aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Target/AArch64/AArch64TargetMachine.cpp
blob: 5635b07fd65ba33b06a1954ab3a4dfc930987192 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
//===-- AArch64TargetMachine.cpp - Define TargetMachine for AArch64 -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//
//===----------------------------------------------------------------------===//

#include "AArch64TargetMachine.h"
#include "AArch64.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64MacroFusion.h"
#include "AArch64Subtarget.h"
#include "AArch64TargetObjectFile.h"
#include "AArch64TargetTransformInfo.h"
#include "MCTargetDesc/AArch64MCTargetDesc.h"
#include "TargetInfo/AArch64TargetInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/CSEConfigBase.h"
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
#include "llvm/CodeGen/GlobalISel/Localizer.h"
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
#include "llvm/CodeGen/MIRParser/MIParser.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Pass.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/CFGuard.h"
#include "llvm/Transforms/Scalar.h"
#include <memory>
#include <string>

using namespace llvm;

static cl::opt<bool> EnableCCMP("aarch64-enable-ccmp",
                                cl::desc("Enable the CCMP formation pass"),
                                cl::init(true), cl::Hidden);

static cl::opt<bool>
    EnableCondBrTuning("aarch64-enable-cond-br-tune",
                       cl::desc("Enable the conditional branch tuning pass"),
                       cl::init(true), cl::Hidden);

static cl::opt<bool> EnableMCR("aarch64-enable-mcr",
                               cl::desc("Enable the machine combiner pass"),
                               cl::init(true), cl::Hidden);

static cl::opt<bool> EnableStPairSuppress("aarch64-enable-stp-suppress",
                                          cl::desc("Suppress STP for AArch64"),
                                          cl::init(true), cl::Hidden);

static cl::opt<bool> EnableAdvSIMDScalar(
    "aarch64-enable-simd-scalar",
    cl::desc("Enable use of AdvSIMD scalar integer instructions"),
    cl::init(false), cl::Hidden);

static cl::opt<bool>
    EnablePromoteConstant("aarch64-enable-promote-const",
                          cl::desc("Enable the promote constant pass"),
                          cl::init(true), cl::Hidden);

static cl::opt<bool> EnableCollectLOH(
    "aarch64-enable-collect-loh",
    cl::desc("Enable the pass that emits the linker optimization hints (LOH)"),
    cl::init(true), cl::Hidden);

static cl::opt<bool>
    EnableDeadRegisterElimination("aarch64-enable-dead-defs", cl::Hidden,
                                  cl::desc("Enable the pass that removes dead"
                                           " definitons and replaces stores to"
                                           " them with stores to the zero"
                                           " register"),
                                  cl::init(true));

static cl::opt<bool> EnableRedundantCopyElimination(
    "aarch64-enable-copyelim",
    cl::desc("Enable the redundant copy elimination pass"), cl::init(true),
    cl::Hidden);

static cl::opt<bool> EnableLoadStoreOpt("aarch64-enable-ldst-opt",
                                        cl::desc("Enable the load/store pair"
                                                 " optimization pass"),
                                        cl::init(true), cl::Hidden);

static cl::opt<bool> EnableAtomicTidy(
    "aarch64-enable-atomic-cfg-tidy", cl::Hidden,
    cl::desc("Run SimplifyCFG after expanding atomic operations"
             " to make use of cmpxchg flow-based information"),
    cl::init(true));

static cl::opt<bool>
EnableEarlyIfConversion("aarch64-enable-early-ifcvt", cl::Hidden,
                        cl::desc("Run early if-conversion"),
                        cl::init(true));

static cl::opt<bool>
    EnableCondOpt("aarch64-enable-condopt",
                  cl::desc("Enable the condition optimizer pass"),
                  cl::init(true), cl::Hidden);

static cl::opt<bool>
EnableA53Fix835769("aarch64-fix-cortex-a53-835769", cl::Hidden,
                cl::desc("Work around Cortex-A53 erratum 835769"),
                cl::init(false));

static cl::opt<bool>
    EnableGEPOpt("aarch64-enable-gep-opt", cl::Hidden,
                 cl::desc("Enable optimizations on complex GEPs"),
                 cl::init(false));

static cl::opt<bool>
    BranchRelaxation("aarch64-enable-branch-relax", cl::Hidden, cl::init(true),
                     cl::desc("Relax out of range conditional branches"));

static cl::opt<bool> EnableCompressJumpTables(
    "aarch64-enable-compress-jump-tables", cl::Hidden, cl::init(true),
    cl::desc("Use smallest entry possible for jump tables"));

// FIXME: Unify control over GlobalMerge.
static cl::opt<cl::boolOrDefault>
    EnableGlobalMerge("aarch64-enable-global-merge", cl::Hidden,
                      cl::desc("Enable the global merge pass"));

static cl::opt<bool>
    EnableLoopDataPrefetch("aarch64-enable-loop-data-prefetch", cl::Hidden,
                           cl::desc("Enable the loop data prefetch pass"),
                           cl::init(true));

static cl::opt<int> EnableGlobalISelAtO(
    "aarch64-enable-global-isel-at-O", cl::Hidden,
    cl::desc("Enable GlobalISel at or below an opt level (-1 to disable)"),
    cl::init(0));

static cl::opt<bool> 
    EnableSVEIntrinsicOpts("aarch64-enable-sve-intrinsic-opts", cl::Hidden, 
                           cl::desc("Enable SVE intrinsic opts"), 
                           cl::init(true)); 

static cl::opt<bool> EnableFalkorHWPFFix("aarch64-enable-falkor-hwpf-fix",
                                         cl::init(true), cl::Hidden);

static cl::opt<bool>
    EnableBranchTargets("aarch64-enable-branch-targets", cl::Hidden,
                        cl::desc("Enable the AAcrh64 branch target pass"),
                        cl::init(true));

extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAArch64Target() {
  // Register the target.
  RegisterTargetMachine<AArch64leTargetMachine> X(getTheAArch64leTarget());
  RegisterTargetMachine<AArch64beTargetMachine> Y(getTheAArch64beTarget());
  RegisterTargetMachine<AArch64leTargetMachine> Z(getTheARM64Target());
  RegisterTargetMachine<AArch64leTargetMachine> W(getTheARM64_32Target());
  RegisterTargetMachine<AArch64leTargetMachine> V(getTheAArch64_32Target());
  auto PR = PassRegistry::getPassRegistry();
  initializeGlobalISel(*PR);
  initializeAArch64A53Fix835769Pass(*PR);
  initializeAArch64A57FPLoadBalancingPass(*PR);
  initializeAArch64AdvSIMDScalarPass(*PR);
  initializeAArch64BranchTargetsPass(*PR);
  initializeAArch64CollectLOHPass(*PR);
  initializeAArch64CompressJumpTablesPass(*PR);
  initializeAArch64ConditionalComparesPass(*PR);
  initializeAArch64ConditionOptimizerPass(*PR);
  initializeAArch64DeadRegisterDefinitionsPass(*PR);
  initializeAArch64ExpandPseudoPass(*PR);
  initializeAArch64LoadStoreOptPass(*PR);
  initializeAArch64SIMDInstrOptPass(*PR);
  initializeAArch64PreLegalizerCombinerPass(*PR);
  initializeAArch64PostLegalizerCombinerPass(*PR);
  initializeAArch64PostLegalizerLoweringPass(*PR); 
  initializeAArch64PostSelectOptimizePass(*PR); 
  initializeAArch64PromoteConstantPass(*PR);
  initializeAArch64RedundantCopyEliminationPass(*PR);
  initializeAArch64StorePairSuppressPass(*PR);
  initializeFalkorHWPFFixPass(*PR);
  initializeFalkorMarkStridedAccessesLegacyPass(*PR);
  initializeLDTLSCleanupPass(*PR);
  initializeSVEIntrinsicOptsPass(*PR);
  initializeAArch64SpeculationHardeningPass(*PR);
  initializeAArch64SLSHardeningPass(*PR);
  initializeAArch64StackTaggingPass(*PR);
  initializeAArch64StackTaggingPreRAPass(*PR);
}

//===----------------------------------------------------------------------===//
// AArch64 Lowering public interface.
//===----------------------------------------------------------------------===//
static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
  if (TT.isOSBinFormatMachO())
    return std::make_unique<AArch64_MachoTargetObjectFile>();
  if (TT.isOSBinFormatCOFF())
    return std::make_unique<AArch64_COFFTargetObjectFile>();

  return std::make_unique<AArch64_ELFTargetObjectFile>();
}

// Helper function to build a DataLayout string
static std::string computeDataLayout(const Triple &TT,
                                     const MCTargetOptions &Options,
                                     bool LittleEndian) {
  if (TT.isOSBinFormatMachO()) {
    if (TT.getArch() == Triple::aarch64_32)
      return "e-m:o-p:32:32-i64:64-i128:128-n32:64-S128";
    return "e-m:o-i64:64-i128:128-n32:64-S128";
  }
  if (TT.isOSBinFormatCOFF())
    return "e-m:w-p:64:64-i32:32-i64:64-i128:128-n32:64-S128";
  std::string Endian = LittleEndian ? "e" : "E"; 
  std::string Ptr32 = TT.getEnvironment() == Triple::GNUILP32 ? "-p:32:32" : ""; 
  return Endian + "-m:e" + Ptr32 + 
         "-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"; 
}

static StringRef computeDefaultCPU(const Triple &TT, StringRef CPU) { 
  if (CPU.empty() && TT.isArm64e()) 
    return "apple-a12"; 
  return CPU; 
} 
 
static Reloc::Model getEffectiveRelocModel(const Triple &TT,
                                           Optional<Reloc::Model> RM) {
  // AArch64 Darwin and Windows are always PIC.
  if (TT.isOSDarwin() || TT.isOSWindows())
    return Reloc::PIC_;
  // On ELF platforms the default static relocation model has a smart enough
  // linker to cope with referencing external symbols defined in a shared
  // library. Hence DynamicNoPIC doesn't need to be promoted to PIC.
  if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC)
    return Reloc::Static;
  return *RM;
}

static CodeModel::Model
getEffectiveAArch64CodeModel(const Triple &TT, Optional<CodeModel::Model> CM,
                             bool JIT) {
  if (CM) {
    if (*CM != CodeModel::Small && *CM != CodeModel::Tiny &&
        *CM != CodeModel::Large) {
      report_fatal_error(
          "Only small, tiny and large code models are allowed on AArch64");
    } else if (*CM == CodeModel::Tiny && !TT.isOSBinFormatELF())
      report_fatal_error("tiny code model is only supported on ELF");
    return *CM;
  }
  // The default MCJIT memory managers make no guarantees about where they can
  // find an executable page; JITed code needs to be able to refer to globals
  // no matter how far away they are.
  // We should set the CodeModel::Small for Windows ARM64 in JIT mode,
  // since with large code model LLVM generating 4 MOV instructions, and
  // Windows doesn't support relocating these long branch (4 MOVs).
  if (JIT && !TT.isOSWindows())
    return CodeModel::Large;
  return CodeModel::Small;
}

/// Create an AArch64 architecture model.
///
AArch64TargetMachine::AArch64TargetMachine(const Target &T, const Triple &TT,
                                           StringRef CPU, StringRef FS,
                                           const TargetOptions &Options,
                                           Optional<Reloc::Model> RM,
                                           Optional<CodeModel::Model> CM,
                                           CodeGenOpt::Level OL, bool JIT,
                                           bool LittleEndian)
    : LLVMTargetMachine(T,
                        computeDataLayout(TT, Options.MCOptions, LittleEndian),
                        TT, computeDefaultCPU(TT, CPU), FS, Options, 
                        getEffectiveRelocModel(TT, RM), 
                        getEffectiveAArch64CodeModel(TT, CM, JIT), OL),
      TLOF(createTLOF(getTargetTriple())), isLittle(LittleEndian) {
  initAsmInfo();

  if (TT.isOSBinFormatMachO()) {
    this->Options.TrapUnreachable = true;
    this->Options.NoTrapAfterNoreturn = true;
  }

  if (getMCAsmInfo()->usesWindowsCFI()) {
    // Unwinding can get confused if the last instruction in an
    // exception-handling region (function, funclet, try block, etc.)
    // is a call.
    //
    // FIXME: We could elide the trap if the next instruction would be in
    // the same region anyway.
    this->Options.TrapUnreachable = true;
  }

  if (this->Options.TLSSize == 0) // default
    this->Options.TLSSize = 24;
  if ((getCodeModel() == CodeModel::Small ||
       getCodeModel() == CodeModel::Kernel) &&
      this->Options.TLSSize > 32)
    // for the small (and kernel) code model, the maximum TLS size is 4GiB
    this->Options.TLSSize = 32;
  else if (getCodeModel() == CodeModel::Tiny && this->Options.TLSSize > 24)
    // for the tiny code model, the maximum TLS size is 1MiB (< 16MiB)
    this->Options.TLSSize = 24;

  // Enable GlobalISel at or below EnableGlobalISelAt0, unless this is
  // MachO/CodeModel::Large, which GlobalISel does not support.
  if (getOptLevel() <= EnableGlobalISelAtO &&
      TT.getArch() != Triple::aarch64_32 &&
      TT.getEnvironment() != Triple::GNUILP32 && 
      !(getCodeModel() == CodeModel::Large && TT.isOSBinFormatMachO())) {
    setGlobalISel(true);
    setGlobalISelAbort(GlobalISelAbortMode::Disable);
  }

  // AArch64 supports the MachineOutliner.
  setMachineOutliner(true);

  // AArch64 supports default outlining behaviour.
  setSupportsDefaultOutlining(true);

  // AArch64 supports the debug entry values.
  setSupportsDebugEntryValues(true);
}

AArch64TargetMachine::~AArch64TargetMachine() = default;

const AArch64Subtarget *
AArch64TargetMachine::getSubtargetImpl(const Function &F) const {
  Attribute CPUAttr = F.getFnAttribute("target-cpu");
  Attribute FSAttr = F.getFnAttribute("target-features");

  std::string CPU = 
      CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU; 
  std::string FS = 
      FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS; 

  auto &I = SubtargetMap[CPU + FS];
  if (!I) {
    // This needs to be done before we create a new subtarget since any
    // creation will depend on the TM and the code generation flags on the
    // function that reside in TargetOptions.
    resetTargetOptions(F);
    I = std::make_unique<AArch64Subtarget>(TargetTriple, CPU, FS, *this,
                                            isLittle);
  }
  return I.get();
}

void AArch64leTargetMachine::anchor() { }

AArch64leTargetMachine::AArch64leTargetMachine(
    const Target &T, const Triple &TT, StringRef CPU, StringRef FS,
    const TargetOptions &Options, Optional<Reloc::Model> RM,
    Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT)
    : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, true) {}

void AArch64beTargetMachine::anchor() { }

AArch64beTargetMachine::AArch64beTargetMachine(
    const Target &T, const Triple &TT, StringRef CPU, StringRef FS,
    const TargetOptions &Options, Optional<Reloc::Model> RM,
    Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT)
    : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {}

namespace {

/// AArch64 Code Generator Pass Configuration Options.
class AArch64PassConfig : public TargetPassConfig {
public:
  AArch64PassConfig(AArch64TargetMachine &TM, PassManagerBase &PM)
      : TargetPassConfig(TM, PM) {
    if (TM.getOptLevel() != CodeGenOpt::None)
      substitutePass(&PostRASchedulerID, &PostMachineSchedulerID);
  }

  AArch64TargetMachine &getAArch64TargetMachine() const {
    return getTM<AArch64TargetMachine>();
  }

  ScheduleDAGInstrs *
  createMachineScheduler(MachineSchedContext *C) const override {
    const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>();
    ScheduleDAGMILive *DAG = createGenericSchedLive(C);
    DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
    DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
    if (ST.hasFusion())
      DAG->addMutation(createAArch64MacroFusionDAGMutation());
    return DAG;
  }

  ScheduleDAGInstrs *
  createPostMachineScheduler(MachineSchedContext *C) const override {
    const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>();
    if (ST.hasFusion()) {
      // Run the Macro Fusion after RA again since literals are expanded from
      // pseudos then (v. addPreSched2()).
      ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
      DAG->addMutation(createAArch64MacroFusionDAGMutation());
      return DAG;
    }

    return nullptr;
  }

  void addIRPasses()  override;
  bool addPreISel() override;
  bool addInstSelector() override;
  bool addIRTranslator() override;
  void addPreLegalizeMachineIR() override;
  bool addLegalizeMachineIR() override;
  void addPreRegBankSelect() override;
  bool addRegBankSelect() override;
  void addPreGlobalInstructionSelect() override;
  bool addGlobalInstructionSelect() override;
  bool addILPOpts() override;
  void addPreRegAlloc() override;
  void addPostRegAlloc() override;
  void addPreSched2() override;
  void addPreEmitPass() override;

  std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
};

} // end anonymous namespace

TargetTransformInfo
AArch64TargetMachine::getTargetTransformInfo(const Function &F) {
  return TargetTransformInfo(AArch64TTIImpl(this, F));
}

TargetPassConfig *AArch64TargetMachine::createPassConfig(PassManagerBase &PM) {
  return new AArch64PassConfig(*this, PM);
}

std::unique_ptr<CSEConfigBase> AArch64PassConfig::getCSEConfig() const {
  return getStandardCSEConfigForOpt(TM->getOptLevel());
}

void AArch64PassConfig::addIRPasses() {
  // Always expand atomic operations, we don't deal with atomicrmw or cmpxchg
  // ourselves.
  addPass(createAtomicExpandPass());

  // Expand any SVE vector library calls that we can't code generate directly.
  if (EnableSVEIntrinsicOpts && TM->getOptLevel() == CodeGenOpt::Aggressive)
    addPass(createSVEIntrinsicOptsPass());

  // Cmpxchg instructions are often used with a subsequent comparison to
  // determine whether it succeeded. We can exploit existing control-flow in
  // ldrex/strex loops to simplify this, but it needs tidying up.
  if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
    addPass(createCFGSimplificationPass(SimplifyCFGOptions() 
                                            .forwardSwitchCondToPhi(true) 
                                            .convertSwitchToLookupTable(true) 
                                            .needCanonicalLoops(false) 
                                            .hoistCommonInsts(true) 
                                            .sinkCommonInsts(true))); 

  // Run LoopDataPrefetch
  //
  // Run this before LSR to remove the multiplies involved in computing the
  // pointer values N iterations ahead.
  if (TM->getOptLevel() != CodeGenOpt::None) {
    if (EnableLoopDataPrefetch)
      addPass(createLoopDataPrefetchPass());
    if (EnableFalkorHWPFFix)
      addPass(createFalkorMarkStridedAccessesPass());
  }

  TargetPassConfig::addIRPasses();

  addPass(createAArch64StackTaggingPass(
      /*IsOptNone=*/TM->getOptLevel() == CodeGenOpt::None));

  // Match interleaved memory accesses to ldN/stN intrinsics.
  if (TM->getOptLevel() != CodeGenOpt::None) {
    addPass(createInterleavedLoadCombinePass());
    addPass(createInterleavedAccessPass());
  }

  if (TM->getOptLevel() == CodeGenOpt::Aggressive && EnableGEPOpt) {
    // Call SeparateConstOffsetFromGEP pass to extract constants within indices
    // and lower a GEP with multiple indices to either arithmetic operations or
    // multiple GEPs with single index.
    addPass(createSeparateConstOffsetFromGEPPass(true));
    // Call EarlyCSE pass to find and remove subexpressions in the lowered
    // result.
    addPass(createEarlyCSEPass());
    // Do loop invariant code motion in case part of the lowered result is
    // invariant.
    addPass(createLICMPass());
  }

  // Add Control Flow Guard checks.
  if (TM->getTargetTriple().isOSWindows())
    addPass(createCFGuardCheckPass());
}

// Pass Pipeline Configuration
bool AArch64PassConfig::addPreISel() {
  // Run promote constant before global merge, so that the promoted constants
  // get a chance to be merged
  if (TM->getOptLevel() != CodeGenOpt::None && EnablePromoteConstant)
    addPass(createAArch64PromoteConstantPass());
  // FIXME: On AArch64, this depends on the type.
  // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes().
  // and the offset has to be a multiple of the related size in bytes.
  if ((TM->getOptLevel() != CodeGenOpt::None &&
       EnableGlobalMerge == cl::BOU_UNSET) ||
      EnableGlobalMerge == cl::BOU_TRUE) {
    bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) &&
                               (EnableGlobalMerge == cl::BOU_UNSET);

    // Merging of extern globals is enabled by default on non-Mach-O as we
    // expect it to be generally either beneficial or harmless. On Mach-O it
    // is disabled as we emit the .subsections_via_symbols directive which
    // means that merging extern globals is not safe.
    bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO();

    // FIXME: extern global merging is only enabled when we optimise for size
    // because there are some regressions with it also enabled for performance.
    if (!OnlyOptimizeForSize)
      MergeExternalByDefault = false;

    addPass(createGlobalMergePass(TM, 4095, OnlyOptimizeForSize,
                                  MergeExternalByDefault));
  }

  return false;
}

bool AArch64PassConfig::addInstSelector() {
  addPass(createAArch64ISelDag(getAArch64TargetMachine(), getOptLevel()));

  // For ELF, cleanup any local-dynamic TLS accesses (i.e. combine as many
  // references to _TLS_MODULE_BASE_ as possible.
  if (TM->getTargetTriple().isOSBinFormatELF() &&
      getOptLevel() != CodeGenOpt::None)
    addPass(createAArch64CleanupLocalDynamicTLSPass());

  return false;
}

bool AArch64PassConfig::addIRTranslator() {
  addPass(new IRTranslator(getOptLevel())); 
  return false;
}

void AArch64PassConfig::addPreLegalizeMachineIR() {
  bool IsOptNone = getOptLevel() == CodeGenOpt::None;
  addPass(createAArch64PreLegalizerCombiner(IsOptNone)); 
}

bool AArch64PassConfig::addLegalizeMachineIR() {
  addPass(new Legalizer());
  return false;
}

void AArch64PassConfig::addPreRegBankSelect() {
  bool IsOptNone = getOptLevel() == CodeGenOpt::None;
  if (!IsOptNone)
    addPass(createAArch64PostLegalizerCombiner(IsOptNone)); 
  addPass(createAArch64PostLegalizerLowering()); 
}

bool AArch64PassConfig::addRegBankSelect() {
  addPass(new RegBankSelect());
  return false;
}

void AArch64PassConfig::addPreGlobalInstructionSelect() {
  addPass(new Localizer());
}

bool AArch64PassConfig::addGlobalInstructionSelect() {
  addPass(new InstructionSelect());
  if (getOptLevel() != CodeGenOpt::None) 
    addPass(createAArch64PostSelectOptimize()); 
  return false;
}

bool AArch64PassConfig::addILPOpts() {
  if (EnableCondOpt)
    addPass(createAArch64ConditionOptimizerPass());
  if (EnableCCMP)
    addPass(createAArch64ConditionalCompares());
  if (EnableMCR)
    addPass(&MachineCombinerID);
  if (EnableCondBrTuning)
    addPass(createAArch64CondBrTuning());
  if (EnableEarlyIfConversion)
    addPass(&EarlyIfConverterID);
  if (EnableStPairSuppress)
    addPass(createAArch64StorePairSuppressPass());
  addPass(createAArch64SIMDInstrOptPass());
  if (TM->getOptLevel() != CodeGenOpt::None)
    addPass(createAArch64StackTaggingPreRAPass());
  return true;
}

void AArch64PassConfig::addPreRegAlloc() {
  // Change dead register definitions to refer to the zero register.
  if (TM->getOptLevel() != CodeGenOpt::None && EnableDeadRegisterElimination)
    addPass(createAArch64DeadRegisterDefinitions());

  // Use AdvSIMD scalar instructions whenever profitable.
  if (TM->getOptLevel() != CodeGenOpt::None && EnableAdvSIMDScalar) {
    addPass(createAArch64AdvSIMDScalar());
    // The AdvSIMD pass may produce copies that can be rewritten to
    // be register coalescer friendly.
    addPass(&PeepholeOptimizerID);
  }
}

void AArch64PassConfig::addPostRegAlloc() {
  // Remove redundant copy instructions.
  if (TM->getOptLevel() != CodeGenOpt::None && EnableRedundantCopyElimination)
    addPass(createAArch64RedundantCopyEliminationPass());

  if (TM->getOptLevel() != CodeGenOpt::None && usingDefaultRegAlloc())
    // Improve performance for some FP/SIMD code for A57.
    addPass(createAArch64A57FPLoadBalancing());
}

void AArch64PassConfig::addPreSched2() {
  // Expand some pseudo instructions to allow proper scheduling.
  addPass(createAArch64ExpandPseudoPass());
  // Use load/store pair instructions when possible.
  if (TM->getOptLevel() != CodeGenOpt::None) {
    if (EnableLoadStoreOpt)
      addPass(createAArch64LoadStoreOptimizationPass());
  }

  // The AArch64SpeculationHardeningPass destroys dominator tree and natural
  // loop info, which is needed for the FalkorHWPFFixPass and also later on.
  // Therefore, run the AArch64SpeculationHardeningPass before the
  // FalkorHWPFFixPass to avoid recomputing dominator tree and natural loop
  // info.
  addPass(createAArch64SpeculationHardeningPass());

  addPass(createAArch64IndirectThunks());
  addPass(createAArch64SLSHardeningPass());

  if (TM->getOptLevel() != CodeGenOpt::None) {
    if (EnableFalkorHWPFFix)
      addPass(createFalkorHWPFFixPass());
  }
}

void AArch64PassConfig::addPreEmitPass() {
  // Machine Block Placement might have created new opportunities when run
  // at O3, where the Tail Duplication Threshold is set to 4 instructions.
  // Run the load/store optimizer once more.
  if (TM->getOptLevel() >= CodeGenOpt::Aggressive && EnableLoadStoreOpt)
    addPass(createAArch64LoadStoreOptimizationPass());

  if (EnableA53Fix835769)
    addPass(createAArch64A53Fix835769());

  if (EnableBranchTargets)
    addPass(createAArch64BranchTargetsPass());

  // Relax conditional branch instructions if they're otherwise out of
  // range of their destination.
  if (BranchRelaxation)
    addPass(&BranchRelaxationPassID);

  // Identify valid longjmp targets for Windows Control Flow Guard.
  if (TM->getTargetTriple().isOSWindows())
    addPass(createCFGuardLongjmpPass());

  if (TM->getOptLevel() != CodeGenOpt::None && EnableCompressJumpTables)
    addPass(createAArch64CompressJumpTablesPass());

  if (TM->getOptLevel() != CodeGenOpt::None && EnableCollectLOH &&
      TM->getTargetTriple().isOSBinFormatMachO())
    addPass(createAArch64CollectLOHPass());

  // SVE bundles move prefixes with destructive operations.
  addPass(createUnpackMachineBundles(nullptr));
}

yaml::MachineFunctionInfo *
AArch64TargetMachine::createDefaultFuncInfoYAML() const {
  return new yaml::AArch64FunctionInfo();
}

yaml::MachineFunctionInfo *
AArch64TargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
  const auto *MFI = MF.getInfo<AArch64FunctionInfo>();
  return new yaml::AArch64FunctionInfo(*MFI);
}

bool AArch64TargetMachine::parseMachineFunctionInfo(
    const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS,
    SMDiagnostic &Error, SMRange &SourceRange) const {
  const auto &YamlMFI =
      reinterpret_cast<const yaml::AArch64FunctionInfo &>(MFI);
  MachineFunction &MF = PFS.MF;
  MF.getInfo<AArch64FunctionInfo>()->initializeBaseYamlFields(YamlMFI);
  return false;
}