aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Target/AArch64/AArch64SchedA55.td
blob: 0b45a3ba09e8bf418cb48d6552640b1e9749ebd0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
//==- AArch64SchedCortexA55.td - ARM Cortex-A55 Scheduling Definitions -*- tablegen -*-=// 
// 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
// See https://llvm.org/LICENSE.txt for license information. 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
// 
//===----------------------------------------------------------------------===// 
// 
// This file defines the machine model for the ARM Cortex-A55 processors. 
// 
//===----------------------------------------------------------------------===// 
 
// ===---------------------------------------------------------------------===// 
// The following definitions describe the per-operand machine model. 
// This works with MachineScheduler. See MCSchedModel.h for details. 
 
// Cortex-A55 machine model for scheduling and other instruction cost heuristics. 
def CortexA55Model : SchedMachineModel { 
  let MicroOpBufferSize = 0;  // The Cortex-A55 is an in-order processor 
  let IssueWidth = 2;         // It dual-issues under most circumstances 
  let LoadLatency = 4;        // Cycles for loads to access the cache. The 
                              // optimisation guide shows that most loads have 
                              // a latency of 3, but some have a latency of 4 
                              // or 5. Setting it 4 looked to be good trade-off. 
  let MispredictPenalty = 8;  // A branch direction mispredict. 
  let PostRAScheduler = 1;    // Enable PostRA scheduler pass. 
  let CompleteModel = 0;      // Covers instructions applicable to Cortex-A55. 
 
  list<Predicate> UnsupportedFeatures = [HasSVE]; 
 
  // FIXME: Remove when all errors have been fixed. 
  let FullInstRWOverlapCheck = 0; 
} 
 
//===----------------------------------------------------------------------===// 
// Define each kind of processor resource and number available. 
 
// Modeling each pipeline as a ProcResource using the BufferSize = 0 since the 
// Cortex-A55 is in-order. 
 
def CortexA55UnitALU    : ProcResource<2> { let BufferSize = 0; } // Int ALU 
def CortexA55UnitMAC    : ProcResource<1> { let BufferSize = 0; } // Int MAC, 64-bi wide 
def CortexA55UnitDiv    : ProcResource<1> { let BufferSize = 0; } // Int Division, not pipelined 
def CortexA55UnitLd     : ProcResource<1> { let BufferSize = 0; } // Load pipe 
def CortexA55UnitSt     : ProcResource<1> { let BufferSize = 0; } // Store pipe 
def CortexA55UnitB      : ProcResource<1> { let BufferSize = 0; } // Branch 
 
// The FP DIV/SQRT instructions execute totally differently from the FP ALU 
// instructions, which can mostly be dual-issued; that's why for now we model 
// them with 2 resources. 
def CortexA55UnitFPALU  : ProcResource<2> { let BufferSize = 0; } // FP ALU 
def CortexA55UnitFPMAC  : ProcResource<2> { let BufferSize = 0; } // FP MAC 
def CortexA55UnitFPDIV  : ProcResource<1> { let BufferSize = 0; } // FP Div/SQRT, 64/128 
 
//===----------------------------------------------------------------------===// 
// Subtarget-specific SchedWrite types 
 
let SchedModel = CortexA55Model in { 
 
// These latencies are modeled without taking into account forwarding paths 
// (the software optimisation guide lists latencies taking into account 
// typical forwarding paths). 
def : WriteRes<WriteImm, [CortexA55UnitALU]> { let Latency = 3; }    // MOVN, MOVZ 
def : WriteRes<WriteI, [CortexA55UnitALU]> { let Latency = 3; }      // ALU 
def : WriteRes<WriteISReg, [CortexA55UnitALU]> { let Latency = 3; }  // ALU of Shifted-Reg 
def : WriteRes<WriteIEReg, [CortexA55UnitALU]> { let Latency = 3; }  // ALU of Extended-Reg 
def : WriteRes<WriteExtr, [CortexA55UnitALU]> { let Latency = 3; }   // EXTR from a reg pair 
def : WriteRes<WriteIS, [CortexA55UnitALU]> { let Latency = 3; }     // Shift/Scale 
 
// MAC 
def : WriteRes<WriteIM32, [CortexA55UnitMAC]> { let Latency = 4; }   // 32-bit Multiply 
def : WriteRes<WriteIM64, [CortexA55UnitMAC]> { let Latency = 4; }   // 64-bit Multiply 
 
// Div 
def : WriteRes<WriteID32, [CortexA55UnitDiv]> { 
  let Latency = 8; let ResourceCycles = [8]; 
} 
def : WriteRes<WriteID64, [CortexA55UnitDiv]> { 
  let Latency = 8; let ResourceCycles = [8]; 
} 
 
// Load 
def : WriteRes<WriteLD, [CortexA55UnitLd]> { let Latency = 3; } 
def : WriteRes<WriteLDIdx, [CortexA55UnitLd]> { let Latency = 4; } 
def : WriteRes<WriteLDHi, [CortexA55UnitLd]> { let Latency = 5; } 
 
// Vector Load - Vector loads take 1-5 cycles to issue. For the WriteVecLd 
//               below, choosing the median of 3 which makes the latency 6. 
// An extra cycle is needed to get the swizzling right. 
def : WriteRes<WriteVLD, [CortexA55UnitLd]> { let Latency = 6; 
                                           let ResourceCycles = [3]; } 
def CortexA55WriteVLD1 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 4; } 
def CortexA55WriteVLD2 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 5; 
                                                  let ResourceCycles = [2]; } 
def CortexA55WriteVLD3 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 6; 
                                                  let ResourceCycles = [3]; } 
def CortexA55WriteVLD4 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 7; 
                                                  let ResourceCycles = [4]; } 
def CortexA55WriteVLD5 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 8; 
                                                  let ResourceCycles = [5]; } 
def CortexA55WriteVLD6 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 9; 
                                                  let ResourceCycles = [6]; } 
def CortexA55WriteVLD7 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 10; 
                                                  let ResourceCycles = [7]; } 
def CortexA55WriteVLD8 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 11; 
                                                  let ResourceCycles = [8]; } 
 
// Pre/Post Indexing - Performed as part of address generation 
def : WriteRes<WriteAdr, []> { let Latency = 0; } 
 
// Store 
def : WriteRes<WriteST, [CortexA55UnitSt]> { let Latency = 4; } 
def : WriteRes<WriteSTP, [CortexA55UnitSt]> { let Latency = 4; } 
def : WriteRes<WriteSTIdx, [CortexA55UnitSt]> { let Latency = 4; } 
def : WriteRes<WriteSTX, [CortexA55UnitSt]> { let Latency = 4; } 
 
// Vector Store - Similar to vector loads, can take 1-3 cycles to issue. 
def : WriteRes<WriteVST, [CortexA55UnitSt]> { let Latency = 5; 
                                          let ResourceCycles = [2];} 
def CortexA55WriteVST1 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 4; } 
def CortexA55WriteVST2 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 5; 
                                                  let ResourceCycles = [2]; } 
def CortexA55WriteVST3 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 6; 
                                                  let ResourceCycles = [3]; } 
def CortexA55WriteVST4 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 5; 
                                                  let ResourceCycles = [4]; } 
 
def : WriteRes<WriteAtomic, []> { let Unsupported = 1; } 
 
// Branch 
def : WriteRes<WriteBr, [CortexA55UnitB]>; 
def : WriteRes<WriteBrReg, [CortexA55UnitB]>; 
def : WriteRes<WriteSys, [CortexA55UnitB]>; 
def : WriteRes<WriteBarrier, [CortexA55UnitB]>; 
def : WriteRes<WriteHint, [CortexA55UnitB]>; 
 
// FP ALU 
//   As WriteF result is produced in F5 and it can be mostly forwarded 
//   to consumer at F1, the effectively latency is set as 4. 
def : WriteRes<WriteF, [CortexA55UnitFPALU]> { let Latency = 4; } 
def : WriteRes<WriteFCmp, [CortexA55UnitFPALU]> { let Latency = 3; } 
def : WriteRes<WriteFCvt, [CortexA55UnitFPALU]> { let Latency = 4; } 
def : WriteRes<WriteFCopy, [CortexA55UnitFPALU]> { let Latency = 3; } 
def : WriteRes<WriteFImm, [CortexA55UnitFPALU]> { let Latency = 3; } 
def : WriteRes<WriteV, [CortexA55UnitFPALU]> { let Latency = 4; } 
 
// FP ALU specific new schedwrite definitions 
def CortexA55WriteFPALU_F3 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 3;} 
def CortexA55WriteFPALU_F4 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 4;} 
def CortexA55WriteFPALU_F5 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 5;} 
 
// FP Mul, Div, Sqrt. Div/Sqrt are not pipelined 
def : WriteRes<WriteFMul, [CortexA55UnitFPMAC]> { let Latency = 4; } 
def : WriteRes<WriteFDiv, [CortexA55UnitFPDIV]> { let Latency = 22; 
                                            let ResourceCycles = [29]; } 
def CortexA55WriteFMAC : SchedWriteRes<[CortexA55UnitFPMAC]> { let Latency = 4; } 
def CortexA55WriteFDivHP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 8; 
                                                     let ResourceCycles = [5]; } 
def CortexA55WriteFDivSP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 13; 
                                                     let ResourceCycles = [10]; } 
def CortexA55WriteFDivDP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 22; 
                                                     let ResourceCycles = [19]; } 
def CortexA55WriteFSqrtHP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 8; 
                                                      let ResourceCycles = [5]; } 
def CortexA55WriteFSqrtSP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 12; 
                                                      let ResourceCycles = [9]; } 
def CortexA55WriteFSqrtDP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 22; 
                                                      let ResourceCycles = [19]; } 
 
//===----------------------------------------------------------------------===// 
// Subtarget-specific SchedRead types. 
 
def : ReadAdvance<ReadVLD, 0>; 
def : ReadAdvance<ReadExtrHi, 1>; 
def : ReadAdvance<ReadAdrBase, 1>; 
 
// ALU - ALU input operands are generally needed in EX1. An operand produced in 
//       in say EX2 can be forwarded for consumption to ALU in EX1, thereby 
//       allowing back-to-back ALU operations such as add. If an operand requires 
//       a shift, it will, however, be required in ISS stage. 
def : ReadAdvance<ReadI, 2, [WriteImm,WriteI, 
                             WriteISReg, WriteIEReg,WriteIS, 
                             WriteID32,WriteID64, 
                             WriteIM32,WriteIM64]>; 
// Shifted operand 
def CortexA55ReadShifted : SchedReadAdvance<1, [WriteImm,WriteI, 
                                          WriteISReg, WriteIEReg,WriteIS, 
                                          WriteID32,WriteID64, 
                                          WriteIM32,WriteIM64]>; 
def CortexA55ReadNotShifted : SchedReadAdvance<2, [WriteImm,WriteI, 
                                             WriteISReg, WriteIEReg,WriteIS, 
                                             WriteID32,WriteID64, 
                                             WriteIM32,WriteIM64]>; 
def CortexA55ReadISReg : SchedReadVariant<[ 
        SchedVar<RegShiftedPred, [CortexA55ReadShifted]>, 
        SchedVar<NoSchedPred, [CortexA55ReadNotShifted]>]>; 
def : SchedAlias<ReadISReg, CortexA55ReadISReg>; 
 
def CortexA55ReadIEReg : SchedReadVariant<[ 
        SchedVar<RegExtendedPred, [CortexA55ReadShifted]>, 
        SchedVar<NoSchedPred, [CortexA55ReadNotShifted]>]>; 
def : SchedAlias<ReadIEReg, CortexA55ReadIEReg>; 
 
// MUL 
def : ReadAdvance<ReadIM, 1, [WriteImm,WriteI, 
                              WriteISReg, WriteIEReg,WriteIS, 
                              WriteID32,WriteID64, 
                              WriteIM32,WriteIM64]>; 
def : ReadAdvance<ReadIMA, 2, [WriteImm,WriteI, 
                               WriteISReg, WriteIEReg,WriteIS, 
                               WriteID32,WriteID64, 
                               WriteIM32,WriteIM64]>; 
 
// Div 
def : ReadAdvance<ReadID, 1, [WriteImm,WriteI, 
                              WriteISReg, WriteIEReg,WriteIS, 
                              WriteID32,WriteID64, 
                              WriteIM32,WriteIM64]>; 
 
//===----------------------------------------------------------------------===// 
// Subtarget-specific InstRWs. 
 
//--- 
// Miscellaneous 
//--- 
def : InstRW<[CortexA55WriteVLD2,CortexA55WriteVLD1], (instregex "LDP.*")>; 
def : InstRW<[WriteI], (instrs COPY)>; 
//--- 
// Vector Loads - 64-bit per cycle 
//--- 
//   1-element structures 
def : InstRW<[CortexA55WriteVLD1], (instregex "LD1i(8|16|32|64)$")>;                // single element 
def : InstRW<[CortexA55WriteVLD1], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; // replicate 
def : InstRW<[CortexA55WriteVLD1], (instregex "LD1Onev(8b|4h|2s|1d)$")>; 
def : InstRW<[CortexA55WriteVLD2], (instregex "LD1Onev(16b|8h|4s|2d)$")>; 
def : InstRW<[CortexA55WriteVLD2], (instregex "LD1Twov(8b|4h|2s|1d)$")>; // multiple structures 
def : InstRW<[CortexA55WriteVLD4], (instregex "LD1Twov(16b|8h|4s|2d)$")>; 
def : InstRW<[CortexA55WriteVLD3], (instregex "LD1Threev(8b|4h|2s|1d)$")>; 
def : InstRW<[CortexA55WriteVLD6], (instregex "LD1Threev(16b|8h|4s|2d)$")>; 
def : InstRW<[CortexA55WriteVLD4], (instregex "LD1Fourv(8b|4h|2s|1d)$")>; 
def : InstRW<[CortexA55WriteVLD8], (instregex "LD1Fourv(16b|8h|4s|2d)$")>; 
 
def : InstRW<[CortexA55WriteVLD1, WriteAdr], (instregex "LD1i(8|16|32|64)_POST$")>; 
def : InstRW<[CortexA55WriteVLD1, WriteAdr], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; 
def : InstRW<[CortexA55WriteVLD1, WriteAdr], (instregex "LD1Onev(8b|4h|2s|1d)_POST$")>; 
def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD1Onev(16b|8h|4s|2d)_POST$")>; 
def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD1Twov(8b|4h|2s|1d)_POST$")>; 
def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD1Twov(16b|8h|4s|2d)_POST$")>; 
def : InstRW<[CortexA55WriteVLD3, WriteAdr], (instregex "LD1Threev(8b|4h|2s|1d)_POST$")>; 
def : InstRW<[CortexA55WriteVLD6, WriteAdr], (instregex "LD1Threev(16b|8h|4s|2d)_POST$")>; 
def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD1Fourv(8b|4h|2s|1d)_POST$")>; 
def : InstRW<[CortexA55WriteVLD8, WriteAdr], (instregex "LD1Fourv(16b|8h|4s|2d)_POST$")>; 
 
//    2-element structures 
def : InstRW<[CortexA55WriteVLD2], (instregex "LD2i(8|16|32|64)$")>; 
def : InstRW<[CortexA55WriteVLD2], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 
def : InstRW<[CortexA55WriteVLD2], (instregex "LD2Twov(8b|4h|2s)$")>; 
def : InstRW<[CortexA55WriteVLD4], (instregex "LD2Twov(16b|8h|4s|2d)$")>; 
 
def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD2i(8|16|32|64)(_POST)?$")>; 
def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)(_POST)?$")>; 
def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD2Twov(8b|4h|2s)(_POST)?$")>; 
def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD2Twov(16b|8h|4s|2d)(_POST)?$")>; 
 
//    3-element structures 
def : InstRW<[CortexA55WriteVLD2], (instregex "LD3i(8|16|32|64)$")>; 
def : InstRW<[CortexA55WriteVLD2], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 
def : InstRW<[CortexA55WriteVLD3], (instregex "LD3Threev(8b|4h|2s|1d)$")>; 
def : InstRW<[CortexA55WriteVLD6], (instregex "LD3Threev(16b|8h|4s|2d)$")>; 
 
def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD3i(8|16|32|64)_POST$")>; 
def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; 
def : InstRW<[CortexA55WriteVLD3, WriteAdr], (instregex "LD3Threev(8b|4h|2s|1d)_POST$")>; 
def : InstRW<[CortexA55WriteVLD6, WriteAdr], (instregex "LD3Threev(16b|8h|4s|2d)_POST$")>; 
 
//    4-element structures 
def : InstRW<[CortexA55WriteVLD2], (instregex "LD4i(8|16|32|64)$")>;                // load single 4-el structure to one lane of 4 regs. 
def : InstRW<[CortexA55WriteVLD2], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; // load single 4-el structure, replicate to all lanes of 4 regs. 
def : InstRW<[CortexA55WriteVLD4], (instregex "LD4Fourv(8b|4h|2s|1d)$")>;           // load multiple 4-el structures to 4 regs. 
def : InstRW<[CortexA55WriteVLD8], (instregex "LD4Fourv(16b|8h|4s|2d)$")>; 
 
def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD4i(8|16|32|64)_POST$")>; 
def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; 
def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD4Fourv(8b|4h|2s|1d)_POST$")>; 
def : InstRW<[CortexA55WriteVLD8, WriteAdr], (instregex "LD4Fourv(16b|8h|4s|2d)_POST$")>; 
 
//--- 
// Vector Stores 
//--- 
def : InstRW<[CortexA55WriteVST1], (instregex "ST1i(8|16|32|64)$")>; 
def : InstRW<[CortexA55WriteVST1], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 
def : InstRW<[CortexA55WriteVST1], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 
def : InstRW<[CortexA55WriteVST2], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 
def : InstRW<[CortexA55WriteVST4], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 
def : InstRW<[CortexA55WriteVST1, WriteAdr], (instregex "ST1i(8|16|32|64)_POST$")>; 
def : InstRW<[CortexA55WriteVST1, WriteAdr], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; 
def : InstRW<[CortexA55WriteVST1, WriteAdr], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; 
def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; 
def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; 
 
def : InstRW<[CortexA55WriteVST2], (instregex "ST2i(8|16|32|64)$")>; 
def : InstRW<[CortexA55WriteVST2], (instregex "ST2Twov(8b|4h|2s)$")>; 
def : InstRW<[CortexA55WriteVST4], (instregex "ST2Twov(16b|8h|4s|2d)$")>; 
def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST2i(8|16|32|64)_POST$")>; 
def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST2Twov(8b|4h|2s)_POST$")>; 
def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST2Twov(16b|8h|4s|2d)_POST$")>; 
 
def : InstRW<[CortexA55WriteVST2], (instregex "ST3i(8|16|32|64)$")>; 
def : InstRW<[CortexA55WriteVST4], (instregex "ST3Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 
def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST3i(8|16|32|64)_POST$")>; 
def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST3Threev(8b|4h|2s|1d|2d|16b|8h|4s|4d)_POST$")>; 
 
def : InstRW<[CortexA55WriteVST2], (instregex "ST4i(8|16|32|64)$")>; 
def : InstRW<[CortexA55WriteVST4], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 
def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST4i(8|16|32|64)_POST$")>; 
def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; 
 
//--- 
// Floating Point Conversions, MAC, DIV, SQRT 
//--- 
def : InstRW<[CortexA55WriteFPALU_F3], (instregex "^FCVT[ALMNPZ][SU](S|U)?(W|X)")>; 
def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^FCVT(X)?[ALMNPXZ](S|U|N)?v")>; 
 
def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^(S|U)CVTF(S|U)(W|X)(H|S|D)")>; 
def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^(S|U)CVTF(h|s|d)")>; 
def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^(S|U)CVTFv")>; 
 
def : InstRW<[CortexA55WriteFMAC], (instregex "^FN?M(ADD|SUB).*")>; 
def : InstRW<[CortexA55WriteFMAC], (instregex "^FML(A|S).*")>; 
def : InstRW<[CortexA55WriteFDivHP], (instrs FDIVHrr)>; 
def : InstRW<[CortexA55WriteFDivSP], (instrs FDIVSrr)>; 
def : InstRW<[CortexA55WriteFDivDP], (instrs FDIVDrr)>; 
def : InstRW<[CortexA55WriteFDivHP], (instregex "^FDIVv.*16$")>; 
def : InstRW<[CortexA55WriteFDivSP], (instregex "^FDIVv.*32$")>; 
def : InstRW<[CortexA55WriteFDivDP], (instregex "^FDIVv.*64$")>; 
def : InstRW<[CortexA55WriteFSqrtHP], (instregex "^.*SQRT.*16$")>; 
def : InstRW<[CortexA55WriteFSqrtSP], (instregex "^.*SQRT.*32$")>; 
def : InstRW<[CortexA55WriteFSqrtDP], (instregex "^.*SQRT.*64$")>; 
}