperands(*CsetMI, TII, TRI, RBI);
    I.eraseFromParent();
    return true;
  }

  case TargetOpcode::G_PTRMASK: {
    Register MaskReg = I.getOperand(2).getReg();
    Optional<int64_t> MaskVal = getConstantVRegSExtVal(MaskReg, MRI); 
    // TODO: Implement arbitrary cases
    if (!MaskVal || !isShiftedMask_64(*MaskVal))
      return false;

    uint64_t Mask = *MaskVal;
    I.setDesc(TII.get(AArch64::ANDXri));
    I.getOperand(2).ChangeToImmediate(
        AArch64_AM::encodeLogicalImmediate(Mask, 64));

    return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
  }
  case TargetOpcode::G_PTRTOINT:
  case TargetOpcode::G_TRUNC: {
    const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
    const LLT SrcTy = MRI.getType(I.getOperand(1).getReg());

    const Register DstReg = I.getOperand(0).getReg();
    const Register SrcReg = I.getOperand(1).getReg();

    const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
    const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);

    if (DstRB.getID() != SrcRB.getID()) {
      LLVM_DEBUG(
          dbgs() << "G_TRUNC/G_PTRTOINT input/output on different banks\n");
      return false;
    }

    if (DstRB.getID() == AArch64::GPRRegBankID) {
      const TargetRegisterClass *DstRC =
          getRegClassForTypeOnBank(DstTy, DstRB, RBI);
      if (!DstRC)
        return false;

      const TargetRegisterClass *SrcRC =
          getRegClassForTypeOnBank(SrcTy, SrcRB, RBI);
      if (!SrcRC)
        return false;

      if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) ||
          !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
        LLVM_DEBUG(dbgs() << "Failed to constrain G_TRUNC/G_PTRTOINT\n");
        return false;
      }

      if (DstRC == SrcRC) {
        // Nothing to be done
      } else if (Opcode == TargetOpcode::G_TRUNC && DstTy == LLT::scalar(32) &&
                 SrcTy == LLT::scalar(64)) {
        llvm_unreachable("TableGen can import this case");
        return false;
      } else if (DstRC == &AArch64::GPR32RegClass &&
                 SrcRC == &AArch64::GPR64RegClass) {
        I.getOperand(1).setSubReg(AArch64::sub_32);
      } else {
        LLVM_DEBUG(
            dbgs() << "Unhandled mismatched classes in G_TRUNC/G_PTRTOINT\n");
        return false;
      }

      I.setDesc(TII.get(TargetOpcode::COPY));
      return true;
    } else if (DstRB.getID() == AArch64::FPRRegBankID) {
      if (DstTy == LLT::vector(4, 16) && SrcTy == LLT::vector(4, 32)) {
        I.setDesc(TII.get(AArch64::XTNv4i16));
        constrainSelectedInstRegOperands(I, TII, TRI, RBI);
        return true;
      }

      if (!SrcTy.isVector() && SrcTy.getSizeInBits() == 128) {
        MachineIRBuilder MIB(I);
        MachineInstr *Extract = emitExtractVectorElt(
            DstReg, DstRB, LLT::scalar(DstTy.getSizeInBits()), SrcReg, 0, MIB);
        if (!Extract)
          return false;
        I.eraseFromParent();
        return true;
      }

      // We might have a vector G_PTRTOINT, in which case just emit a COPY.
      if (Opcode == TargetOpcode::G_PTRTOINT) {
        assert(DstTy.isVector() && "Expected an FPR ptrtoint to be a vector");
        I.setDesc(TII.get(TargetOpcode::COPY));
        return true;
      }
    }

    return false;
  }

  case TargetOpcode::G_ANYEXT: {
    const Register DstReg = I.getOperand(0).getReg();
    const Register SrcReg = I.getOperand(1).getReg();

    const RegisterBank &RBDst = *RBI.getRegBank(DstReg, MRI, TRI);
    if (RBDst.getID() != AArch64::GPRRegBankID) {
      LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBDst
                        << ", expected: GPR\n");
      return false;
    }

    const RegisterBank &RBSrc = *RBI.getRegBank(SrcReg, MRI, TRI);
    if (RBSrc.getID() != AArch64::GPRRegBankID) {
      LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBSrc
                        << ", expected: GPR\n");
      return false;
    }

    const unsigned DstSize = MRI.getType(DstReg).getSizeInBits();

    if (DstSize == 0) {
      LLVM_DEBUG(dbgs() << "G_ANYEXT operand has no size, not a gvreg?\n");
      return false;
    }

    if (DstSize != 64 && DstSize > 32) {
      LLVM_DEBUG(dbgs() << "G_ANYEXT to size: " << DstSize
                        << ", expected: 32 or 64\n");
      return false;
    }
    // At this point G_ANYEXT is just like a plain COPY, but we need
    // to explicitly form the 64-bit value if any.
    if (DstSize > 32) {
      Register ExtSrc = MRI.createVirtualRegister(&AArch64::GPR64allRegClass);
      BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::SUBREG_TO_REG))
          .addDef(ExtSrc)
          .addImm(0)
          .addUse(SrcReg)
          .addImm(AArch64::sub_32);
      I.getOperand(1).setReg(ExtSrc);
    }
    return selectCopy(I, TII, MRI, TRI, RBI);
  }

  case TargetOpcode::G_ZEXT:
  case TargetOpcode::G_SEXT_INREG:
  case TargetOpcode::G_SEXT: {
    unsigned Opcode = I.getOpcode();
    const bool IsSigned = Opcode != TargetOpcode::G_ZEXT;
    const Register DefReg = I.getOperand(0).getReg();
    Register SrcReg = I.getOperand(1).getReg();
    const LLT DstTy = MRI.getType(DefReg);
    const LLT SrcTy = MRI.getType(SrcReg);
    unsigned DstSize = DstTy.getSizeInBits();
    unsigned SrcSize = SrcTy.getSizeInBits();

    // SEXT_INREG has the same src reg size as dst, the size of the value to be
    // extended is encoded in the imm.
    if (Opcode == TargetOpcode::G_SEXT_INREG)
      SrcSize = I.getOperand(2).getImm();

    if (DstTy.isVector())
      return false; // Should be handled by imported patterns.

    assert((*RBI.getRegBank(DefReg, MRI, TRI)).getID() ==
               AArch64::GPRRegBankID &&
           "Unexpected ext regbank");

    MachineIRBuilder MIB(I);
    MachineInstr *ExtI;

    // First check if we're extending the result of a load which has a dest type
    // smaller than 32 bits, then this zext is redundant. GPR32 is the smallest
    // GPR register on AArch64 and all loads which are smaller automatically
    // zero-extend the upper bits. E.g.
    // %v(s8) = G_LOAD %p, :: (load 1)
    // %v2(s32) = G_ZEXT %v(s8)
    if (!IsSigned) {
      auto *LoadMI = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI);
      bool IsGPR =
          RBI.getRegBank(SrcReg, MRI, TRI)->getID() == AArch64::GPRRegBankID;
      if (LoadMI && IsGPR) {
        const MachineMemOperand *MemOp = *LoadMI->memoperands_begin();
        unsigned BytesLoaded = MemOp->getSize();
        if (BytesLoaded < 4 && SrcTy.getSizeInBytes() == BytesLoaded)
          return selectCopy(I, TII, MRI, TRI, RBI);
      }

      // If we are zero extending from 32 bits to 64 bits, it's possible that
      // the instruction implicitly does the zero extend for us. In that case,
      // we can just emit a SUBREG_TO_REG.
      if (IsGPR && SrcSize == 32 && DstSize == 64) {
        // Unlike with the G_LOAD case, we don't want to look through copies
        // here.
        MachineInstr *Def = MRI.getVRegDef(SrcReg);
        if (Def && isDef32(*Def)) {
          MIB.buildInstr(AArch64::SUBREG_TO_REG, {DefReg}, {})
              .addImm(0)
              .addUse(SrcReg)
              .addImm(AArch64::sub_32);

          if (!RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass,
                                            MRI)) {
            LLVM_DEBUG(dbgs() << "Failed to constrain G_ZEXT destination\n");
            return false;
          }

          if (!RBI.constrainGenericRegister(SrcReg, AArch64::GPR32RegClass,
                                            MRI)) {
            LLVM_DEBUG(dbgs() << "Failed to constrain G_ZEXT source\n");
            return false;
          }

          I.eraseFromParent();
          return true;
        }
      }
    }

    if (DstSize == 64) {
      if (Opcode != TargetOpcode::G_SEXT_INREG) {
        // FIXME: Can we avoid manually doing this?
        if (!RBI.constrainGenericRegister(SrcReg, AArch64::GPR32RegClass,
                                          MRI)) {
          LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(Opcode)
                            << " operand\n");
          return false;
        }
        SrcReg = MIB.buildInstr(AArch64::SUBREG_TO_REG,
                                {&AArch64::GPR64RegClass}, {})
                     .addImm(0)
                     .addUse(SrcReg)
                     .addImm(AArch64::sub_32)
                     .getReg(0);
      }

      ExtI = MIB.buildInstr(IsSigned ? AArch64::SBFMXri : AArch64::UBFMXri,
                             {DefReg}, {SrcReg})
                  .addImm(0)
                  .addImm(SrcSize - 1);
    } else if (DstSize <= 32) {
      ExtI = MIB.buildInstr(IsSigned ? AArch64::SBFMWri : AArch64::UBFMWri,
                             {DefReg}, {SrcReg})
                  .addImm(0)
                  .addImm(SrcSize - 1);
    } else {
      return false;
    }

    constrainSelectedInstRegOperands(*ExtI, TII, TRI, RBI);
    I.eraseFromParent();
    return true;
  }

  case TargetOpcode::G_SITOFP:
  case TargetOpcode::G_UITOFP:
  case TargetOpcode::G_FPTOSI:
  case TargetOpcode::G_FPTOUI: {
    const LLT DstTy = MRI.getType(I.getOperand(0).getReg()),
              SrcTy = MRI.getType(I.getOperand(1).getReg());
    const unsigned NewOpc = selectFPConvOpc(Opcode, DstTy, SrcTy);
    if (NewOpc == Opcode)
      return false;

    I.setDesc(TII.get(NewOpc));
    constrainSelectedInstRegOperands(I, TII, TRI, RBI);

    return true;
  }

  case TargetOpcode::G_FREEZE:
    return selectCopy(I, TII, MRI, TRI, RBI);

  case TargetOpcode::G_INTTOPTR:
    // The importer is currently unable to import pointer types since they
    // didn't exist in SelectionDAG.
    return selectCopy(I, TII, MRI, TRI, RBI);

  case TargetOpcode::G_BITCAST:
    // Imported SelectionDAG rules can handle every bitcast except those that
    // bitcast from a type to the same type. Ideally, these shouldn't occur
    // but we might not run an optimizer that deletes them. The other exception
    // is bitcasts involving pointer types, as SelectionDAG has no knowledge
    // of them.
    return selectCopy(I, TII, MRI, TRI, RBI);

  case TargetOpcode::G_SELECT: {
    if (MRI.getType(I.getOperand(1).getReg()) != LLT::scalar(1)) {
      LLVM_DEBUG(dbgs() << "G_SELECT cond has type: " << Ty
                        << ", expected: " << LLT::scalar(1) << '\n');
      return false;
    }

    const Register CondReg = I.getOperand(1).getReg();
    const Register TReg = I.getOperand(2).getReg();
    const Register FReg = I.getOperand(3).getReg();

    if (tryOptSelect(I))
      return true;

    // Make sure to use an unused vreg instead of wzr, so that the peephole 
    // optimizations will be able to optimize these. 
    MachineIRBuilder MIB(I); 
    Register DeadVReg = MRI.createVirtualRegister(&AArch64::GPR32RegClass); 
    auto TstMI = MIB.buildInstr(AArch64::ANDSWri, {DeadVReg}, {CondReg}) 
                     .addImm(AArch64_AM::encodeLogicalImmediate(1, 32)); 
    constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI); 
    if (!emitSelect(I.getOperand(0).getReg(), TReg, FReg, AArch64CC::NE, MIB)) 
      return false; 
    I.eraseFromParent();
    return true;
  }
  case TargetOpcode::G_ICMP: {
    if (Ty.isVector())
      return selectVectorICmp(I, MRI);

    if (Ty != LLT::scalar(32)) {
      LLVM_DEBUG(dbgs() << "G_ICMP result has type: " << Ty
                        << ", expected: " << LLT::scalar(32) << '\n');
      return false;
    }

    MachineIRBuilder MIRBuilder(I);
    auto Pred = static_cast<CmpInst::Predicate>(I.getOperand(1).getPredicate()); 
    emitIntegerCompare(I.getOperand(2), I.getOperand(3), I.getOperand(1), 
                       MIRBuilder); 
    emitCSetForICMP(I.getOperand(0).getReg(), Pred, MIRBuilder);
    I.eraseFromParent();
    return true;
  }

  case TargetOpcode::G_FCMP: {
    MachineIRBuilder MIRBuilder(I); 
    CmpInst::Predicate Pred = 
        static_cast<CmpInst::Predicate>(I.getOperand(1).getPredicate()); 
    if (!emitFPCompare(I.getOperand(2).getReg(), I.getOperand(3).getReg(), 
                       MIRBuilder, Pred) || 
        !emitCSetForFCmp(I.getOperand(0).getReg(), Pred, MIRBuilder)) 
      return false;
    I.eraseFromParent();
    return true;
  }
  case TargetOpcode::G_VASTART:
    return STI.isTargetDarwin() ? selectVaStartDarwin(I, MF, MRI)
                                : selectVaStartAAPCS(I, MF, MRI);
  case TargetOpcode::G_INTRINSIC:
    return selectIntrinsic(I, MRI);
  case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
    return selectIntrinsicWithSideEffects(I, MRI);
  case TargetOpcode::G_IMPLICIT_DEF: {
    I.setDesc(TII.get(TargetOpcode::IMPLICIT_DEF));
    const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
    const Register DstReg = I.getOperand(0).getReg();
    const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
    const TargetRegisterClass *DstRC =
        getRegClassForTypeOnBank(DstTy, DstRB, RBI);
    RBI.constrainGenericRegister(DstReg, *DstRC, MRI);
    return true;
  }
  case TargetOpcode::G_BLOCK_ADDR: {
    if (TM.getCodeModel() == CodeModel::Large) {
      materializeLargeCMVal(I, I.getOperand(1).getBlockAddress(), 0);
      I.eraseFromParent();
      return true;
    } else {
      I.setDesc(TII.get(AArch64::MOVaddrBA));
      auto MovMI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::MOVaddrBA),
                           I.getOperand(0).getReg())
                       .addBlockAddress(I.getOperand(1).getBlockAddress(),
                                        /* Offset */ 0, AArch64II::MO_PAGE)
                       .addBlockAddress(
                           I.getOperand(1).getBlockAddress(), /* Offset */ 0,
                           AArch64II::MO_NC | AArch64II::MO_PAGEOFF);
      I.eraseFromParent();
      return constrainSelectedInstRegOperands(*MovMI, TII, TRI, RBI);
    }
  }
  case AArch64::G_DUP: { 
    // When the scalar of G_DUP is an s8/s16 gpr, they can't be selected by 
    // imported patterns. Do it manually here. Avoiding generating s16 gpr is 
    // difficult because at RBS we may end up pessimizing the fpr case if we 
    // decided to add an anyextend to fix this. Manual selection is the most 
    // robust solution for now. 
    Register SrcReg = I.getOperand(1).getReg(); 
    if (RBI.getRegBank(SrcReg, MRI, TRI)->getID() != AArch64::GPRRegBankID) 
      return false; // We expect the fpr regbank case to be imported. 
    LLT SrcTy = MRI.getType(SrcReg); 
    if (SrcTy.getSizeInBits() == 16) 
      I.setDesc(TII.get(AArch64::DUPv8i16gpr)); 
    else if (SrcTy.getSizeInBits() == 8) 
      I.setDesc(TII.get(AArch64::DUPv16i8gpr)); 
    else 
      return false; 
    return constrainSelectedInstRegOperands(I, TII, TRI, RBI); 
  } 
  case TargetOpcode::G_INTRINSIC_TRUNC:
    return selectIntrinsicTrunc(I, MRI);
  case TargetOpcode::G_INTRINSIC_ROUND:
    return selectIntrinsicRound(I, MRI);
  case TargetOpcode::G_BUILD_VECTOR:
    return selectBuildVector(I, MRI);
  case TargetOpcode::G_MERGE_VALUES:
    return selectMergeValues(I, MRI);
  case TargetOpcode::G_UNMERGE_VALUES:
    return selectUnmergeValues(I, MRI);
  case TargetOpcode::G_SHUFFLE_VECTOR:
    return selectShuffleVector(I, MRI);
  case TargetOpcode::G_EXTRACT_VECTOR_ELT:
    return selectExtractElt(I, MRI);
  case TargetOpcode::G_INSERT_VECTOR_ELT:
    return selectInsertElt(I, MRI);
  case TargetOpcode::G_CONCAT_VECTORS:
    return selectConcatVectors(I, MRI);
  case TargetOpcode::G_JUMP_TABLE:
    return selectJumpTable(I, MRI);
  case TargetOpcode::G_VECREDUCE_FADD: 
  case TargetOpcode::G_VECREDUCE_ADD: 
    return selectReduction(I, MRI); 
  }

  return false;
}

bool AArch64InstructionSelector::selectReduction( 
    MachineInstr &I, MachineRegisterInfo &MRI) const { 
  Register VecReg = I.getOperand(1).getReg(); 
  LLT VecTy = MRI.getType(VecReg); 
  if (I.getOpcode() == TargetOpcode::G_VECREDUCE_ADD) { 
    unsigned Opc = 0; 
    if (VecTy == LLT::vector(16, 8)) 
      Opc = AArch64::ADDVv16i8v; 
    else if (VecTy == LLT::vector(8, 16)) 
      Opc = AArch64::ADDVv8i16v; 
    else if (VecTy == LLT::vector(4, 32)) 
      Opc = AArch64::ADDVv4i32v; 
    else if (VecTy == LLT::vector(2, 64)) 
      Opc = AArch64::ADDPv2i64p; 
    else { 
      LLVM_DEBUG(dbgs() << "Unhandled type for add reduction"); 
      return false; 
    } 
    I.setDesc(TII.get(Opc)); 
    return constrainSelectedInstRegOperands(I, TII, TRI, RBI); 
  } 
 
  if (I.getOpcode() == TargetOpcode::G_VECREDUCE_FADD) { 
    unsigned Opc = 0; 
    if (VecTy == LLT::vector(2, 32)) 
      Opc = AArch64::FADDPv2i32p; 
    else if (VecTy == LLT::vector(2, 64)) 
      Opc = AArch64::FADDPv2i64p; 
    else { 
      LLVM_DEBUG(dbgs() << "Unhandled type for fadd reduction"); 
      return false; 
    } 
    I.setDesc(TII.get(Opc)); 
    return constrainSelectedInstRegOperands(I, TII, TRI, RBI); 
  } 
  return false; 
} 
 
bool AArch64InstructionSelector::selectBrJT(MachineInstr &I,
                                            MachineRegisterInfo &MRI) const {
  assert(I.getOpcode() == TargetOpcode::G_BRJT && "Expected G_BRJT");
  Register JTAddr = I.getOperand(0).getReg();
  unsigned JTI = I.getOperand(1).getIndex();
  Register Index = I.getOperand(2).getReg();
  MachineIRBuilder MIB(I);

  Register TargetReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
  Register ScratchReg = MRI.createVirtualRegister(&AArch64::GPR64spRegClass);
 
  MF->getInfo<AArch64FunctionInfo>()->setJumpTableEntryInfo(JTI, 4, nullptr); 
  auto JumpTableInst = MIB.buildInstr(AArch64::JumpTableDest32,
                                      {TargetReg, ScratchReg}, {JTAddr, Index})
                           .addJumpTableIndex(JTI);
  // Build the indirect branch.
  MIB.buildInstr(AArch64::BR, {}, {TargetReg});
  I.eraseFromParent();
  return constrainSelectedInstRegOperands(*JumpTableInst, TII, TRI, RBI);
}

bool AArch64InstructionSelector::selectJumpTable(
    MachineInstr &I, MachineRegisterInfo &MRI) const {
  assert(I.getOpcode() == TargetOpcode::G_JUMP_TABLE && "Expected jump table");
  assert(I.getOperand(1).isJTI() && "Jump table op should have a JTI!");

  Register DstReg = I.getOperand(0).getReg();
  unsigned JTI = I.getOperand(1).getIndex();
  // We generate a MOVaddrJT which will get expanded to an ADRP + ADD later.
  MachineIRBuilder MIB(I);
  auto MovMI =
    MIB.buildInstr(AArch64::MOVaddrJT, {DstReg}, {})
          .addJumpTableIndex(JTI, AArch64II::MO_PAGE)
          .addJumpTableIndex(JTI, AArch64II::MO_NC | AArch64II::MO_PAGEOFF);
  I.eraseFromParent();
  return constrainSelectedInstRegOperands(*MovMI, TII, TRI, RBI);
}

bool AArch64InstructionSelector::selectTLSGlobalValue(
    MachineInstr &I, MachineRegisterInfo &MRI) const {
  if (!STI.isTargetMachO())
    return false;
  MachineFunction &MF = *I.getParent()->getParent();
  MF.getFrameInfo().setAdjustsStack(true);

  const GlobalValue &GV = *I.getOperand(1).getGlobal();
  MachineIRBuilder MIB(I);

  auto LoadGOT = 
      MIB.buildInstr(AArch64::LOADgot, {&AArch64::GPR64commonRegClass}, {}) 
          .addGlobalAddress(&GV, 0, AArch64II::MO_TLS); 

  auto Load = MIB.buildInstr(AArch64::LDRXui, {&AArch64::GPR64commonRegClass},
                             {LoadGOT.getReg(0)}) 
                  .addImm(0);

  MIB.buildCopy(Register(AArch64::X0), LoadGOT.getReg(0)); 
  // TLS calls preserve all registers except those that absolutely must be
  // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
  // silly).
  MIB.buildInstr(getBLRCallOpcode(MF), {}, {Load})
      .addUse(AArch64::X0, RegState::Implicit) 
      .addDef(AArch64::X0, RegState::Implicit)
      .addRegMask(TRI.getTLSCallPreservedMask());

  MIB.buildCopy(I.getOperand(0).getReg(), Register(AArch64::X0));
  RBI.constrainGenericRegister(I.getOperand(0).getReg(), AArch64::GPR64RegClass,
                               MRI);
  I.eraseFromParent();
  return true;
}

bool AArch64InstructionSelector::selectIntrinsicTrunc(
    MachineInstr &I, MachineRegisterInfo &MRI) const {
  const LLT SrcTy = MRI.getType(I.getOperand(0).getReg());

  // Select the correct opcode.
  unsigned Opc = 0;
  if (!SrcTy.isVector()) {
    switch (SrcTy.getSizeInBits()) {
    default:
    case 16:
      Opc = AArch64::FRINTZHr;
      break;
    case 32:
      Opc = AArch64::FRINTZSr;
      break;
    case 64:
      Opc = AArch64::FRINTZDr;
      break;
    }
  } else {
    unsigned NumElts = SrcTy.getNumElements();
    switch (SrcTy.getElementType().getSizeInBits()) {
    default:
      break;
    case 16:
      if (NumElts == 4)
        Opc = AArch64::FRINTZv4f16;
      else if (NumElts == 8)
        Opc = AArch64::FRINTZv8f16;
      break;
    case 32:
      if (NumElts == 2)
        Opc = AArch64::FRINTZv2f32;
      else if (NumElts == 4)
        Opc = AArch64::FRINTZv4f32;
      break;
    case 64:
      if (NumElts == 2)
        Opc = AArch64::FRINTZv2f64;
      break;
    }
  }

  if (!Opc) {
    // Didn't get an opcode above, bail.
    LLVM_DEBUG(dbgs() << "Unsupported type for G_INTRINSIC_TRUNC!\n");
    return false;
  }

  // Legalization would have set us up perfectly for this; we just need to
  // set the opcode and move on.
  I.setDesc(TII.get(Opc));
  return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}

bool AArch64InstructionSelector::selectIntrinsicRound(
    MachineInstr &I, MachineRegisterInfo &MRI) const {
  const LLT SrcTy = MRI.getType(I.getOperand(0).getReg());

  // Select the correct opcode.
  unsigned Opc = 0;
  if (!SrcTy.isVector()) {
    switch (SrcTy.getSizeInBits()) {
    default:
    case 16:
      Opc = AArch64::FRINTAHr;
      break;
    case 32:
      Opc = AArch64::FRINTASr;
      break;
    case 64:
      Opc = AArch64::FRINTADr;
      break;
    }
  } else {
    unsigned NumElts = SrcTy.getNumElements();
    switch (SrcTy.getElementType().getSizeInBits()) {
    default:
      break;
    case 16:
      if (NumElts == 4)
        Opc = AArch64::FRINTAv4f16;
      else if (NumElts == 8)
        Opc = AArch64::FRINTAv8f16;
      break;
    case 32:
      if (NumElts == 2)
        Opc = AArch64::FRINTAv2f32;
      else if (NumElts == 4)
        Opc = AArch64::FRINTAv4f32;
      break;
    case 64:
      if (NumElts == 2)
        Opc = AArch64::FRINTAv2f64;
      break;
    }
  }

  if (!Opc) {
    // Didn't get an opcode above, bail.
    LLVM_DEBUG(dbgs() << "Unsupported type for G_INTRINSIC_ROUND!\n");
    return false;
  }

  // Legalization would have set us up perfectly for this; we just need to
  // set the opcode and move on.
  I.setDesc(TII.get(Opc));
  return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}

bool AArch64InstructionSelector::selectVectorICmp(
    MachineInstr &I, MachineRegisterInfo &MRI) const {
  Register DstReg = I.getOperand(0).getReg();
  LLT DstTy = MRI.getType(DstReg);
  Register SrcReg = I.getOperand(2).getReg();
  Register Src2Reg = I.getOperand(3).getReg();
  LLT SrcTy = MRI.getType(SrcReg);

  unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits();
  unsigned NumElts = DstTy.getNumElements();

  // First index is element size, 0 == 8b, 1 == 16b, 2 == 32b, 3 == 64b
  // Second index is num elts, 0 == v2, 1 == v4, 2 == v8, 3 == v16
  // Third index is cc opcode:
  // 0 == eq
  // 1 == ugt
  // 2 == uge
  // 3 == ult
  // 4 == ule
  // 5 == sgt
  // 6 == sge
  // 7 == slt
  // 8 == sle
  // ne is done by negating 'eq' result.

  // This table below assumes that for some comparisons the operands will be
  // commuted.
  // ult op == commute + ugt op
  // ule op == commute + uge op
  // slt op == commute + sgt op
  // sle op == commute + sge op
  unsigned PredIdx = 0;
  bool SwapOperands = false;
  CmpInst::Predicate Pred = (CmpInst::Predicate)I.getOperand(1).getPredicate();
  switch (Pred) {
  case CmpInst::ICMP_NE:
  case CmpInst::ICMP_EQ:
    PredIdx = 0;
    break;
  case CmpInst::ICMP_UGT:
    PredIdx = 1;
    break;
  case CmpInst::ICMP_UGE:
    PredIdx = 2;
    break;
  case CmpInst::ICMP_ULT:
    PredIdx = 3;
    SwapOperands = true;
    break;
  case CmpInst::ICMP_ULE:
    PredIdx = 4;
    SwapOperands = true;
    break;
  case CmpInst::ICMP_SGT:
    PredIdx = 5;
    break;
  case CmpInst::ICMP_SGE:
    PredIdx = 6;
    break;
  case CmpInst::ICMP_SLT:
    PredIdx = 7;
    SwapOperands = true;
    break;
  case CmpInst::ICMP_SLE:
    PredIdx = 8;
    SwapOperands = true;
    break;
  default:
    llvm_unreachable("Unhandled icmp predicate");
    return false;
  }

  // This table obviously should be tablegen'd when we have our GISel native
  // tablegen selector.

  static const unsigned OpcTable[4][4][9] = {
      {
          {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
           0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
           0 /* invalid */},
          {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
           0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
           0 /* invalid */},
          {AArch64::CMEQv8i8, AArch64::CMHIv8i8, AArch64::CMHSv8i8,
           AArch64::CMHIv8i8, AArch64::CMHSv8i8, AArch64::CMGTv8i8,
           AArch64::CMGEv8i8, AArch64::CMGTv8i8, AArch64::CMGEv8i8},
          {AArch64::CMEQv16i8, AArch64::CMHIv16i8, AArch64::CMHSv16i8,
           AArch64::CMHIv16i8, AArch64::CMHSv16i8, AArch64::CMGTv16i8,
           AArch64::CMGEv16i8, AArch64::CMGTv16i8, AArch64::CMGEv16i8}
      },
      {
          {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
           0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
           0 /* invalid */},
          {AArch64::CMEQv4i16, AArch64::CMHIv4i16, AArch64::CMHSv4i16,
           AArch64::CMHIv4i16, AArch64::CMHSv4i16, AArch64::CMGTv4i16,
           AArch64::CMGEv4i16, AArch64::CMGTv4i16, AArch64::CMGEv4i16},
          {AArch64::CMEQv8i16, AArch64::CMHIv8i16, AArch64::CMHSv8i16,
           AArch64::CMHIv8i16, AArch64::CMHSv8i16, AArch64::CMGTv8i16,
           AArch64::CMGEv8i16, AArch64::CMGTv8i16, AArch64::CMGEv8i16},
          {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
           0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
           0 /* invalid */}
      },
      {
          {AArch64::CMEQv2i32, AArch64::CMHIv2i32, AArch64::CMHSv2i32,
           AArch64::CMHIv2i32, AArch64::CMHSv2i32, AArch64::CMGTv2i32,
           AArch64::CMGEv2i32, AArch64::CMGTv2i32, AArch64::CMGEv2i32},
          {AArch64::CMEQv4i32, AArch64::CMHIv4i32, AArch64::CMHSv4i32,
           AArch64::CMHIv4i32, AArch64::CMHSv4i32, AArch64::CMGTv4i32,
           AArch64::CMGEv4i32, AArch64::CMGTv4i32, AArch64::CMGEv4i32},
          {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
           0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
           0 /* invalid */},
          {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
           0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
           0 /* invalid */}
      },
      {
          {AArch64::CMEQv2i64, AArch64::CMHIv2i64, AArch64::CMHSv2i64,
           AArch64::CMHIv2i64, AArch64::CMHSv2i64, AArch64::CMGTv2i64,
           AArch64::CMGEv2i64, AArch64::CMGTv2i64, AArch64::CMGEv2i64},
          {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
           0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
           0 /* invalid */},
          {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
           0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
           0 /* invalid */},
          {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
           0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
           0 /* invalid */}
      },
  };
  unsigned EltIdx = Log2_32(SrcEltSize / 8);
  unsigned NumEltsIdx = Log2_32(NumElts / 2);
  unsigned Opc = OpcTable[EltIdx][NumEltsIdx][PredIdx];
  if (!Opc) {
    LLVM_DEBUG(dbgs() << "Could not map G_ICMP to cmp opcode");
    return false;
  }

  const RegisterBank &VecRB = *RBI.getRegBank(SrcReg, MRI, TRI);
  const TargetRegisterClass *SrcRC =
      getRegClassForTypeOnBank(SrcTy, VecRB, RBI, true);
  if (!SrcRC) {
    LLVM_DEBUG(dbgs() << "Could not determine source register class.\n");
    return false;
  }

  unsigned NotOpc = Pred == ICmpInst::ICMP_NE ? AArch64::NOTv8i8 : 0;
  if (SrcTy.getSizeInBits() == 128)
    NotOpc = NotOpc ? AArch64::NOTv16i8 : 0;

  if (SwapOperands)
    std::swap(SrcReg, Src2Reg);

  MachineIRBuilder MIB(I);
  auto Cmp = MIB.buildInstr(Opc, {SrcRC}, {SrcReg, Src2Reg});
  constrainSelectedInstRegOperands(*Cmp, TII, TRI, RBI);

  // Invert if we had a 'ne' cc.
  if (NotOpc) {
    Cmp = MIB.buildInstr(NotOpc, {DstReg}, {Cmp});
    constrainSelectedInstRegOperands(*Cmp, TII, TRI, RBI);
  } else {
    MIB.buildCopy(DstReg, Cmp.getReg(0));
  }
  RBI.constrainGenericRegister(DstReg, *SrcRC, MRI);
  I.eraseFromParent();
  return true;
}

MachineInstr *AArch64InstructionSelector::emitScalarToVector(
    unsigned EltSize, const TargetRegisterClass *DstRC, Register Scalar,
    MachineIRBuilder &MIRBuilder) const {
  auto Undef = MIRBuilder.buildInstr(TargetOpcode::IMPLICIT_DEF, {DstRC}, {});

  auto BuildFn = [&](unsigned SubregIndex) {
    auto Ins =
        MIRBuilder
            .buildInstr(TargetOpcode::INSERT_SUBREG, {DstRC}, {Undef, Scalar})
            .addImm(SubregIndex);
    constrainSelectedInstRegOperands(*Undef, TII, TRI, RBI);
    constrainSelectedInstRegOperands(*Ins, TII, TRI, RBI);
    return &*Ins;
  };

  switch (EltSize) {
  case 16:
    return BuildFn(AArch64::hsub);
  case 32:
    return BuildFn(AArch64::ssub);
  case 64:
    return BuildFn(AArch64::dsub);
  default:
    return nullptr;
  }
}

bool AArch64InstructionSelector::selectMergeValues(
    MachineInstr &I, MachineRegisterInfo &MRI) const {
  assert(I.getOpcode() == TargetOpcode::G_MERGE_VALUES && "unexpected opcode");
  const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
  const LLT SrcTy = MRI.getType(I.getOperand(1).getReg());
  assert(!DstTy.isVector() && !SrcTy.isVector() && "invalid merge operation");
  const RegisterBank &RB = *RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI);

  if (I.getNumOperands() != 3)
    return false;

  // Merging 2 s64s into an s128.
  if (DstTy == LLT::scalar(128)) {
    if (SrcTy.getSizeInBits() != 64)
      return false;
    MachineIRBuilder MIB(I);
    Register DstReg = I.getOperand(0).getReg();
    Register Src1Reg = I.getOperand(1).getReg();
    Register Src2Reg = I.getOperand(2).getReg();
    auto Tmp = MIB.buildInstr(TargetOpcode::IMPLICIT_DEF, {DstTy}, {});
    MachineInstr *InsMI =
        emitLaneInsert(None, Tmp.getReg(0), Src1Reg, /* LaneIdx */ 0, RB, MIB);
    if (!InsMI)
      return false;
    MachineInstr *Ins2MI = emitLaneInsert(DstReg, InsMI->getOperand(0).getReg(),
                                          Src2Reg, /* LaneIdx */ 1, RB, MIB);
    if (!Ins2MI)
      return false;
    constrainSelectedInstRegOperands(*InsMI, TII, TRI, RBI);
    constrainSelectedInstRegOperands(*Ins2MI, TII, TRI, RBI);
    I.eraseFromParent();
    return true;
  }

  if (RB.getID() != AArch64::GPRRegBankID)
    return false;

  if (DstTy.getSizeInBits() != 64 || SrcTy.getSizeInBits() != 32)
    return false;

  auto *DstRC = &AArch64::GPR64RegClass;
  Register SubToRegDef = MRI.createVirtualRegister(DstRC);
  MachineInstr &SubRegMI = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
                                    TII.get(TargetOpcode::SUBREG_TO_REG))
                                .addDef(SubToRegDef)
                                .addImm(0)
                                .addUse(I.getOperand(1).getReg())
                                .addImm(AArch64::sub_32);
  Register SubToRegDef2 = MRI.createVirtualRegister(DstRC);
  // Need to anyext the second scalar before we can use bfm
  MachineInstr &SubRegMI2 = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
                                    TII.get(TargetOpcode::SUBREG_TO_REG))
                                .addDef(SubToRegDef2)
                                .addImm(0)
                                .addUse(I.getOperand(2).getReg())
                                .addImm(AArch64::sub_32);
  MachineInstr &BFM =
      *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::BFMXri))
           .addDef(I.getOperand(0).getReg())
           .addUse(SubToRegDef)
           .addUse(SubToRegDef2)
           .addImm(32)
           .addImm(31);
  constrainSelectedInstRegOperands(SubRegMI, TII, TRI, RBI);
  constrainSelectedInstRegOperands(SubRegMI2, TII, TRI, RBI);
  constrainSelectedInstRegOperands(BFM, TII, TRI, RBI);
  I.eraseFromParent();
  return true;
}

static bool getLaneCopyOpcode(unsigned &CopyOpc, unsigned &ExtractSubReg,
                              const unsigned EltSize) {
  // Choose a lane copy opcode and subregister based off of the size of the
  // vector's elements.
  switch (EltSize) {
  case 16:
    CopyOpc = AArch64::CPYi16;
    ExtractSubReg = AArch64::hsub;
    break;
  case 32:
    CopyOpc = AArch64::CPYi32;
    ExtractSubReg = AArch64::ssub;
    break;
  case 64:
    CopyOpc = AArch64::CPYi64;
    ExtractSubReg = AArch64::dsub;
    break;
  default:
    // Unknown size, bail out.
    LLVM_DEBUG(dbgs() << "Elt size '" << EltSize << "' unsupported.\n");
    return false;
  }
  return true;
}

MachineInstr *AArch64InstructionSelector::emitExtractVectorElt(
    Optional<Register> DstReg, const RegisterBank &DstRB, LLT ScalarTy,
    Register VecReg, unsigned LaneIdx, MachineIRBuilder &MIRBuilder) const {
  MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
  unsigned CopyOpc = 0;
  unsigned ExtractSubReg = 0;
  if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, ScalarTy.getSizeInBits())) {
    LLVM_DEBUG(
        dbgs() << "Couldn't determine lane copy opcode for instruction.\n");
    return nullptr;
  }

  const TargetRegisterClass *DstRC =
      getRegClassForTypeOnBank(ScalarTy, DstRB, RBI, true);
  if (!DstRC) {
    LLVM_DEBUG(dbgs() << "Could not determine destination register class.\n");
    return nullptr;
  }

  const RegisterBank &VecRB = *RBI.getRegBank(VecReg, MRI, TRI);
  const LLT &VecTy = MRI.getType(VecReg);
  const TargetRegisterClass *VecRC =
      getRegClassForTypeOnBank(VecTy, VecRB, RBI, true);
  if (!VecRC) {
    LLVM_DEBUG(dbgs() << "Could not determine source register class.\n");
    return nullptr;
  }

  // The register that we're going to copy into.
  Register InsertReg = VecReg;
  if (!DstReg)
    DstReg = MRI.createVirtualRegister(DstRC);
  // If the lane index is 0, we just use a subregister COPY.
  if (LaneIdx == 0) {
    auto Copy = MIRBuilder.buildInstr(TargetOpcode::COPY, {*DstReg}, {})
                    .addReg(VecReg, 0, ExtractSubReg);
    RBI.constrainGenericRegister(*DstReg, *DstRC, MRI);
    return &*Copy;
  }

  // Lane copies require 128-bit wide registers. If we're dealing with an
  // unpacked vector, then we need to move up to that width. Insert an implicit
  // def and a subregister insert to get us there.
  if (VecTy.getSizeInBits() != 128) {
    MachineInstr *ScalarToVector = emitScalarToVector(
        VecTy.getSizeInBits(), &AArch64::FPR128RegClass, VecReg, MIRBuilder);
    if (!ScalarToVector)
      return nullptr;
    InsertReg = ScalarToVector->getOperand(0).getReg();
  }

  MachineInstr *LaneCopyMI =
      MIRBuilder.buildInstr(CopyOpc, {*DstReg}, {InsertReg}).addImm(LaneIdx);
  constrainSelectedInstRegOperands(*LaneCopyMI, TII, TRI, RBI);

  // Make sure that we actually constrain the initial copy.
  RBI.constrainGenericRegister(*DstReg, *DstRC, MRI);
  return LaneCopyMI;
}

bool AArch64InstructionSelector::selectExtractElt(
    MachineInstr &I, MachineRegisterInfo &MRI) const {
  assert(I.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT &&
         "unexpected opcode!");
  Register DstReg = I.getOperand(0).getReg();
  const LLT NarrowTy = MRI.getType(DstReg);
  const Register SrcReg = I.getOperand(1).getReg();
  const LLT WideTy = MRI.getType(SrcReg);
  (void)WideTy;
  assert(WideTy.getSizeInBits() >= NarrowTy.getSizeInBits() &&
         "source register size too small!");
  assert(!NarrowTy.isVector() && "cannot extract vector into vector!"); 

  // Need the lane index to determine the correct copy opcode.
  MachineOperand &LaneIdxOp = I.getOperand(2);
  assert(LaneIdxOp.isReg() && "Lane index operand was not a register?");

  if (RBI.getRegBank(DstReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) {
    LLVM_DEBUG(dbgs() << "Cannot extract into GPR.\n");
    return false;
  }

  // Find the index to extract from.
  auto VRegAndVal = getConstantVRegValWithLookThrough(LaneIdxOp.getReg(), MRI);
  if (!VRegAndVal)
    return false;
  unsigned LaneIdx = VRegAndVal->Value.getSExtValue(); 

  MachineIRBuilder MIRBuilder(I);

  const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
  MachineInstr *Extract = emitExtractVectorElt(DstReg, DstRB, NarrowTy, SrcReg,
                                               LaneIdx, MIRBuilder);
  if (!Extract)
    return false;

  I.eraseFromParent();
  return true;
}

bool AArch64InstructionSelector::selectSplitVectorUnmerge(
    MachineInstr &I, MachineRegisterInfo &MRI) const {
  unsigned NumElts = I.getNumOperands() - 1;
  Register SrcReg = I.getOperand(NumElts).getReg();
  const LLT NarrowTy = MRI.getType(I.getOperand(0).getReg());
  const LLT SrcTy = MRI.getType(SrcReg);

  assert(NarrowTy.isVector() && "Expected an unmerge into vectors");
  if (SrcTy.getSizeInBits() > 128) {
    LLVM_DEBUG(dbgs() << "Unexpected vector type for vec split unmerge");
    return false;
  }

  MachineIRBuilder MIB(I);

  // We implement a split vector operation by treating the sub-vectors as
  // scalars and extracting them.
  const RegisterBank &DstRB =
      *RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI);
  for (unsigned OpIdx = 0; OpIdx < NumElts; ++OpIdx) {
    Register Dst = I.getOperand(OpIdx).getReg();
    MachineInstr *Extract =
        emitExtractVectorElt(Dst, DstRB, NarrowTy, SrcReg, OpIdx, MIB);
    if (!Extract)
      return false;
  }
  I.eraseFromParent();
  return true;
}

bool AArch64InstructionSelector::selectUnmergeValues(
    MachineInstr &I, MachineRegisterInfo &MRI) const {
  assert(I.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
         "unexpected opcode");

  // TODO: Handle unmerging into GPRs and from scalars to scalars.
  if (RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI)->getID() !=
          AArch64::FPRRegBankID ||
      RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI)->getID() !=
          AArch64::FPRRegBankID) {
    LLVM_DEBUG(dbgs() << "Unmerging vector-to-gpr and scalar-to-scalar "
                         "currently unsupported.\n");
    return false;
  }

  // The last operand is the vector source register, and every other operand is
  // a register to unpack into.
  unsigned NumElts = I.getNumOperands() - 1;
  Register SrcReg = I.getOperand(NumElts).getReg();
  const LLT NarrowTy = MRI.getType(I.getOperand(0).getReg());
  const LLT WideTy = MRI.getType(SrcReg);
  (void)WideTy;
  assert((WideTy.isVector() || WideTy.getSizeInBits() == 128) &&
         "can only unmerge from vector or s128 types!");
  assert(WideTy.getSizeInBits() > NarrowTy.getSizeInBits() &&
         "source register size too small!");

  if (!NarrowTy.isScalar())
    return selectSplitVectorUnmerge(I, MRI);

  MachineIRBuilder MIB(I);

  // Choose a lane copy opcode and subregister based off of the size of the
  // vector's elements.
  unsigned CopyOpc = 0;
  unsigned ExtractSubReg = 0;
  if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, NarrowTy.getSizeInBits()))
    return false;

  // Set up for the lane copies.
  MachineBasicBlock &MBB = *I.getParent();

  // Stores the registers we'll be copying from.
  SmallVector<Register, 4> InsertRegs;

  // We'll use the first register twice, so we only need NumElts-1 registers.
  unsigned NumInsertRegs = NumElts - 1;

  // If our elements fit into exactly 128 bits, then we can copy from the source
  // directly. Otherwise, we need to do a bit of setup with some subregister
  // inserts.
  if (NarrowTy.getSizeInBits() * NumElts == 128) {
    InsertRegs = SmallVector<Register, 4>(NumInsertRegs, SrcReg);
  } else {
    // No. We have to perform subregister inserts. For each insert, create an
    // implicit def and a subregister insert, and save the register we create.
    for (unsigned Idx = 0; Idx < NumInsertRegs; ++Idx) {
      Register ImpDefReg = MRI.createVirtualRegister(&AArch64::FPR128RegClass);
      MachineInstr &ImpDefMI =
          *BuildMI(MBB, I, I.getDebugLoc(), TII.get(TargetOpcode::IMPLICIT_DEF),
                   ImpDefReg);

      // Now, create the subregister insert from SrcReg.
      Register InsertReg = MRI.createVirtualRegister(&AArch64::FPR128RegClass);
      MachineInstr &InsMI =
          *BuildMI(MBB, I, I.getDebugLoc(),
                   TII.get(TargetOpcode::INSERT_SUBREG), InsertReg)
               .addUse(ImpDefReg)
               .addUse(SrcReg)
               .addImm(AArch64::dsub);

      constrainSelectedInstRegOperands(ImpDefMI, TII, TRI, RBI);
      constrainSelectedInstRegOperands(InsMI, TII, TRI, RBI);

      // Save the register so that we can copy from it after.
      InsertRegs.push_back(InsertReg);
    }
  }

  // Now that we've created any necessary subregister inserts, we can
  // create the copies.
  //
  // Perform the first copy separately as a subregister copy.
  Register CopyTo = I.getOperand(0).getReg();
  auto FirstCopy = MIB.buildInstr(TargetOpcode::COPY, {CopyTo}, {})
                       .addReg(InsertRegs[0], 0, ExtractSubReg);
  constrainSelectedInstRegOperands(*FirstCopy, TII, TRI, RBI);

  // Now, perform the remaining copies as vector lane copies.
  unsigned LaneIdx = 1;
  for (Register InsReg : InsertRegs) {
    Register CopyTo = I.getOperand(LaneIdx).getReg();
    MachineInstr &CopyInst =
        *BuildMI(MBB, I, I.getDebugLoc(), TII.get(CopyOpc), CopyTo)
             .addUse(InsReg)
             .addImm(LaneIdx);
    constrainSelectedInstRegOperands(CopyInst, TII, TRI, RBI);
    ++LaneIdx;
  }

  // Separately constrain the first copy's destination. Because of the
  // limitation in constrainOperandRegClass, we can't guarantee that this will
  // actually be constrained. So, do it ourselves using the second operand.
  const TargetRegisterClass *RC =
      MRI.getRegClassOrNull(I.getOperand(1).getReg());
  if (!RC) {
    LLVM_DEBUG(dbgs() << "Couldn't constrain copy destination.\n");
    return false;
  }

  RBI.constrainGenericRegister(CopyTo, *RC, MRI);
  I.eraseFromParent();
  return true;
}

bool AArch64InstructionSelector::selectConcatVectors(
    MachineInstr &I, MachineRegisterInfo &MRI) const {
  assert(I.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
         "Unexpected opcode");
  Register Dst = I.getOperand(0).getReg();
  Register Op1 = I.getOperand(1).getReg();
  Register Op2 = I.getOperand(2).getReg();
  MachineIRBuilder MIRBuilder(I);
  MachineInstr *ConcatMI = emitVectorConcat(Dst, Op1, Op2, MIRBuilder);
  if (!ConcatMI)
    return false;
  I.eraseFromParent();
  return true;
}

unsigned
AArch64InstructionSelector::emitConstantPoolEntry(const Constant *CPVal,
                                                  MachineFunction &MF) const {
  Type *CPTy = CPVal->getType();
  Align Alignment = MF.getDataLayout().getPrefTypeAlign(CPTy);

  MachineConstantPool *MCP = MF.getConstantPool();
  return MCP->getConstantPoolIndex(CPVal, Alignment);
}

MachineInstr *AArch64InstructionSelector::emitLoadFromConstantPool(
    const Constant *CPVal, MachineIRBuilder &MIRBuilder) const {
  unsigned CPIdx = emitConstantPoolEntry(CPVal, MIRBuilder.getMF());

  auto Adrp =
      MIRBuilder.buildInstr(AArch64::ADRP, {&AArch64::GPR64RegClass}, {})
          .addConstantPoolIndex(CPIdx, 0, AArch64II::MO_PAGE);

  MachineInstr *LoadMI = nullptr;
  switch (MIRBuilder.getDataLayout().getTypeStoreSize(CPVal->getType())) {
  case 16:
    LoadMI =
        &*MIRBuilder
              .buildInstr(AArch64::LDRQui, {&AArch64::FPR128RegClass}, {Adrp})
              .addConstantPoolIndex(CPIdx, 0,
                                    AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
    break;
  case 8:
    LoadMI = &*MIRBuilder
                 .buildInstr(AArch64::LDRDui, {&AArch64::FPR64RegClass}, {Adrp})
                 .addConstantPoolIndex(
                     CPIdx, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
    break;
  default:
    LLVM_DEBUG(dbgs() << "Could not load from constant pool of type "
                      << *CPVal->getType());
    return nullptr;
  }
  constrainSelectedInstRegOperands(*Adrp, TII, TRI, RBI);
  constrainSelectedInstRegOperands(*LoadMI, TII, TRI, RBI);
  return LoadMI;
}

/// Return an <Opcode, SubregIndex> pair to do an vector elt insert of a given
/// size and RB.
static std::pair<unsigned, unsigned>
getInsertVecEltOpInfo(const RegisterBank &RB, unsigned EltSize) {
  unsigned Opc, SubregIdx;
  if (RB.getID() == AArch64::GPRRegBankID) {
    if (EltSize == 16) { 
      Opc = AArch64::INSvi16gpr; 
      SubregIdx = AArch64::ssub; 
    } else if (EltSize == 32) { 
      Opc = AArch64::INSvi32gpr;
      SubregIdx = AArch64::ssub;
    } else if (EltSize == 64) {
      Opc = AArch64::INSvi64gpr;
      SubregIdx = AArch64::dsub;
    } else {
      llvm_unreachable("invalid elt size!");
    }
  } else {
    if (EltSize == 8) {
      Opc = AArch64::INSvi8lane;
      SubregIdx = AArch64::bsub;
    } else if (EltSize == 16) {
      Opc = AArch64::INSvi16lane;
      SubregIdx = AArch64::hsub;
    } else if (EltSize == 32) {
      Opc = AArch64::INSvi32lane;
      SubregIdx = AArch64::ssub;
    } else if (EltSize == 64) {
      Opc = AArch64::INSvi64lane;
      SubregIdx = AArch64::dsub;
    } else {
      llvm_unreachable("invalid elt size!");
    }
  }
  return std::make_pair(Opc, SubregIdx);
}

MachineInstr *AArch64InstructionSelector::emitInstr( 
    unsigned Opcode, std::initializer_list<llvm::DstOp> DstOps, 
    std::initializer_list<llvm::SrcOp> SrcOps, MachineIRBuilder &MIRBuilder, 
    const ComplexRendererFns &RenderFns) const { 
  assert(Opcode && "Expected an opcode?"); 
  assert(!isPreISelGenericOpcode(Opcode) && 
         "Function should only be used to produce selected instructions!"); 
  auto MI = MIRBuilder.buildInstr(Opcode, DstOps, SrcOps); 
  if (RenderFns) 
    for (auto &Fn : *RenderFns) 
      Fn(MI); 
  constrainSelectedInstRegOperands(*MI, TII, TRI, RBI); 
  return &*MI; 
} 
 
MachineInstr *AArch64InstructionSelector::emitAddSub( 
    const std::array<std::array<unsigned, 2>, 5> &AddrModeAndSizeToOpcode, 
    Register Dst, MachineOperand &LHS, MachineOperand &RHS, 
    MachineIRBuilder &MIRBuilder) const { 
  MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo(); 
  assert(LHS.isReg() && RHS.isReg() && "Expected register operands?"); 
  auto Ty = MRI.getType(LHS.getReg()); 
  assert(!Ty.isVector() && "Expected a scalar or pointer?"); 
  unsigned Size = Ty.getSizeInBits(); 
  assert((Size == 32 || Size == 64) && "Expected a 32-bit or 64-bit type only"); 
  bool Is32Bit = Size == 32; 
 
  // INSTRri form with positive arithmetic immediate. 
  if (auto Fns = selectArithImmed(RHS)) 
    return emitInstr(AddrModeAndSizeToOpcode[0][Is32Bit], {Dst}, {LHS}, 
                     MIRBuilder, Fns); 
 
  // INSTRri form with negative arithmetic immediate. 
  if (auto Fns = selectNegArithImmed(RHS)) 
    return emitInstr(AddrModeAndSizeToOpcode[3][Is32Bit], {Dst}, {LHS}, 
                     MIRBuilder, Fns); 
 
  // INSTRrx form. 
  if (auto Fns = selectArithExtendedRegister(RHS)) 
    return emitInstr(AddrModeAndSizeToOpcode[4][Is32Bit], {Dst}, {LHS}, 
                     MIRBuilder, Fns); 
 
  // INSTRrs form. 
  if (auto Fns = selectShiftedRegister(RHS)) 
    return emitInstr(AddrModeAndSizeToOpcode[1][Is32Bit], {Dst}, {LHS}, 
                     MIRBuilder, Fns); 
  return emitInstr(AddrModeAndSizeToOpcode[2][Is32Bit], {Dst}, {LHS, RHS}, 
                   MIRBuilder); 
} 
 
MachineInstr *
AArch64InstructionSelector::emitADD(Register DefReg, MachineOperand &LHS,
                                    MachineOperand &RHS,
                                    MachineIRBuilder &MIRBuilder) const {
  const std::array<std::array<unsigned, 2>, 5> OpcTable{ 
      {{AArch64::ADDXri, AArch64::ADDWri}, 
       {AArch64::ADDXrs, AArch64::ADDWrs}, 
       {AArch64::ADDXrr, AArch64::ADDWrr}, 
       {AArch64::SUBXri, AArch64::SUBWri}, 
       {AArch64::ADDXrx, AArch64::ADDWrx}}}; 
  return emitAddSub(OpcTable, DefReg, LHS, RHS, MIRBuilder); 
} 

MachineInstr * 
AArch64InstructionSelector::emitADDS(Register Dst, MachineOperand &LHS, 
                                     MachineOperand &RHS, 
                                     MachineIRBuilder &MIRBuilder) const { 
  const std::array<std::array<unsigned, 2>, 5> OpcTable{ 
      {{AArch64::ADDSXri, AArch64::ADDSWri}, 
       {AArch64::ADDSXrs, AArch64::ADDSWrs}, 
       {AArch64::ADDSXrr, AArch64::ADDSWrr}, 
       {AArch64::SUBSXri, AArch64::SUBSWri}, 
       {AArch64::ADDSXrx, AArch64::ADDSWrx}}}; 
  return emitAddSub(OpcTable, Dst, LHS, RHS, MIRBuilder); 
} 

MachineInstr * 
AArch64InstructionSelector::emitSUBS(Register Dst, MachineOperand &LHS, 
                                     MachineOperand &RHS, 
                                     MachineIRBuilder &MIRBuilder) const { 
  const std::array<std::array<unsigned, 2>, 5> OpcTable{ 
      {{AArch64::SUBSXri, AArch64::SUBSWri}, 
       {AArch64::SUBSXrs, AArch64::SUBSWrs}, 
       {AArch64::SUBSXrr, AArch64::SUBSWrr}, 
       {AArch64::ADDSXri, AArch64::ADDSWri}, 
       {AArch64::SUBSXrx, AArch64::SUBSWrx}}}; 
  return emitAddSub(OpcTable, Dst, LHS, RHS, MIRBuilder); 
}

MachineInstr *
AArch64InstructionSelector::emitCMN(MachineOperand &LHS, MachineOperand &RHS,
                                    MachineIRBuilder &MIRBuilder) const {
  MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
  bool Is32Bit = (MRI.getType(LHS.getReg()).getSizeInBits() == 32);
  auto RC = Is32Bit ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass; 
  return emitADDS(MRI.createVirtualRegister(RC), LHS, RHS, MIRBuilder); 
}

MachineInstr *
AArch64InstructionSelector::emitTST(MachineOperand &LHS, MachineOperand &RHS, 
                                    MachineIRBuilder &MIRBuilder) const {
  assert(LHS.isReg() && RHS.isReg() && "Expected register operands?"); 
  MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
  LLT Ty = MRI.getType(LHS.getReg()); 
  unsigned RegSize = Ty.getSizeInBits(); 
  bool Is32Bit = (RegSize == 32);
  const unsigned OpcTable[3][2] = {{AArch64::ANDSXri, AArch64::ANDSWri}, 
                                   {AArch64::ANDSXrs, AArch64::ANDSWrs}, 
                                   {AArch64::ANDSXrr, AArch64::ANDSWrr}}; 
  // ANDS needs a logical immediate for its immediate form. Check if we can 
  // fold one in. 
  if (auto ValAndVReg = getConstantVRegValWithLookThrough(RHS.getReg(), MRI)) { 
    int64_t Imm = ValAndVReg->Value.getSExtValue(); 

    if (AArch64_AM::isLogicalImmediate(Imm, RegSize)) { 
      auto TstMI = MIRBuilder.buildInstr(OpcTable[0][Is32Bit], {Ty}, {LHS}); 
      TstMI.addImm(AArch64_AM::encodeLogicalImmediate(Imm, RegSize)); 
      constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI); 
      return &*TstMI; 
    } 
  } 

  if (auto Fns = selectLogicalShiftedRegister(RHS)) 
    return emitInstr(OpcTable[1][Is32Bit], {Ty}, {LHS}, MIRBuilder, Fns); 
  return emitInstr(OpcTable[2][Is32Bit], {Ty}, {LHS, RHS}, MIRBuilder); 
}

MachineInstr *AArch64InstructionSelector::emitIntegerCompare( 
    MachineOperand &LHS, MachineOperand &RHS, MachineOperand &Predicate,
    MachineIRBuilder &MIRBuilder) const {
  assert(LHS.isReg() && RHS.isReg() && "Expected LHS and RHS to be registers!");
  assert(Predicate.isPredicate() && "Expected predicate?");
  MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
  LLT CmpTy = MRI.getType(LHS.getReg()); 
  assert(!CmpTy.isVector() && "Expected scalar or pointer"); 
  unsigned Size = CmpTy.getSizeInBits(); 
  (void)Size; 
  assert((Size == 32 || Size == 64) && "Expected a 32-bit or 64-bit LHS/RHS?"); 
  // Fold the compare into a cmn or tst if possible. 
  if (auto FoldCmp = tryFoldIntegerCompare(LHS, RHS, Predicate, MIRBuilder)) 
    return FoldCmp; 
  auto Dst = MRI.cloneVirtualRegister(LHS.getReg()); 
  return emitSUBS(Dst, LHS, RHS, MIRBuilder); 
} 

MachineInstr *AArch64InstructionSelector::emitCSetForFCmp( 
    Register Dst, CmpInst::Predicate Pred, MachineIRBuilder &MIRBuilder) const { 
  MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); 
#ifndef NDEBUG 
  LLT Ty = MRI.getType(Dst); 
  assert(!Ty.isVector() && Ty.getSizeInBits() == 32 && 
         "Expected a 32-bit scalar register?"); 
#endif 
  const Register ZeroReg = AArch64::WZR; 
  auto EmitCSet = [&](Register CsetDst, AArch64CC::CondCode CC) { 
    auto CSet = 
        MIRBuilder.buildInstr(AArch64::CSINCWr, {CsetDst}, {ZeroReg, ZeroReg}) 
            .addImm(getInvertedCondCode(CC)); 
    constrainSelectedInstRegOperands(*CSet, TII, TRI, RBI); 
    return &*CSet; 
  }; 

  AArch64CC::CondCode CC1, CC2; 
  changeFCMPPredToAArch64CC(Pred, CC1, CC2); 
  if (CC2 == AArch64CC::AL) 
    return EmitCSet(Dst, CC1); 

  const TargetRegisterClass *RC = &AArch64::GPR32RegClass; 
  Register Def1Reg = MRI.createVirtualRegister(RC); 
  Register Def2Reg = MRI.createVirtualRegister(RC); 
  EmitCSet(Def1Reg, CC1); 
  EmitCSet(Def2Reg, CC2); 
  auto OrMI = MIRBuilder.buildInstr(AArch64::ORRWrr, {Dst}, {Def1Reg, Def2Reg}); 
  constrainSelectedInstRegOperands(*OrMI, TII, TRI, RBI); 
  return &*OrMI; 
} 

MachineInstr * 
AArch64InstructionSelector::emitFPCompare(Register LHS, Register RHS, 
                                          MachineIRBuilder &MIRBuilder, 
                                          Optional<CmpInst::Predicate> Pred) const { 
  MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); 
  LLT Ty = MRI.getType(LHS); 
  if (Ty.isVector()) 
    return nullptr; 
  unsigned OpSize = Ty.getSizeInBits(); 
  if (OpSize != 32 && OpSize != 64) 
    return nullptr; 

  // If this is a compare against +0.0, then we don't have 
  // to explicitly materialize a constant. 
  const ConstantFP *FPImm = getConstantFPVRegVal(RHS, MRI); 
  bool ShouldUseImm = FPImm && (FPImm->isZero() && !FPImm->isNegative()); 

  auto IsEqualityPred = [](CmpInst::Predicate P) { 
    return P == CmpInst::FCMP_OEQ || P == CmpInst::FCMP_ONE || 
           P == CmpInst::FCMP_UEQ || P == CmpInst::FCMP_UNE; 
  }; 
  if (!ShouldUseImm && Pred && IsEqualityPred(*Pred)) { 
    // Try commutating the operands. 
    const ConstantFP *LHSImm = getConstantFPVRegVal(LHS, MRI); 
    if (LHSImm && (LHSImm->isZero() && !LHSImm->isNegative())) { 
      ShouldUseImm = true; 
      std::swap(LHS, RHS); 
    } 
  } 
  unsigned CmpOpcTbl[2][2] = {{AArch64::FCMPSrr, AArch64::FCMPDrr}, 
                              {AArch64::FCMPSri, AArch64::FCMPDri}}; 
  unsigned CmpOpc = CmpOpcTbl[ShouldUseImm][OpSize == 64]; 

  // Partially build the compare. Decide if we need to add a use for the 
  // third operand based off whether or not we're comparing against 0.0. 
  auto CmpMI = MIRBuilder.buildInstr(CmpOpc).addUse(LHS); 
  if (!ShouldUseImm) 
    CmpMI.addUse(RHS); 
  constrainSelectedInstRegOperands(*CmpMI, TII, TRI, RBI);
  return &*CmpMI; 
}

MachineInstr *AArch64InstructionSelector::emitVectorConcat(
    Optional<Register> Dst, Register Op1, Register Op2,
    MachineIRBuilder &MIRBuilder) const {
  // We implement a vector concat by:
  // 1. Use scalar_to_vector to insert the lower vector into the larger dest
  // 2. Insert the upper vector into the destination's upper element
  // TODO: some of this code is common with G_BUILD_VECTOR handling.
  MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();

  const LLT Op1Ty = MRI.getType(Op1);
  const LLT Op2Ty = MRI.getType(Op2);

  if (Op1Ty != Op2Ty) {
    LLVM_DEBUG(dbgs() << "Could not do vector concat of differing vector tys");
    return nullptr;
  }
  assert(Op1Ty.isVector() && "Expected a vector for vector concat");

  if (Op1Ty.getSizeInBits() >= 128) {
    LLVM_DEBUG(dbgs() << "Vector concat not supported for full size vectors");
    return nullptr;
  }

  // At the moment we just support 64 bit vector concats.
  if (Op1Ty.getSizeInBits() != 64) {
    LLVM_DEBUG(dbgs() << "Vector concat supported for 64b vectors");
    return nullptr;
  }

  const LLT ScalarTy = LLT::scalar(Op1Ty.getSizeInBits());
  const RegisterBank &FPRBank = *RBI.getRegBank(Op1, MRI, TRI);
  const TargetRegisterClass *DstRC =
      getMinClassForRegBank(FPRBank, Op1Ty.getSizeInBits() * 2);

  MachineInstr *WidenedOp1 =
      emitScalarToVector(ScalarTy.getSizeInBits(), DstRC, Op1, MIRBuilder);
  MachineInstr *WidenedOp2 =
      emitScalarToVector(ScalarTy.getSizeInBits(), DstRC, Op2, MIRBuilder);
  if (!WidenedOp1 || !WidenedOp2) {
    LLVM_DEBUG(dbgs() << "Could not emit a vector from scalar value");
    return nullptr;
  }

  // Now do the insert of the upper element.
  unsigned InsertOpc, InsSubRegIdx;
  std::tie(InsertOpc, InsSubRegIdx) =
      getInsertVecEltOpInfo(FPRBank, ScalarTy.getSizeInBits());

  if (!Dst)
    Dst = MRI.createVirtualRegister(DstRC);
  auto InsElt =
      MIRBuilder
          .buildInstr(InsertOpc, {*Dst}, {WidenedOp1->getOperand(0).getReg()})
          .addImm(1) /* Lane index */
          .addUse(WidenedOp2->getOperand(0).getReg())
          .addImm(0);
  constrainSelectedInstRegOperands(*InsElt, TII, TRI, RBI);
  return &*InsElt;
}

MachineInstr *AArch64InstructionSelector::emitFMovForFConstant(
    MachineInstr &I, MachineRegisterInfo &MRI) const {
  assert(I.getOpcode() == TargetOpcode::G_FCONSTANT &&
         "Expected a G_FCONSTANT!");
  MachineOperand &ImmOp = I.getOperand(1);
  unsigned DefSize = MRI.getType(I.getOperand(0).getReg()).getSizeInBits();

  // Only handle 32 and 64 bit defs for now.
  if (DefSize != 32 && DefSize != 64)
    return nullptr;

  // Don't handle null values using FMOV.
  if (ImmOp.getFPImm()->isNullValue())
    return nullptr;

  // Get the immediate representation for the FMOV.
  const APFloat &ImmValAPF = ImmOp.getFPImm()->getValueAPF();
  int Imm = DefSize == 32 ? AArch64_AM::getFP32Imm(ImmValAPF)
                          : AArch64_AM::getFP64Imm(ImmValAPF);

  // If this is -1, it means the immediate can't be represented as the requested
  // floating point value. Bail.
  if (Imm == -1)
    return nullptr;

  // Update MI to represent the new FMOV instruction, constrain it, and return.
  ImmOp.ChangeToImmediate(Imm);
  unsigned MovOpc = DefSize == 32 ? AArch64::FMOVSi : AArch64::FMOVDi;
  I.setDesc(TII.get(MovOpc));
  constrainSelectedInstRegOperands(I, TII, TRI, RBI);
  return &I;
}

MachineInstr *
AArch64InstructionSelector::emitCSetForICMP(Register DefReg, unsigned Pred,
                                     MachineIRBuilder &MIRBuilder) const {
  // CSINC increments the result when the predicate is false. Invert it.
  const AArch64CC::CondCode InvCC = changeICMPPredToAArch64CC(
      CmpInst::getInversePredicate((CmpInst::Predicate)Pred));
  auto I =
      MIRBuilder
    .buildInstr(AArch64::CSINCWr, {DefReg}, {Register(AArch64::WZR), Register(AArch64::WZR)})
          .addImm(InvCC);
  constrainSelectedInstRegOperands(*I, TII, TRI, RBI);
  return &*I;
}

std::pair<MachineInstr *, AArch64CC::CondCode> 
AArch64InstructionSelector::emitOverflowOp(unsigned Opcode, Register Dst, 
                                           MachineOperand &LHS, 
                                           MachineOperand &RHS, 
                                           MachineIRBuilder &MIRBuilder) const { 
  switch (Opcode) { 
  default: 
    llvm_unreachable("Unexpected opcode!"); 
  case TargetOpcode::G_SADDO: 
    return std::make_pair(emitADDS(Dst, LHS, RHS, MIRBuilder), AArch64CC::VS); 
  case TargetOpcode::G_UADDO: 
    return std::make_pair(emitADDS(Dst, LHS, RHS, MIRBuilder), AArch64CC::HS); 
  case TargetOpcode::G_SSUBO: 
    return std::make_pair(emitSUBS(Dst, LHS, RHS, MIRBuilder), AArch64CC::VS); 
  case TargetOpcode::G_USUBO: 
    return std::make_pair(emitSUBS(Dst, LHS, RHS, MIRBuilder), AArch64CC::LO); 
  } 
} 
 
bool AArch64InstructionSelector::tryOptSelect(MachineInstr &I) const {
  MachineIRBuilder MIB(I);
  MachineRegisterInfo &MRI = *MIB.getMRI();
  // We want to recognize this pattern:
  //
  // $z = G_FCMP pred, $x, $y
  // ...
  // $w = G_SELECT $z, $a, $b
  //
  // Where the value of $z is *only* ever used by the G_SELECT (possibly with
  // some copies/truncs in between.)
  //
  // If we see this, then we can emit something like this:
  //
  // fcmp $x, $y
  // fcsel $w, $a, $b, pred
  //
  // Rather than emitting both of the rather long sequences in the standard
  // G_FCMP/G_SELECT select methods.

  // First, check if the condition is defined by a compare.
  MachineInstr *CondDef = MRI.getVRegDef(I.getOperand(1).getReg());
  while (CondDef) {
    // We can only fold if all of the defs have one use.
    Register CondDefReg = CondDef->getOperand(0).getReg();
    if (!MRI.hasOneNonDBGUse(CondDefReg)) {
      // Unless it's another select.
      for (const MachineInstr &UI : MRI.use_nodbg_instructions(CondDefReg)) {
        if (CondDef == &UI)
          continue;
        if (UI.getOpcode() != TargetOpcode::G_SELECT)
          return false;
      }
    }

    // We can skip over G_TRUNC since the condition is 1-bit.
    // Truncating/extending can have no impact on the value.
    unsigned Opc = CondDef->getOpcode();
    if (Opc != TargetOpcode::COPY && Opc != TargetOpcode::G_TRUNC)
      break;

    // Can't see past copies from physregs.
    if (Opc == TargetOpcode::COPY &&
        Register::isPhysicalRegister(CondDef->getOperand(1).getReg()))
      return false;

    CondDef = MRI.getVRegDef(CondDef->getOperand(1).getReg());
  }

  // Is the condition defined by a compare?
  if (!CondDef)
    return false;

  unsigned CondOpc = CondDef->getOpcode();
  if (CondOpc != TargetOpcode::G_ICMP && CondOpc != TargetOpcode::G_FCMP)
    return false;

  AArch64CC::CondCode CondCode;
  if (CondOpc == TargetOpcode::G_ICMP) {
    auto Pred = 
        static_cast<CmpInst::Predicate>(CondDef->getOperand(1).getPredicate()); 
    CondCode = changeICMPPredToAArch64CC(Pred);
    emitIntegerCompare(CondDef->getOperand(2), CondDef->getOperand(3), 
                       CondDef->getOperand(1), MIB); 
  } else {
    // Get the condition code for the select.
    auto Pred = 
        static_cast<CmpInst::Predicate>(CondDef->getOperand(1).getPredicate()); 
    AArch64CC::CondCode CondCode2;
    changeFCMPPredToAArch64CC(Pred, CondCode, CondCode2); 

    // changeFCMPPredToAArch64CC sets CondCode2 to AL when we require two
    // instructions to emit the comparison.
    // TODO: Handle FCMP_UEQ and FCMP_ONE. After that, this check will be
    // unnecessary.
    if (CondCode2 != AArch64CC::AL)
      return false;

    if (!emitFPCompare(CondDef->getOperand(2).getReg(), 
                       CondDef->getOperand(3).getReg(), MIB)) { 
      LLVM_DEBUG(dbgs() << "Couldn't emit compare for select!\n"); 
      return false;
    } 
  }

  // Emit the select.
  emitSelect(I.getOperand(0).getReg(), I.getOperand(2).getReg(), 
             I.getOperand(3).getReg(), CondCode, MIB); 
  I.eraseFromParent();
  return true;
}

MachineInstr *AArch64InstructionSelector::tryFoldIntegerCompare(
    MachineOperand &LHS, MachineOperand &RHS, MachineOperand &Predicate,
    MachineIRBuilder &MIRBuilder) const {
  assert(LHS.isReg() && RHS.isReg() && Predicate.isPredicate() &&
         "Unexpected MachineOperand");
  MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
  // We want to find this sort of thing:
  // x = G_SUB 0, y
  // G_ICMP z, x
  //
  // In this case, we can fold the G_SUB into the G_ICMP using a CMN instead.
  // e.g:
  //
  // cmn z, y

  // Helper lambda to detect the subtract followed by the compare.
  // Takes in the def of the LHS or RHS, and checks if it's a subtract from 0.
  auto IsCMN = [&](MachineInstr *DefMI, const AArch64CC::CondCode &CC) {
    if (!DefMI || DefMI->getOpcode() != TargetOpcode::G_SUB)
      return false;

    // Need to make sure NZCV is the same at the end of the transformation.
    if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
      return false;

    // We want to match against SUBs.
    if (DefMI->getOpcode() != TargetOpcode::G_SUB)
      return false;

    // Make sure that we're getting
    // x = G_SUB 0, y
    auto ValAndVReg =
        getConstantVRegValWithLookThrough(DefMI->getOperand(1).getReg(), MRI);
    if (!ValAndVReg || ValAndVReg->Value != 0)
      return false;

    // This can safely be represented as a CMN.
    return true;
  };

  // Check if the RHS or LHS of the G_ICMP is defined by a SUB
  MachineInstr *LHSDef = getDefIgnoringCopies(LHS.getReg(), MRI);
  MachineInstr *RHSDef = getDefIgnoringCopies(RHS.getReg(), MRI);
  CmpInst::Predicate P = (CmpInst::Predicate)Predicate.getPredicate();
  const AArch64CC::CondCode CC = changeICMPPredToAArch64CC(P);

  // Given this:
  //
  // x = G_SUB 0, y
  // G_ICMP x, z
  //
  // Produce this:
  //
  // cmn y, z
  if (IsCMN(LHSDef, CC))
    return emitCMN(LHSDef->getOperand(2), RHS, MIRBuilder);

  // Same idea here, but with the RHS of the compare instead:
  //
  // Given this:
  //
  // x = G_SUB 0, y
  // G_ICMP z, x
  //
  // Produce this:
  //
  // cmn z, y
  if (IsCMN(RHSDef, CC))
    return emitCMN(LHS, RHSDef->getOperand(2), MIRBuilder);

  // Given this:
  //
  // z = G_AND x, y
  // G_ICMP z, 0
  //
  // Produce this if the compare is signed:
  //
  // tst x, y
  if (!CmpInst::isUnsigned(P) && LHSDef && 
      LHSDef->getOpcode() == TargetOpcode::G_AND) {
    // Make sure that the RHS is 0.
    auto ValAndVReg = getConstantVRegValWithLookThrough(RHS.getReg(), MRI);
    if (!ValAndVReg || ValAndVReg->Value != 0)
      return nullptr;

    return emitTST(LHSDef->getOperand(1), 
                   LHSDef->getOperand(2), MIRBuilder); 
  }

  return nullptr;
}

bool AArch64InstructionSelector::selectShuffleVector(
    MachineInstr &I, MachineRegisterInfo &MRI) const {
  const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
  Register Src1Reg = I.getOperand(1).getReg();
  const LLT Src1Ty = MRI.getType(Src1Reg);
  Register Src2Reg = I.getOperand(2).getReg();
  const LLT Src2Ty = MRI.getType(Src2Reg);
  ArrayRef<int> Mask = I.getOperand(3).getShuffleMask();

  MachineBasicBlock &MBB = *I.getParent();
  MachineFunction &MF = *MBB.getParent();
  LLVMContext &Ctx = MF.getFunction().getContext();

  // G_SHUFFLE_VECTOR is weird in that the source operands can be scalars, if
  // it's originated from a <1 x T> type. Those should have been lowered into
  // G_BUILD_VECTOR earlier.
  if (!Src1Ty.isVector() || !Src2Ty.isVector()) {
    LLVM_DEBUG(dbgs() << "Could not select a \"scalar\" G_SHUFFLE_VECTOR\n");
    return false;
  }

  unsigned BytesPerElt = DstTy.getElementType().getSizeInBits() / 8;

  SmallVector<Constant *, 64> CstIdxs;
  for (int Val : Mask) {
    // For now, any undef indexes we'll just assume to be 0. This should be
    // optimized in future, e.g. to select DUP etc.
    Val = Val < 0 ? 0 : Val;
    for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
      unsigned Offset = Byte + Val * BytesPerElt;
      CstIdxs.emplace_back(ConstantInt::get(Type::getInt8Ty(Ctx), Offset));
    }
  }

  MachineIRBuilder MIRBuilder(I);

  // Use a constant pool to load the index vector for TBL.
  Constant *CPVal = ConstantVector::get(CstIdxs);
  MachineInstr *IndexLoad = emitLoadFromConstantPool(CPVal, MIRBuilder);
  if (!IndexLoad) {
    LLVM_DEBUG(dbgs() << "Could not load from a constant pool");
    return false;
  }

  if (DstTy.getSizeInBits() != 128) {
    assert(DstTy.getSizeInBits() == 64 && "Unexpected shuffle result ty");
    // This case can be done with TBL1.
    MachineInstr *Concat = emitVectorConcat(None, Src1Reg, Src2Reg, MIRBuilder);
    if (!Concat) {
      LLVM_DEBUG(dbgs() << "Could not do vector concat for tbl1");
      return false;
    }

    // The constant pool load will be 64 bits, so need to convert to FPR128 reg.
    IndexLoad =
        emitScalarToVector(64, &AArch64::FPR128RegClass,
                           IndexLoad->getOperand(0).getReg(), MIRBuilder);

    auto TBL1 = MIRBuilder.buildInstr(
        AArch64::TBLv16i8One, {&AArch64::FPR128RegClass},
        {Concat->getOperand(0).getReg(), IndexLoad->getOperand(0).getReg()});
    constrainSelectedInstRegOperands(*TBL1, TII, TRI, RBI);

    auto Copy =
        MIRBuilder
            .buildInstr(TargetOpcode::COPY, {I.getOperand(0).getReg()}, {})
            .addReg(TBL1.getReg(0), 0, AArch64::dsub);
    RBI.constrainGenericRegister(Copy.getReg(0), AArch64::FPR64RegClass, MRI);
    I.eraseFromParent();
    return true;
  }

  // For TBL2 we need to emit a REG_SEQUENCE to tie together two consecutive
  // Q registers for regalloc.
  auto RegSeq = MIRBuilder
                    .buildInstr(TargetOpcode::REG_SEQUENCE,
                                {&AArch64::QQRegClass}, {Src1Reg})
                    .addImm(AArch64::qsub0)
                    .addUse(Src2Reg)
                    .addImm(AArch64::qsub1);

  auto TBL2 = MIRBuilder.buildInstr(AArch64::TBLv16i8Two, {I.getOperand(0)},
                                    {RegSeq, IndexLoad->getOperand(0)});
  constrainSelectedInstRegOperands(*RegSeq, TII, TRI, RBI);
  constrainSelectedInstRegOperands(*TBL2, TII, TRI, RBI);
  I.eraseFromParent();
  return true;
}

MachineInstr *AArch64InstructionSelector::emitLaneInsert(
    Optional<Register> DstReg, Register SrcReg, Register EltReg,
    unsigned LaneIdx, const RegisterBank &RB,
    MachineIRBuilder &MIRBuilder) const {
  MachineInstr *InsElt = nullptr;
  const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass;
  MachineRegisterInfo &MRI = *MIRBuilder.getMRI();

  // Create a register to define with the insert if one wasn't passed in.
  if (!DstReg)
    DstReg = MRI.createVirtualRegister(DstRC);

  unsigned EltSize = MRI.getType(EltReg).getSizeInBits();
  unsigned Opc = getInsertVecEltOpInfo(RB, EltSize).first;

  if (RB.getID() == AArch64::FPRRegBankID) {
    auto InsSub = emitScalarToVector(EltSize, DstRC, EltReg, MIRBuilder);
    InsElt = MIRBuilder.buildInstr(Opc, {*DstReg}, {SrcReg})
                 .addImm(LaneIdx)
                 .addUse(InsSub->getOperand(0).getReg())
                 .addImm(0);
  } else {
    InsElt = MIRBuilder.buildInstr(Opc, {*DstReg}, {SrcReg})
                 .addImm(LaneIdx)
                 .addUse(EltReg);
  }

  constrainSelectedInstRegOperands(*InsElt, TII, TRI, RBI);
  return InsElt;
}

bool AArch64InstructionSelector::selectInsertElt(
    MachineInstr &I, MachineRegisterInfo &MRI) const {
  assert(I.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT);

  // Get information on the destination.
  Register DstReg = I.getOperand(0).getReg();
  const LLT DstTy = MRI.getType(DstReg);
  unsigned VecSize = DstTy.getSizeInBits();

  // Get information on the element we want to insert into the destination.
  Register EltReg = I.getOperand(2).getReg();
  const LLT EltTy = MRI.getType(EltReg);
  unsigned EltSize = EltTy.getSizeInBits();
  if (EltSize < 16 || EltSize > 64)
    return false; // Don't support all element types yet.

  // Find the definition of the index. Bail out if it's not defined by a
  // G_CONSTANT.
  Register IdxReg = I.getOperand(3).getReg();
  auto VRegAndVal = getConstantVRegValWithLookThrough(IdxReg, MRI);
  if (!VRegAndVal)
    return false;
  unsigned LaneIdx = VRegAndVal->Value.getSExtValue(); 

  // Perform the lane insert.
  Register SrcReg = I.getOperand(1).getReg();
  const RegisterBank &EltRB = *RBI.getRegBank(EltReg, MRI, TRI);
  MachineIRBuilder MIRBuilder(I);

  if (VecSize < 128) {
    // If the vector we're inserting into is smaller than 128 bits, widen it
    // to 128 to do the insert.
    MachineInstr *ScalarToVec = emitScalarToVector(
        VecSize, &AArch64::FPR128RegClass, SrcReg, MIRBuilder);
    if (!ScalarToVec)
      return false;
    SrcReg = ScalarToVec->getOperand(0).getReg();
  }

  // Create an insert into a new FPR128 register.
  // Note that if our vector is already 128 bits, we end up emitting an extra
  // register.
  MachineInstr *InsMI =
      emitLaneInsert(None, SrcReg, EltReg, LaneIdx, EltRB, MIRBuilder);

  if (VecSize < 128) {
    // If we had to widen to perform the insert, then we have to demote back to
    // the original size to get the result we want.
    Register DemoteVec = InsMI->getOperand(0).getReg();
    const TargetRegisterClass *RC =
        getMinClassForRegBank(*RBI.getRegBank(DemoteVec, MRI, TRI), VecSize);
    if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) {
      LLVM_DEBUG(dbgs() << "Unsupported register class!\n");
      return false;
    }
    unsigned SubReg = 0;
    if (!getSubRegForClass(RC, TRI, SubReg))
      return false;
    if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) {
      LLVM_DEBUG(dbgs() << "Unsupported destination size! (" << VecSize
                        << "\n");
      return false;
    }
    MIRBuilder.buildInstr(TargetOpcode::COPY, {DstReg}, {})
        .addReg(DemoteVec, 0, SubReg);
    RBI.constrainGenericRegister(DstReg, *RC, MRI);
  } else {
    // No widening needed.
    InsMI->getOperand(0).setReg(DstReg);
    constrainSelectedInstRegOperands(*InsMI, TII, TRI, RBI);
  }

  I.eraseFromParent();
  return true;
}

bool AArch64InstructionSelector::tryOptConstantBuildVec(
    MachineInstr &I, LLT DstTy, MachineRegisterInfo &MRI) const {
  assert(I.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
  unsigned DstSize = DstTy.getSizeInBits(); 
  assert(DstSize <= 128 && "Unexpected build_vec type!"); 
  if (DstSize < 32) 
    return false;
  // Check if we're building a constant vector, in which case we want to
  // generate a constant pool load instead of a vector insert sequence.
  SmallVector<Constant *, 16> Csts;
  for (unsigned Idx = 1; Idx < I.getNumOperands(); ++Idx) {
    // Try to find G_CONSTANT or G_FCONSTANT
    auto *OpMI =
        getOpcodeDef(TargetOpcode::G_CONSTANT, I.getOperand(Idx).getReg(), MRI);
    if (OpMI)
      Csts.emplace_back(
          const_cast<ConstantInt *>(OpMI->getOperand(1).getCImm()));
    else if ((OpMI = getOpcodeDef(TargetOpcode::G_FCONSTANT,
                                  I.getOperand(Idx).getReg(), MRI)))
      Csts.emplace_back(
          const_cast<ConstantFP *>(OpMI->getOperand(1).getFPImm()));
    else
      return false;
  }
  Constant *CV = ConstantVector::get(Csts);
  MachineIRBuilder MIB(I);
  if (CV->isNullValue()) { 
    // Until the importer can support immAllZerosV in pattern leaf nodes, 
    // select a zero move manually here. 
    Register DstReg = I.getOperand(0).getReg(); 
    if (DstSize == 128) { 
      auto Mov = MIB.buildInstr(AArch64::MOVIv2d_ns, {DstReg}, {}).addImm(0); 
      I.eraseFromParent(); 
      return constrainSelectedInstRegOperands(*Mov, TII, TRI, RBI); 
    } else if (DstSize == 64) { 
      auto Mov = 
          MIB.buildInstr(AArch64::MOVIv2d_ns, {&AArch64::FPR128RegClass}, {}) 
              .addImm(0); 
      MIB.buildInstr(TargetOpcode::COPY, {DstReg}, {}) 
          .addReg(Mov.getReg(0), 0, AArch64::dsub); 
      I.eraseFromParent(); 
      return RBI.constrainGenericRegister(DstReg, AArch64::FPR64RegClass, MRI); 
    } 
  } 
  auto *CPLoad = emitLoadFromConstantPool(CV, MIB);
  if (!CPLoad) {
    LLVM_DEBUG(dbgs() << "Could not generate cp load for build_vector");
    return false;
  }
  MIB.buildCopy(I.getOperand(0), CPLoad->getOperand(0));
  RBI.constrainGenericRegister(I.getOperand(0).getReg(),
                               *MRI.getRegClass(CPLoad->getOperand(0).getReg()),
                               MRI);
  I.eraseFromParent();
  return true;
}

bool AArch64InstructionSelector::selectBuildVector(
    MachineInstr &I, MachineRegisterInfo &MRI) const {
  assert(I.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
  // Until we port more of the optimized selections, for now just use a vector
  // insert sequence.
  const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
  const LLT EltTy = MRI.getType(I.getOperand(1).getReg());
  unsigned EltSize = EltTy.getSizeInBits();

  if (tryOptConstantBuildVec(I, DstTy, MRI))
    return true;
  if (EltSize < 16 || EltSize > 64)
    return false; // Don't support all element types yet.
  const RegisterBank &RB = *RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI);
  MachineIRBuilder MIRBuilder(I);

  const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass;
  MachineInstr *ScalarToVec =
      emitScalarToVector(DstTy.getElementType().getSizeInBits(), DstRC,
                         I.getOperand(1).getReg(), MIRBuilder);
  if (!ScalarToVec)
    return false;

  Register DstVec = ScalarToVec->getOperand(0).getReg();
  unsigned DstSize = DstTy.getSizeInBits();

  // Keep track of the last MI we inserted. Later on, we might be able to save
  // a copy using it.
  MachineInstr *PrevMI = nullptr;
  for (unsigned i = 2, e = DstSize / EltSize + 1; i < e; ++i) {
    // Note that if we don't do a subregister copy, we can end up making an
    // extra register.
    PrevMI = &*emitLaneInsert(None, DstVec, I.getOperand(i).getReg(), i - 1, RB,
                              MIRBuilder);
    DstVec = PrevMI->getOperand(0).getReg();
  }

  // If DstTy's size in bits is less than 128, then emit a subregister copy
  // from DstVec to the last register we've defined.
  if (DstSize < 128) {
    // Force this to be FPR using the destination vector.
    const TargetRegisterClass *RC =
        getMinClassForRegBank(*RBI.getRegBank(DstVec, MRI, TRI), DstSize);
    if (!RC)
      return false;
    if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) {
      LLVM_DEBUG(dbgs() << "Unsupported register class!\n");
      return false;
    }

    unsigned SubReg = 0;
    if (!getSubRegForClass(RC, TRI, SubReg))
      return false;
    if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) {
      LLVM_DEBUG(dbgs() << "Unsupported destination size! (" << DstSize
                        << "\n");
      return false;
    }

    Register Reg = MRI.createVirtualRegister(RC);
    Register DstReg = I.getOperand(0).getReg();

    MIRBuilder.buildInstr(TargetOpcode::COPY, {DstReg}, {})
        .addReg(DstVec, 0, SubReg);
    MachineOperand &RegOp = I.getOperand(1);
    RegOp.setReg(Reg);
    RBI.constrainGenericRegister(DstReg, *RC, MRI);
  } else {
    // We don't need a subregister copy. Save a copy by re-using the
    // destination register on the final insert.
    assert(PrevMI && "PrevMI was null?");
    PrevMI->getOperand(0).setReg(I.getOperand(0).getReg());
    constrainSelectedInstRegOperands(*PrevMI, TII, TRI, RBI);
  }

  I.eraseFromParent();
  return true;
}

/// Helper function to find an intrinsic ID on an a MachineInstr. Returns the
/// ID if it exists, and 0 otherwise.
static unsigned findIntrinsicID(MachineInstr &I) {
  auto IntrinOp = find_if(I.operands(), [&](const MachineOperand &Op) {
    return Op.isIntrinsicID();
  });
  if (IntrinOp == I.operands_end())
    return 0;
  return IntrinOp->getIntrinsicID();
}

bool AArch64InstructionSelector::selectIntrinsicWithSideEffects(
    MachineInstr &I, MachineRegisterInfo &MRI) const {
  // Find the intrinsic ID.
  unsigned IntrinID = findIntrinsicID(I);
  if (!IntrinID)
    return false;
  MachineIRBuilder MIRBuilder(I);

  // Select the instruction.
  switch (IntrinID) {
  default:
    return false;
  case Intrinsic::trap:
    MIRBuilder.buildInstr(AArch64::BRK, {}, {}).addImm(1);
    break;
  case Intrinsic::debugtrap:
    MIRBuilder.buildInstr(AArch64::BRK, {}, {}).addImm(0xF000);
    break;
  case Intrinsic::ubsantrap: 
    MIRBuilder.buildInstr(AArch64::BRK, {}, {}) 
        .addImm(I.getOperand(1).getImm() | ('U' << 8)); 
    break; 
  }

  I.eraseFromParent();
  return true;
}

bool AArch64InstructionSelector::selectIntrinsic(MachineInstr &I,
                                                 MachineRegisterInfo &MRI) {
  unsigned IntrinID = findIntrinsicID(I);
  if (!IntrinID)
    return false;
  MachineIRBuilder MIRBuilder(I);

  switch (IntrinID) {
  default:
    break;
  case Intrinsic::aarch64_crypto_sha1h: {
    Register DstReg = I.getOperand(0).getReg();
    Register SrcReg = I.getOperand(2).getReg();

    // FIXME: Should this be an assert?
    if (MRI.getType(DstReg).getSizeInBits() != 32 ||
        MRI.getType(SrcReg).getSizeInBits() != 32)
      return false;

    // The operation has to happen on FPRs. Set up some new FPR registers for
    // the source and destination if they are on GPRs.
    if (RBI.getRegBank(SrcReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) {
      SrcReg = MRI.createVirtualRegister(&AArch64::FPR32RegClass);
      MIRBuilder.buildCopy({SrcReg}, {I.getOperand(2)});

      // Make sure the copy ends up getting constrained properly.
      RBI.constrainGenericRegister(I.getOperand(2).getReg(),
                                   AArch64::GPR32RegClass, MRI);
    }

    if (RBI.getRegBank(DstReg, MRI, TRI)->getID() != AArch64::FPRRegBankID)
      DstReg = MRI.createVirtualRegister(&AArch64::FPR32RegClass);

    // Actually insert the instruction.
    auto SHA1Inst = MIRBuilder.buildInstr(AArch64::SHA1Hrr, {DstReg}, {SrcReg});
    constrainSelectedInstRegOperands(*SHA1Inst, TII, TRI, RBI);

    // Did we create a new register for the destination?
    if (DstReg != I.getOperand(0).getReg()) {
      // Yep. Copy the result of the instruction back into the original
      // destination.
      MIRBuilder.buildCopy({I.getOperand(0)}, {DstReg});
      RBI.constrainGenericRegister(I.getOperand(0).getReg(),
                                   AArch64::GPR32RegClass, MRI);
    }

    I.eraseFromParent();
    return true;
  }
  case Intrinsic::frameaddress:
  case Intrinsic::returnaddress: {
    MachineFunction &MF = *I.getParent()->getParent();
    MachineFrameInfo &MFI = MF.getFrameInfo();

    unsigned Depth = I.getOperand(2).getImm();
    Register DstReg = I.getOperand(0).getReg();
    RBI.constrainGenericRegister(DstReg, AArch64::GPR64RegClass, MRI);

    if (Depth == 0 && IntrinID == Intrinsic::returnaddress) {
      if (!MFReturnAddr) { 
        // Insert the copy from LR/X30 into the entry block, before it can be 
        // clobbered by anything. 
        MFI.setReturnAddressIsTaken(true); 
        MFReturnAddr = getFunctionLiveInPhysReg(MF, TII, AArch64::LR, 
                                                AArch64::GPR64RegClass); 
      }
 
      if (STI.hasPAuth()) { 
        MIRBuilder.buildInstr(AArch64::XPACI, {DstReg}, {MFReturnAddr}); 
      } else { 
        MIRBuilder.buildCopy({Register(AArch64::LR)}, {MFReturnAddr}); 
        MIRBuilder.buildInstr(AArch64::XPACLRI); 
        MIRBuilder.buildCopy({DstReg}, {Register(AArch64::LR)}); 
      } 
 
      I.eraseFromParent();
      return true;
    }

    MFI.setFrameAddressIsTaken(true);
    Register FrameAddr(AArch64::FP);
    while (Depth--) {
      Register NextFrame = MRI.createVirtualRegister(&AArch64::GPR64spRegClass);
      auto Ldr =
          MIRBuilder.buildInstr(AArch64::LDRXui, {NextFrame}, {FrameAddr})
              .addImm(0);
      constrainSelectedInstRegOperands(*Ldr, TII, TRI, RBI);
      FrameAddr = NextFrame;
    }

    if (IntrinID == Intrinsic::frameaddress)
      MIRBuilder.buildCopy({DstReg}, {FrameAddr});
    else {
      MFI.setReturnAddressIsTaken(true);
 
      if (STI.hasPAuth()) { 
        Register TmpReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass); 
        MIRBuilder.buildInstr(AArch64::LDRXui, {TmpReg}, {FrameAddr}).addImm(1); 
        MIRBuilder.buildInstr(AArch64::XPACI, {DstReg}, {TmpReg}); 
      } else { 
        MIRBuilder.buildInstr(AArch64::LDRXui, {Register(AArch64::LR)}, {FrameAddr}).addImm(1); 
        MIRBuilder.buildInstr(AArch64::XPACLRI); 
        MIRBuilder.buildCopy({DstReg}, {Register(AArch64::LR)}); 
      } 
    }

    I.eraseFromParent();
    return true;
  }
  }
  return false;
}

InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectShiftA_32(const MachineOperand &Root) const {
  auto MaybeImmed = getImmedFromMO(Root);
  if (MaybeImmed == None || *MaybeImmed > 31)
    return None;
  uint64_t Enc = (32 - *MaybeImmed) & 0x1f;
  return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
}

InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectShiftB_32(const MachineOperand &Root) const {
  auto MaybeImmed = getImmedFromMO(Root);
  if (MaybeImmed == None || *MaybeImmed > 31)
    return None;
  uint64_t Enc = 31 - *MaybeImmed;
  return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
}

InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectShiftA_64(const MachineOperand &Root) const {
  auto MaybeImmed = getImmedFromMO(Root);
  if (MaybeImmed == None || *MaybeImmed > 63)
    return None;
  uint64_t Enc = (64 - *MaybeImmed) & 0x3f;
  return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
}

InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectShiftB_64(const MachineOperand &Root) const {
  auto MaybeImmed = getImmedFromMO(Root);
  if (MaybeImmed == None || *MaybeImmed > 63)
    return None;
  uint64_t Enc = 63 - *MaybeImmed;
  return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
}

/// Helper to select an immediate value that can be represented as a 12-bit
/// value shifted left by either 0 or 12. If it is possible to do so, return
/// the immediate and shift value. If not, return None.
///
/// Used by selectArithImmed and selectNegArithImmed.
InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::select12BitValueWithLeftShift(
    uint64_t Immed) const {
  unsigned ShiftAmt;
  if (Immed >> 12 == 0) {
    ShiftAmt = 0;
  } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
    ShiftAmt = 12;
    Immed = Immed >> 12;
  } else
    return None;

  unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt);
  return {{
      [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed); },
      [=](MachineInstrBuilder &MIB) { MIB.addImm(ShVal); },
  }};
}

/// SelectArithImmed - Select an immediate value that can be represented as
/// a 12-bit value shifted left by either 0 or 12.  If so, return true with
/// Val set to the 12-bit value and Shift set to the shifter operand.
InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectArithImmed(MachineOperand &Root) const {
  // This function is called from the addsub_shifted_imm ComplexPattern,
  // which lists [imm] as the list of opcode it's interested in, however
  // we still need to check whether the operand is actually an immediate
  // here because the ComplexPattern opcode list is only used in
  // root-level opcode matching.
  auto MaybeImmed = getImmedFromMO(Root);
  if (MaybeImmed == None)
    return None;
  return select12BitValueWithLeftShift(*MaybeImmed);
}

/// SelectNegArithImmed - As above, but negates the value before trying to
/// select it.
InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectNegArithImmed(MachineOperand &Root) const {
  // We need a register here, because we need to know if we have a 64 or 32
  // bit immediate.
  if (!Root.isReg())
    return None;
  auto MaybeImmed = getImmedFromMO(Root);
  if (MaybeImmed == None)
    return None;
  uint64_t Immed = *MaybeImmed;

  // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
  // have the opposite effect on the C flag, so this pattern mustn't match under
  // those circumstances.
  if (Immed == 0)
    return None;

  // Check if we're dealing with a 32-bit type on the root or a 64-bit type on
  // the root.
  MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
  if (MRI.getType(Root.getReg()).getSizeInBits() == 32)
    Immed = ~((uint32_t)Immed) + 1;
  else
    Immed = ~Immed + 1ULL;

  if (Immed & 0xFFFFFFFFFF000000ULL)
    return None;

  Immed &= 0xFFFFFFULL;
  return select12BitValueWithLeftShift(Immed);
}

/// Return true if it is worth folding MI into an extended register. That is,
/// if it's safe to pull it into the addressing mode of a load or store as a
/// shift.
bool AArch64InstructionSelector::isWorthFoldingIntoExtendedReg(
    MachineInstr &MI, const MachineRegisterInfo &MRI) const {
  // Always fold if there is one use, or if we're optimizing for size.
  Register DefReg = MI.getOperand(0).getReg();
  if (MRI.hasOneNonDBGUse(DefReg) ||
      MI.getParent()->getParent()->getFunction().hasMinSize())
    return true;

  // It's better to avoid folding and recomputing shifts when we don't have a
  // fastpath.
  if (!STI.hasLSLFast())
    return false;

  // We have a fastpath, so folding a shift in and potentially computing it
  // many times may be beneficial. Check if this is only used in memory ops.
  // If it is, then we should fold.
  return all_of(MRI.use_nodbg_instructions(DefReg),
                [](MachineInstr &Use) { return Use.mayLoadOrStore(); });
}

static bool isSignExtendShiftType(AArch64_AM::ShiftExtendType Type) {
  switch (Type) {
  case AArch64_AM::SXTB:
  case AArch64_AM::SXTH:
  case AArch64_AM::SXTW:
    return true;
  default:
    return false;
  }
}

InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectExtendedSHL(
    MachineOperand &Root, MachineOperand &Base, MachineOperand &Offset,
    unsigned SizeInBytes, bool WantsExt) const {
  assert(Base.isReg() && "Expected base to be a register operand");
  assert(Offset.isReg() && "Expected offset to be a register operand");

  MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
  MachineInstr *OffsetInst = MRI.getVRegDef(Offset.getReg());
  if (!OffsetInst)
    return None;

  unsigned OffsetOpc = OffsetInst->getOpcode();
  bool LookedThroughZExt = false;
  if (OffsetOpc != TargetOpcode::G_SHL && OffsetOpc != TargetOpcode::G_MUL) {
    // Try to look through a ZEXT.
    if (OffsetOpc != TargetOpcode::G_ZEXT || !WantsExt)
      return None;

    OffsetInst = MRI.getVRegDef(OffsetInst->getOperand(1).getReg());
    OffsetOpc = OffsetInst->getOpcode();
    LookedThroughZExt = true;

    if (OffsetOpc != TargetOpcode::G_SHL && OffsetOpc != TargetOpcode::G_MUL)
      return None;
  }
  // Make sure that the memory op is a valid size.
  int64_t LegalShiftVal = Log2_32(SizeInBytes);
  if (LegalShiftVal == 0)
    return None;
  if (!isWorthFoldingIntoExtendedReg(*OffsetInst, MRI))
    return None;

  // Now, try to find the specific G_CONSTANT. Start by assuming that the
  // register we will offset is the LHS, and the register containing the
  // constant is the RHS.
  Register OffsetReg = OffsetInst->getOperand(1).getReg();
  Register ConstantReg = OffsetInst->getOperand(2).getReg();
  auto ValAndVReg = getConstantVRegValWithLookThrough(ConstantReg, MRI);
  if (!ValAndVReg) {
    // We didn't get a constant on the RHS. If the opcode is a shift, then
    // we're done.
    if (OffsetOpc == TargetOpcode::G_SHL)
      return None;

    // If we have a G_MUL, we can use either register. Try looking at the RHS.
    std::swap(OffsetReg, ConstantReg);
    ValAndVReg = getConstantVRegValWithLookThrough(ConstantReg, MRI);
    if (!ValAndVReg)
      return None;
  }

  // The value must fit into 3 bits, and must be positive. Make sure that is
  // true.
  int64_t ImmVal = ValAndVReg->Value.getSExtValue(); 

  // Since we're going to pull this into a shift, the constant value must be
  // a power of 2. If we got a multiply, then we need to check this.
  if (OffsetOpc == TargetOpcode::G_MUL) {
    if (!isPowerOf2_32(ImmVal))
      return None;

    // Got a power of 2. So, the amount we'll shift is the log base-2 of that.
    ImmVal = Log2_32(ImmVal);
  }

  if ((ImmVal & 0x7) != ImmVal)
    return None;

  // We are only allowed to shift by LegalShiftVal. This shift value is built
  // into the instruction, so we can't just use whatever we want.
  if (ImmVal != LegalShiftVal)
    return None;

  unsigned SignExtend = 0;
  if (WantsExt) {
    // Check if the offset is defined by an extend, unless we looked through a
    // G_ZEXT earlier.
    if (!LookedThroughZExt) {
      MachineInstr *ExtInst = getDefIgnoringCopies(OffsetReg, MRI);
      auto Ext = getExtendTypeForInst(*ExtInst, MRI, true);
      if (Ext == AArch64_AM::InvalidShiftExtend)
        return None;

      SignExtend = isSignExtendShiftType(Ext) ? 1 : 0;
      // We only support SXTW for signed extension here.
      if (SignExtend && Ext != AArch64_AM::SXTW)
        return None;
      OffsetReg = ExtInst->getOperand(1).getReg();
    }

    // Need a 32-bit wide register here.
    MachineIRBuilder MIB(*MRI.getVRegDef(Root.getReg()));
    OffsetReg = moveScalarRegClass(OffsetReg, AArch64::GPR32RegClass, MIB);
  }

  // We can use the LHS of the GEP as the base, and the LHS of the shift as an
  // offset. Signify that we are shifting by setting the shift flag to 1.
  return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(Base.getReg()); },
           [=](MachineInstrBuilder &MIB) { MIB.addUse(OffsetReg); },
           [=](MachineInstrBuilder &MIB) {
             // Need to add both immediates here to make sure that they are both
             // added to the instruction.
             MIB.addImm(SignExtend);
             MIB.addImm(1);
           }}};
}

/// This is used for computing addresses like this:
///
/// ldr x1, [x2, x3, lsl #3]
///
/// Where x2 is the base register, and x3 is an offset register. The shift-left
/// is a constant value specific to this load instruction. That is, we'll never
/// see anything other than a 3 here (which corresponds to the size of the
/// element being loaded.)
InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectAddrModeShiftedExtendXReg(
    MachineOperand &Root, unsigned SizeInBytes) const {
  if (!Root.isReg())
    return None;
  MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();

  // We want to find something like this:
  //
  // val = G_CONSTANT LegalShiftVal
  // shift = G_SHL off_reg val
  // ptr = G_PTR_ADD base_reg shift
  // x = G_LOAD ptr
  //
  // And fold it into this addressing mode:
  //
  // ldr x, [base_reg, off_reg, lsl #LegalShiftVal]

  // Check if we can find the G_PTR_ADD.
  MachineInstr *PtrAdd =
      getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI);
  if (!PtrAdd || !isWorthFoldingIntoExtendedReg(*PtrAdd, MRI))
    return None;

  // Now, try to match an opcode which will match our specific offset.
  // We want a G_SHL or a G_MUL.
  MachineInstr *OffsetInst =
      getDefIgnoringCopies(PtrAdd->getOperand(2).getReg(), MRI);
  return selectExtendedSHL(Root, PtrAdd->getOperand(1),
                           OffsetInst->getOperand(0), SizeInBytes,
                           /*WantsExt=*/false);
}

/// This is used for computing addresses like this:
///
/// ldr x1, [x2, x3]
///
/// Where x2 is the base register, and x3 is an offset register.
///
/// When possible (or profitable) to fold a G_PTR_ADD into the address calculation,
/// this will do so. Otherwise, it will return None.
InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectAddrModeRegisterOffset(
    MachineOperand &Root) const {
  MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();

  // We need a GEP.
  MachineInstr *Gep = MRI.getVRegDef(Root.getReg());
  if (!Gep || Gep->getOpcode() != TargetOpcode::G_PTR_ADD)
    return None;

  // If this is used more than once, let's not bother folding.
  // TODO: Check if they are memory ops. If they are, then we can still fold
  // without having to recompute anything.
  if (!MRI.hasOneNonDBGUse(Gep->getOperand(0).getReg()))
    return None;

  // Base is the GEP's LHS, offset is its RHS.
  return {{[=](MachineInstrBuilder &MIB) {
             MIB.addUse(Gep->getOperand(1).getReg());
           },
           [=](MachineInstrBuilder &MIB) {
             MIB.addUse(Gep->getOperand(2).getReg());
           },
           [=](MachineInstrBuilder &MIB) {
             // Need to add both immediates here to make sure that they are both
             // added to the instruction.
             MIB.addImm(0);
             MIB.addImm(0);
           }}};
}

/// This is intended to be equivalent to selectAddrModeXRO in
/// AArch64ISelDAGtoDAG. It's used for selecting X register offset loads.
InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectAddrModeXRO(MachineOperand &Root,
                                              unsigned SizeInBytes) const {
  MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
  if (!Root.isReg()) 
    return None;
  MachineInstr *PtrAdd = 
      getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI); 
  if (!PtrAdd) 
    return None; 

  // Check for an immediates which cannot be encoded in the [base + imm] 
  // addressing mode, and can't be encoded in an add/sub. If this happens, we'll 
  // end up with code like: 
  // 
  // mov x0, wide 
  // add x1 base, x0 
  // ldr x2, [x1, x0] 
  // 
  // In this situation, we can use the [base, xreg] addressing mode to save an 
  // add/sub: 
  // 
  // mov x0, wide 
  // ldr x2, [base, x0] 
  auto ValAndVReg = 
      getConstantVRegValWithLookThrough(PtrAdd->getOperand(2).getReg(), MRI); 
  if (ValAndVReg) { 
    unsigned Scale = Log2_32(SizeInBytes); 
    int64_t ImmOff = ValAndVReg->Value.getSExtValue(); 
 
    // Skip immediates that can be selected in the load/store addresing 
    // mode. 
    if (ImmOff % SizeInBytes == 0 && ImmOff >= 0 && 
        ImmOff < (0x1000 << Scale)) 
      return None; 
 
    // Helper lambda to decide whether or not it is preferable to emit an add. 
    auto isPreferredADD = [](int64_t ImmOff) { 
      // Constants in [0x0, 0xfff] can be encoded in an add. 
      if ((ImmOff & 0xfffffffffffff000LL) == 0x0LL) 
        return true; 
 
      // Can it be encoded in an add lsl #12? 
      if ((ImmOff & 0xffffffffff000fffLL) != 0x0LL) 
        return false; 
 
      // It can be encoded in an add lsl #12, but we may not want to. If it is 
      // possible to select this as a single movz, then prefer that. A single 
      // movz is faster than an add with a shift. 
      return (ImmOff & 0xffffffffff00ffffLL) != 0x0LL && 
             (ImmOff & 0xffffffffffff0fffLL) != 0x0LL; 
    }; 
 
    // If the immediate can be encoded in a single add/sub, then bail out. 
    if (isPreferredADD(ImmOff) || isPreferredADD(-ImmOff)) 
      return None; 
  } 
 
  // Try to fold shifts into the addressing mode.
  auto AddrModeFns = selectAddrModeShiftedExtendXReg(Root, SizeInBytes);
  if (AddrModeFns)
    return AddrModeFns;

  // If that doesn't work, see if it's possible to fold in registers from
  // a GEP.
  return selectAddrModeRegisterOffset(Root);
}

/// This is used for computing addresses like this:
///
/// ldr x0, [xBase, wOffset, sxtw #LegalShiftVal]
///
/// Where we have a 64-bit base register, a 32-bit offset register, and an
/// extend (which may or may not be signed).
InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectAddrModeWRO(MachineOperand &Root,
                                              unsigned SizeInBytes) const {
  MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();

  MachineInstr *PtrAdd =
      getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI);
  if (!PtrAdd || !isWorthFoldingIntoExtendedReg(*PtrAdd, MRI))
    return None;

  MachineOperand &LHS = PtrAdd->getOperand(1);
  MachineOperand &RHS = PtrAdd->getOperand(2);
  MachineInstr *OffsetInst = getDefIgnoringCopies(RHS.getReg(), MRI);

  // The first case is the same as selectAddrModeXRO, except we need an extend.
  // In this case, we try to find a shift and extend, and fold them into the
  // addressing mode.
  //
  // E.g.
  //
  // off_reg = G_Z/S/ANYEXT ext_reg
  // val = G_CONSTANT LegalShiftVal
  // shift = G_SHL off_reg val
  // ptr = G_PTR_ADD base_reg shift
  // x = G_LOAD ptr
  //
  // In this case we can get a load like this:
  //
  // ldr x0, [base_reg, ext_reg, sxtw #LegalShiftVal]
  auto ExtendedShl = selectExtendedSHL(Root, LHS, OffsetInst->getOperand(0),
                                       SizeInBytes, /*WantsExt=*/true);
  if (ExtendedShl)
    return ExtendedShl;

  // There was no shift. We can try and fold a G_Z/S/ANYEXT in alone though.
  //
  // e.g.
  // ldr something, [base_reg, ext_reg, sxtw]
  if (!isWorthFoldingIntoExtendedReg(*OffsetInst, MRI))
    return None;

  // Check if this is an extend. We'll get an extend type if it is.
  AArch64_AM::ShiftExtendType Ext =
      getExtendTypeForInst(*OffsetInst, MRI, /*IsLoadStore=*/true);
  if (Ext == AArch64_AM::InvalidShiftExtend)
    return None;

  // Need a 32-bit wide register.
  MachineIRBuilder MIB(*PtrAdd);
  Register ExtReg = moveScalarRegClass(OffsetInst->getOperand(1).getReg(),
                                       AArch64::GPR32RegClass, MIB);
  unsigned SignExtend = Ext == AArch64_AM::SXTW;

  // Base is LHS, offset is ExtReg.
  return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(LHS.getReg()); },
           [=](MachineInstrBuilder &MIB) { MIB.addUse(ExtReg); },
           [=](MachineInstrBuilder &MIB) {
             MIB.addImm(SignExtend);
             MIB.addImm(0);
           }}};
}

/// Select a "register plus unscaled signed 9-bit immediate" address.  This
/// should only match when there is an offset that is not valid for a scaled
/// immediate addressing mode.  The "Size" argument is the size in bytes of the
/// memory reference, which is needed here to know what is valid for a scaled
/// immediate.
InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectAddrModeUnscaled(MachineOperand &Root,
                                                   unsigned Size) const {
  MachineRegisterInfo &MRI =
      Root.getParent()->getParent()->getParent()->getRegInfo();

  if (!Root.isReg())
    return None;

  if (!isBaseWithConstantOffset(Root, MRI))
    return None;

  MachineInstr *RootDef = MRI.getVRegDef(Root.getReg());
  if (!RootDef)
    return None;

  MachineOperand &OffImm = RootDef->getOperand(2);
  if (!OffImm.isReg())
    return None;
  MachineInstr *RHS = MRI.getVRegDef(OffImm.getReg());
  if (!RHS || RHS->getOpcode() != TargetOpcode::G_CONSTANT)
    return None;
  int64_t RHSC;
  MachineOperand &RHSOp1 = RHS->getOperand(1);
  if (!RHSOp1.isCImm() || RHSOp1.getCImm()->getBitWidth() > 64)
    return None;
  RHSC = RHSOp1.getCImm()->getSExtValue();

  // If the offset is valid as a scaled immediate, don't match here.
  if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Log2_32(Size)))
    return None;
  if (RHSC >= -256 && RHSC < 256) {
    MachineOperand &Base = RootDef->getOperand(1);
    return {{
        [=](MachineInstrBuilder &MIB) { MIB.add(Base); },
        [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC); },
    }};
  }
  return None;
}

InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::tryFoldAddLowIntoImm(MachineInstr &RootDef,
                                                 unsigned Size,
                                                 MachineRegisterInfo &MRI) const {
  if (RootDef.getOpcode() != AArch64::G_ADD_LOW)
    return None;
  MachineInstr &Adrp = *MRI.getVRegDef(RootDef.getOperand(1).getReg());
  if (Adrp.getOpcode() != AArch64::ADRP)
    return None;

  // TODO: add heuristics like isWorthFoldingADDlow() from SelectionDAG.
  // TODO: Need to check GV's offset % size if doing offset folding into globals.
  assert(Adrp.getOperand(1).getOffset() == 0 && "Unexpected offset in global");
  auto GV = Adrp.getOperand(1).getGlobal();
  if (GV->isThreadLocal())
    return None;

  auto &MF = *RootDef.getParent()->getParent();
  if (GV->getPointerAlignment(MF.getDataLayout()) < Size)
    return None;

  unsigned OpFlags = STI.ClassifyGlobalReference(GV, MF.getTarget());
  MachineIRBuilder MIRBuilder(RootDef);
  Register AdrpReg = Adrp.getOperand(0).getReg();
  return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(AdrpReg); },
           [=](MachineInstrBuilder &MIB) {
             MIB.addGlobalAddress(GV, /* Offset */ 0,
                                  OpFlags | AArch64II::MO_PAGEOFF |
                                      AArch64II::MO_NC);
           }}};
}

/// Select a "register plus scaled unsigned 12-bit immediate" address.  The
/// "Size" argument is the size in bytes of the memory reference, which
/// determines the scale.
InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectAddrModeIndexed(MachineOperand &Root,
                                                  unsigned Size) const {
  MachineFunction &MF = *Root.getParent()->getParent()->getParent();
  MachineRegisterInfo &MRI = MF.getRegInfo();

  if (!Root.isReg())
    return None;

  MachineInstr *RootDef = MRI.getVRegDef(Root.getReg());
  if (!RootDef)
    return None;

  if (RootDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
    return {{
        [=](MachineInstrBuilder &MIB) { MIB.add(RootDef->getOperand(1)); },
        [=](MachineInstrBuilder &MIB) { MIB.addImm(0); },
    }};
  }

  CodeModel::Model CM = MF.getTarget().getCodeModel();
  // Check if we can fold in the ADD of small code model ADRP + ADD address.
  if (CM == CodeModel::Small) {
    auto OpFns = tryFoldAddLowIntoImm(*RootDef, Size, MRI);
    if (OpFns)
      return OpFns;
  }

  if (isBaseWithConstantOffset(Root, MRI)) {
    MachineOperand &LHS = RootDef->getOperand(1);
    MachineOperand &RHS = RootDef->getOperand(2);
    MachineInstr *LHSDef = MRI.getVRegDef(LHS.getReg());
    MachineInstr *RHSDef = MRI.getVRegDef(RHS.getReg());
    if (LHSDef && RHSDef) {
      int64_t RHSC = (int64_t)RHSDef->getOperand(1).getCImm()->getZExtValue();
      unsigned Scale = Log2_32(Size);
      if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) {
        if (LHSDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
          return {{
              [=](MachineInstrBuilder &MIB) { MIB.add(LHSDef->getOperand(1)); },
              [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC >> Scale); },
          }};

        return {{
            [=](MachineInstrBuilder &MIB) { MIB.add(LHS); },
            [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC >> Scale); },
        }};
      }
    }
  }

  // Before falling back to our general case, check if the unscaled
  // instructions can handle this. If so, that's preferable.
  if (selectAddrModeUnscaled(Root, Size).hasValue())
    return None;

  return {{
      [=](MachineInstrBuilder &MIB) { MIB.add(Root); },
      [=](MachineInstrBuilder &MIB) { MIB.addImm(0); },
  }};
}

/// Given a shift instruction, return the correct shift type for that
/// instruction.
static AArch64_AM::ShiftExtendType getShiftTypeForInst(MachineInstr &MI) {
  // TODO: Handle AArch64_AM::ROR
  switch (MI.getOpcode()) {
  default:
    return AArch64_AM::InvalidShiftExtend;
  case TargetOpcode::G_SHL:
    return AArch64_AM::LSL;
  case TargetOpcode::G_LSHR:
    return AArch64_AM::LSR;
  case TargetOpcode::G_ASHR:
    return AArch64_AM::ASR;
  }
}

/// Select a "shifted register" operand. If the value is not shifted, set the
/// shift operand to a default value of "lsl 0".
///
/// TODO: Allow shifted register to be rotated in logical instructions.
InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectShiftedRegister(MachineOperand &Root) const {
  if (!Root.isReg())
    return None;
  MachineRegisterInfo &MRI =
      Root.getParent()->getParent()->getParent()->getRegInfo();

  // Check if the operand is defined by an instruction which corresponds to
  // a ShiftExtendType. E.g. a G_SHL, G_LSHR, etc.
  //
  // TODO: Handle AArch64_AM::ROR for logical instructions.
  MachineInstr *ShiftInst = MRI.getVRegDef(Root.getReg());
  if (!ShiftInst)
    return None;
  AArch64_AM::ShiftExtendType ShType = getShiftTypeForInst(*ShiftInst);
  if (ShType == AArch64_AM::InvalidShiftExtend)
    return None;
  if (!isWorthFoldingIntoExtendedReg(*ShiftInst, MRI))
    return None;

  // Need an immediate on the RHS.
  MachineOperand &ShiftRHS = ShiftInst->getOperand(2);
  auto Immed = getImmedFromMO(ShiftRHS);
  if (!Immed)
    return None;

  // We have something that we can fold. Fold in the shift's LHS and RHS into
  // the instruction.
  MachineOperand &ShiftLHS = ShiftInst->getOperand(1);
  Register ShiftReg = ShiftLHS.getReg();

  unsigned NumBits = MRI.getType(ShiftReg).getSizeInBits();
  unsigned Val = *Immed & (NumBits - 1);
  unsigned ShiftVal = AArch64_AM::getShifterImm(ShType, Val);

  return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ShiftReg); },
           [=](MachineInstrBuilder &MIB) { MIB.addImm(ShiftVal); }}};
}

AArch64_AM::ShiftExtendType AArch64InstructionSelector::getExtendTypeForInst(
    MachineInstr &MI, MachineRegisterInfo &MRI, bool IsLoadStore) const {
  unsigned Opc = MI.getOpcode();

  // Handle explicit extend instructions first.
  if (Opc == TargetOpcode::G_SEXT || Opc == TargetOpcode::G_SEXT_INREG) {
    unsigned Size;
    if (Opc == TargetOpcode::G_SEXT)
      Size = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
    else
      Size = MI.getOperand(2).getImm();
    assert(Size != 64 && "Extend from 64 bits?");
    switch (Size) {
    case 8:
      return AArch64_AM::SXTB;
    case 16:
      return AArch64_AM::SXTH;
    case 32:
      return AArch64_AM::SXTW;
    default:
      return AArch64_AM::InvalidShiftExtend;
    }
  }

  if (Opc == TargetOpcode::G_ZEXT || Opc == TargetOpcode::G_ANYEXT) {
    unsigned Size = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
    assert(Size != 64 && "Extend from 64 bits?");
    switch (Size) {
    case 8:
      return AArch64_AM::UXTB;
    case 16:
      return AArch64_AM::UXTH;
    case 32:
      return AArch64_AM::UXTW;
    default:
      return AArch64_AM::InvalidShiftExtend;
    }
  }

  // Don't have an explicit extend. Try to handle a G_AND with a constant mask
  // on the RHS.
  if (Opc != TargetOpcode::G_AND)
    return AArch64_AM::InvalidShiftExtend;

  Optional<uint64_t> MaybeAndMask = getImmedFromMO(MI.getOperand(2));
  if (!MaybeAndMask)
    return AArch64_AM::InvalidShiftExtend;
  uint64_t AndMask = *MaybeAndMask;
  switch (AndMask) {
  default:
    return AArch64_AM::InvalidShiftExtend;
  case 0xFF:
    return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend;
  case 0xFFFF:
    return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend;
  case 0xFFFFFFFF:
    return AArch64_AM::UXTW;
  }
}

Register AArch64InstructionSelector::moveScalarRegClass(
    Register Reg, const TargetRegisterClass &RC, MachineIRBuilder &MIB) const {
  MachineRegisterInfo &MRI = *MIB.getMRI();
  auto Ty = MRI.getType(Reg);
  assert(!Ty.isVector() && "Expected scalars only!");
  if (Ty.getSizeInBits() == TRI.getRegSizeInBits(RC))
    return Reg;

  // Create a copy and immediately select it.
  // FIXME: We should have an emitCopy function?
  auto Copy = MIB.buildCopy({&RC}, {Reg});
  selectCopy(*Copy, TII, MRI, TRI, RBI);
  return Copy.getReg(0);
}

/// Select an "extended register" operand. This operand folds in an extend
/// followed by an optional left shift.
InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectArithExtendedRegister(
    MachineOperand &Root) const {
  if (!Root.isReg())
    return None;
  MachineRegisterInfo &MRI =
      Root.getParent()->getParent()->getParent()->getRegInfo();

  uint64_t ShiftVal = 0;
  Register ExtReg;
  AArch64_AM::ShiftExtendType Ext;
  MachineInstr *RootDef = getDefIgnoringCopies(Root.getReg(), MRI);
  if (!RootDef)
    return None;

  if (!isWorthFoldingIntoExtendedReg(*RootDef, MRI))
    return None;

  // Check if we can fold a shift and an extend.
  if (RootDef->getOpcode() == TargetOpcode::G_SHL) {
    // Look for a constant on the RHS of the shift.
    MachineOperand &RHS = RootDef->getOperand(2);
    Optional<uint64_t> MaybeShiftVal = getImmedFromMO(RHS);
    if (!MaybeShiftVal)
      return None;
    ShiftVal = *MaybeShiftVal;
    if (ShiftVal > 4)
      return None;
    // Look for a valid extend instruction on the LHS of the shift.
    MachineOperand &LHS = RootDef->getOperand(1);
    MachineInstr *ExtDef = getDefIgnoringCopies(LHS.getReg(), MRI);
    if (!ExtDef)
      return None;
    Ext = getExtendTypeForInst(*ExtDef, MRI);
    if (Ext == AArch64_AM::InvalidShiftExtend)
      return None;
    ExtReg = ExtDef->getOperand(1).getReg();
  } else {
    // Didn't get a shift. Try just folding an extend.
    Ext = getExtendTypeForInst(*RootDef, MRI);
    if (Ext == AArch64_AM::InvalidShiftExtend)
      return None;
    ExtReg = RootDef->getOperand(1).getReg();

    // If we have a 32 bit instruction which zeroes out the high half of a
    // register, we get an implicit zero extend for free. Check if we have one.
    // FIXME: We actually emit the extend right now even though we don't have
    // to.
    if (Ext == AArch64_AM::UXTW && MRI.getType(ExtReg).getSizeInBits() == 32) {
      MachineInstr *ExtInst = MRI.getVRegDef(ExtReg);
      if (ExtInst && isDef32(*ExtInst))
        return None;
    }
  }

  // We require a GPR32 here. Narrow the ExtReg if needed using a subregister
  // copy.
  MachineIRBuilder MIB(*RootDef);
  ExtReg = moveScalarRegClass(ExtReg, AArch64::GPR32RegClass, MIB);

  return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ExtReg); },
           [=](MachineInstrBuilder &MIB) {
             MIB.addImm(getArithExtendImm(Ext, ShiftVal));
           }}};
}

void AArch64InstructionSelector::renderTruncImm(MachineInstrBuilder &MIB,
                                                const MachineInstr &MI,
                                                int OpIdx) const {
  const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
  assert(MI.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
         "Expected G_CONSTANT");
  Optional<int64_t> CstVal = 
      getConstantVRegSExtVal(MI.getOperand(0).getReg(), MRI); 
  assert(CstVal && "Expected constant value");
  MIB.addImm(CstVal.getValue());
}

void AArch64InstructionSelector::renderLogicalImm32(
  MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const {
  assert(I.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
         "Expected G_CONSTANT");
  uint64_t CstVal = I.getOperand(1).getCImm()->getZExtValue();
  uint64_t Enc = AArch64_AM::encodeLogicalImmediate(CstVal, 32);
  MIB.addImm(Enc);
}

void AArch64InstructionSelector::renderLogicalImm64(
  MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const {
  assert(I.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
         "Expected G_CONSTANT");
  uint64_t CstVal = I.getOperand(1).getCImm()->getZExtValue();
  uint64_t Enc = AArch64_AM::encodeLogicalImmediate(CstVal, 64);
  MIB.addImm(Enc);
}

bool AArch64InstructionSelector::isLoadStoreOfNumBytes(
    const MachineInstr &MI, unsigned NumBytes) const {
  if (!MI.mayLoadOrStore())
    return false;
  assert(MI.hasOneMemOperand() &&
         "Expected load/store to have only one mem op!");
  return (*MI.memoperands_begin())->getSize() == NumBytes;
}

bool AArch64InstructionSelector::isDef32(const MachineInstr &MI) const {
  const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
  if (MRI.getType(MI.getOperand(0).getReg()).getSizeInBits() != 32)
    return false;

  // Only return true if we know the operation will zero-out the high half of
  // the 64-bit register. Truncates can be subregister copies, which don't
  // zero out the high bits. Copies and other copy-like instructions can be
  // fed by truncates, or could be lowered as subregister copies.
  switch (MI.getOpcode()) {
  default:
    return true;
  case TargetOpcode::COPY:
  case TargetOpcode::G_BITCAST:
  case TargetOpcode::G_TRUNC:
  case TargetOpcode::G_PHI:
    return false;
  }
}


// Perform fixups on the given PHI instruction's operands to force them all
// to be the same as the destination regbank.
static void fixupPHIOpBanks(MachineInstr &MI, MachineRegisterInfo &MRI,
                            const AArch64RegisterBankInfo &RBI) {
  assert(MI.getOpcode() == TargetOpcode::G_PHI && "Expected a G_PHI");
  Register DstReg = MI.getOperand(0).getReg();
  const RegisterBank *DstRB = MRI.getRegBankOrNull(DstReg);
  assert(DstRB && "Expected PHI dst to have regbank assigned");
  MachineIRBuilder MIB(MI);

  // Go through each operand and ensure it has the same regbank.
  for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) {
    MachineOperand &MO = MI.getOperand(OpIdx);
    if (!MO.isReg())
      continue;
    Register OpReg = MO.getReg();
    const RegisterBank *RB = MRI.getRegBankOrNull(OpReg);
    if (RB != DstRB) {
      // Insert a cross-bank copy.
      auto *OpDef = MRI.getVRegDef(OpReg);
      const LLT &Ty = MRI.getType(OpReg);
      MIB.setInsertPt(*OpDef->getParent(), std::next(OpDef->getIterator()));
      auto Copy = MIB.buildCopy(Ty, OpReg);
      MRI.setRegBank(Copy.getReg(0), *DstRB);
      MO.setReg(Copy.getReg(0));
    }
  }
}

void AArch64InstructionSelector::processPHIs(MachineFunction &MF) {
  // We're looking for PHIs, build a list so we don't invalidate iterators.
  MachineRegisterInfo &MRI = MF.getRegInfo();
  SmallVector<MachineInstr *, 32> Phis;
  for (auto &BB : MF) {
    for (auto &MI : BB) {
      if (MI.getOpcode() == TargetOpcode::G_PHI)
        Phis.emplace_back(&MI);
    }
  }

  for (auto *MI : Phis) {
    // We need to do some work here if the operand types are < 16 bit and they
    // are split across fpr/gpr banks. Since all types <32b on gpr
    // end up being assigned gpr32 regclasses, we can end up with PHIs here
    // which try to select between a gpr32 and an fpr16. Ideally RBS shouldn't
    // be selecting heterogenous regbanks for operands if possible, but we
    // still need to be able to deal with it here.
    //
    // To fix this, if we have a gpr-bank operand < 32b in size and at least
    // one other operand is on the fpr bank, then we add cross-bank copies
    // to homogenize the operand banks. For simplicity the bank that we choose
    // to settle on is whatever bank the def operand has. For example:
    //
    // %endbb:
    //   %dst:gpr(s16) = G_PHI %in1:gpr(s16), %bb1, %in2:fpr(s16), %bb2
    //  =>
    // %bb2:
    //   ...
    //   %in2_copy:gpr(s16) = COPY %in2:fpr(s16)
    //   ...
    // %endbb:
    //   %dst:gpr(s16) = G_PHI %in1:gpr(s16), %bb1, %in2_copy:gpr(s16), %bb2
    bool HasGPROp = false, HasFPROp = false;
    for (unsigned OpIdx = 1; OpIdx < MI->getNumOperands(); ++OpIdx) {
      const auto &MO = MI->getOperand(OpIdx);
      if (!MO.isReg())
        continue;
      const LLT &Ty = MRI.getType(MO.getReg());
      if (!Ty.isValid() || !Ty.isScalar())
        break;
      if (Ty.getSizeInBits() >= 32)
        break;
      const RegisterBank *RB = MRI.getRegBankOrNull(MO.getReg());
      // If for some reason we don't have a regbank yet. Don't try anything.
      if (!RB)
        break;

      if (RB->getID() == AArch64::GPRRegBankID)
        HasGPROp = true;
      else
        HasFPROp = true;
    }
    // We have heterogenous regbanks, need to fixup.
    if (HasGPROp && HasFPROp)
      fixupPHIOpBanks(*MI, MRI, RBI);
  }
}

namespace llvm {
InstructionSelector *
createAArch64InstructionSelector(const AArch64TargetMachine &TM,
                                 AArch64Subtarget &Subtarget,
                                 AArch64RegisterBankInfo &RBI) {
  return new AArch64InstructionSelector(TM, Subtarget, RBI);
}
}