aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Support/Unix/Signals.inc
blob: 8906d28dddcbf26f3957f9b6dcbc035998495b3c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
//===- Signals.cpp - Generic Unix Signals Implementation -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines some helpful functions for dealing with the possibility of
// Unix signals occurring while your program is running.
//
//===----------------------------------------------------------------------===//
//
// This file is extremely careful to only do signal-safe things while in a
// signal handler. In particular, memory allocation and acquiring a mutex
// while in a signal handler should never occur. ManagedStatic isn't usable from
// a signal handler for 2 reasons:
//
//  1. Creating a new one allocates.
//  2. The signal handler could fire while llvm_shutdown is being processed, in
//     which case the ManagedStatic is in an unknown state because it could
//     already have been destroyed, or be in the process of being destroyed.
//
// Modifying the behavior of the signal handlers (such as registering new ones)
// can acquire a mutex, but all this guarantees is that the signal handler
// behavior is only modified by one thread at a time. A signal handler can still
// fire while this occurs!
//
// Adding work to a signal handler requires lock-freedom (and assume atomics are
// always lock-free) because the signal handler could fire while new work is
// being added.
//
//===----------------------------------------------------------------------===//

#include "Unix.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Config/config.h"
#include "llvm/Demangle/Demangle.h"
#include "llvm/Support/ExitCodes.h" 
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FileUtilities.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <string>
#ifdef HAVE_BACKTRACE
# include BACKTRACE_HEADER         // For backtrace().
#endif
#if HAVE_SIGNAL_H
#include <signal.h>
#endif
#if HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#if HAVE_DLFCN_H
#include <dlfcn.h>
#endif
#if HAVE_MACH_MACH_H
#include <mach/mach.h>
#endif
#if HAVE_LINK_H
#include <link.h>
#endif
#ifdef HAVE__UNWIND_BACKTRACE
// FIXME: We should be able to use <unwind.h> for any target that has an
// _Unwind_Backtrace function, but on FreeBSD the configure test passes
// despite the function not existing, and on Android, <unwind.h> conflicts
// with <link.h>.
#ifdef __GLIBC__
#include <unwind.h>
#else
#undef HAVE__UNWIND_BACKTRACE
#endif
#endif

using namespace llvm;

static RETSIGTYPE SignalHandler(int Sig);  // defined below.
static RETSIGTYPE InfoSignalHandler(int Sig);  // defined below.

using SignalHandlerFunctionType = void (*)();
/// The function to call if ctrl-c is pressed.
static std::atomic<SignalHandlerFunctionType> InterruptFunction =
    ATOMIC_VAR_INIT(nullptr);
static std::atomic<SignalHandlerFunctionType> InfoSignalFunction =
    ATOMIC_VAR_INIT(nullptr);
/// The function to call on SIGPIPE (one-time use only).
static std::atomic<SignalHandlerFunctionType> OneShotPipeSignalFunction =
    ATOMIC_VAR_INIT(nullptr);

namespace {
/// Signal-safe removal of files.
/// Inserting and erasing from the list isn't signal-safe, but removal of files
/// themselves is signal-safe. Memory is freed when the head is freed, deletion
/// is therefore not signal-safe either.
class FileToRemoveList {
  std::atomic<char *> Filename = ATOMIC_VAR_INIT(nullptr);
  std::atomic<FileToRemoveList *> Next = ATOMIC_VAR_INIT(nullptr);

  FileToRemoveList() = default;
  // Not signal-safe.
  FileToRemoveList(const std::string &str) : Filename(strdup(str.c_str())) {}

public:
  // Not signal-safe.
  ~FileToRemoveList() {
    if (FileToRemoveList *N = Next.exchange(nullptr))
      delete N;
    if (char *F = Filename.exchange(nullptr))
      free(F);
  }

  // Not signal-safe.
  static void insert(std::atomic<FileToRemoveList *> &Head,
                     const std::string &Filename) {
    // Insert the new file at the end of the list.
    FileToRemoveList *NewHead = new FileToRemoveList(Filename);
    std::atomic<FileToRemoveList *> *InsertionPoint = &Head;
    FileToRemoveList *OldHead = nullptr;
    while (!InsertionPoint->compare_exchange_strong(OldHead, NewHead)) {
      InsertionPoint = &OldHead->Next;
      OldHead = nullptr;
    }
  }

  // Not signal-safe.
  static void erase(std::atomic<FileToRemoveList *> &Head,
                    const std::string &Filename) {
    // Use a lock to avoid concurrent erase: the comparison would access
    // free'd memory.
    static ManagedStatic<sys::SmartMutex<true>> Lock;
    sys::SmartScopedLock<true> Writer(*Lock);

    for (FileToRemoveList *Current = Head.load(); Current;
         Current = Current->Next.load()) {
      if (char *OldFilename = Current->Filename.load()) {
        if (OldFilename != Filename)
          continue;
        // Leave an empty filename.
        OldFilename = Current->Filename.exchange(nullptr);
        // The filename might have become null between the time we
        // compared it and we exchanged it.
        if (OldFilename)
          free(OldFilename);
      }
    }
  }

  // Signal-safe.
  static void removeAllFiles(std::atomic<FileToRemoveList *> &Head) {
    // If cleanup were to occur while we're removing files we'd have a bad time.
    // Make sure we're OK by preventing cleanup from doing anything while we're
    // removing files. If cleanup races with us and we win we'll have a leak,
    // but we won't crash.
    FileToRemoveList *OldHead = Head.exchange(nullptr);

    for (FileToRemoveList *currentFile = OldHead; currentFile;
         currentFile = currentFile->Next.load()) {
      // If erasing was occuring while we're trying to remove files we'd look
      // at free'd data. Take away the path and put it back when done.
      if (char *path = currentFile->Filename.exchange(nullptr)) {
        // Get the status so we can determine if it's a file or directory. If we
        // can't stat the file, ignore it.
        struct stat buf;
        if (stat(path, &buf) != 0)
          continue;

        // If this is not a regular file, ignore it. We want to prevent removal
        // of special files like /dev/null, even if the compiler is being run
        // with the super-user permissions.
        if (!S_ISREG(buf.st_mode))
          continue;

        // Otherwise, remove the file. We ignore any errors here as there is
        // nothing else we can do.
        unlink(path);

        // We're done removing the file, erasing can safely proceed.
        currentFile->Filename.exchange(path);
      }
    }

    // We're done removing files, cleanup can safely proceed.
    Head.exchange(OldHead);
  }
};
static std::atomic<FileToRemoveList *> FilesToRemove = ATOMIC_VAR_INIT(nullptr);

/// Clean up the list in a signal-friendly manner.
/// Recall that signals can fire during llvm_shutdown. If this occurs we should
/// either clean something up or nothing at all, but we shouldn't crash!
struct FilesToRemoveCleanup {
  // Not signal-safe.
  ~FilesToRemoveCleanup() {
    FileToRemoveList *Head = FilesToRemove.exchange(nullptr);
    if (Head)
      delete Head;
  }
};
} // namespace

static StringRef Argv0;

/// Signals that represent requested termination. There's no bug or failure, or
/// if there is, it's not our direct responsibility. For whatever reason, our
/// continued execution is no longer desirable.
static const int IntSigs[] = {
  SIGHUP, SIGINT, SIGTERM, SIGUSR2
};

/// Signals that represent that we have a bug, and our prompt termination has
/// been ordered.
static const int KillSigs[] = {
  SIGILL, SIGTRAP, SIGABRT, SIGFPE, SIGBUS, SIGSEGV, SIGQUIT
#ifdef SIGSYS
  , SIGSYS
#endif
#ifdef SIGXCPU
  , SIGXCPU
#endif
#ifdef SIGXFSZ
  , SIGXFSZ
#endif
#ifdef SIGEMT
  , SIGEMT
#endif
};

/// Signals that represent requests for status.
static const int InfoSigs[] = {
  SIGUSR1
#ifdef SIGINFO
  , SIGINFO
#endif
};

static const size_t NumSigs =
    array_lengthof(IntSigs) + array_lengthof(KillSigs) +
    array_lengthof(InfoSigs) + 1 /* SIGPIPE */;


static std::atomic<unsigned> NumRegisteredSignals = ATOMIC_VAR_INIT(0);
static struct {
  struct sigaction SA;
  int SigNo;
} RegisteredSignalInfo[NumSigs];

#if defined(HAVE_SIGALTSTACK)
// Hold onto both the old and new alternate signal stack so that it's not
// reported as a leak. We don't make any attempt to remove our alt signal
// stack if we remove our signal handlers; that can't be done reliably if
// someone else is also trying to do the same thing.
static stack_t OldAltStack;
static void* NewAltStackPointer;

static void CreateSigAltStack() {
  const size_t AltStackSize = MINSIGSTKSZ + 64 * 1024;

  // If we're executing on the alternate stack, or we already have an alternate
  // signal stack that we're happy with, there's nothing for us to do. Don't
  // reduce the size, some other part of the process might need a larger stack
  // than we do.
  if (sigaltstack(nullptr, &OldAltStack) != 0 ||
      OldAltStack.ss_flags & SS_ONSTACK ||
      (OldAltStack.ss_sp && OldAltStack.ss_size >= AltStackSize))
    return;

  stack_t AltStack = {};
  AltStack.ss_sp = static_cast<char *>(safe_malloc(AltStackSize));
  NewAltStackPointer = AltStack.ss_sp; // Save to avoid reporting a leak.
  AltStack.ss_size = AltStackSize;
  if (sigaltstack(&AltStack, &OldAltStack) != 0)
    free(AltStack.ss_sp);
}
#else
static void CreateSigAltStack() {}
#endif

static void RegisterHandlers() { // Not signal-safe.
  // The mutex prevents other threads from registering handlers while we're
  // doing it. We also have to protect the handlers and their count because
  // a signal handler could fire while we're registeting handlers.
  static ManagedStatic<sys::SmartMutex<true>> SignalHandlerRegistrationMutex;
  sys::SmartScopedLock<true> Guard(*SignalHandlerRegistrationMutex);

  // If the handlers are already registered, we're done.
  if (NumRegisteredSignals.load() != 0)
    return;

  // Create an alternate stack for signal handling. This is necessary for us to
  // be able to reliably handle signals due to stack overflow.
  CreateSigAltStack();

  enum class SignalKind { IsKill, IsInfo };
  auto registerHandler = [&](int Signal, SignalKind Kind) {
    unsigned Index = NumRegisteredSignals.load();
    assert(Index < array_lengthof(RegisteredSignalInfo) &&
           "Out of space for signal handlers!");

    struct sigaction NewHandler;

    switch (Kind) {
    case SignalKind::IsKill:
      NewHandler.sa_handler = SignalHandler;
      NewHandler.sa_flags = SA_NODEFER | SA_RESETHAND | SA_ONSTACK;
      break;
    case SignalKind::IsInfo:
      NewHandler.sa_handler = InfoSignalHandler;
      NewHandler.sa_flags = SA_ONSTACK;
      break;
    }
    sigemptyset(&NewHandler.sa_mask);

    // Install the new handler, save the old one in RegisteredSignalInfo.
    sigaction(Signal, &NewHandler, &RegisteredSignalInfo[Index].SA);
    RegisteredSignalInfo[Index].SigNo = Signal;
    ++NumRegisteredSignals;
  };

  for (auto S : IntSigs)
    registerHandler(S, SignalKind::IsKill);
  for (auto S : KillSigs)
    registerHandler(S, SignalKind::IsKill);
  if (OneShotPipeSignalFunction)
    registerHandler(SIGPIPE, SignalKind::IsKill);
  for (auto S : InfoSigs)
    registerHandler(S, SignalKind::IsInfo);
}

void sys::unregisterHandlers() { 
  // Restore all of the signal handlers to how they were before we showed up.
  for (unsigned i = 0, e = NumRegisteredSignals.load(); i != e; ++i) {
    sigaction(RegisteredSignalInfo[i].SigNo,
              &RegisteredSignalInfo[i].SA, nullptr);
    --NumRegisteredSignals;
  }
}

/// Process the FilesToRemove list.
static void RemoveFilesToRemove() {
  FileToRemoveList::removeAllFiles(FilesToRemove);
}

void sys::CleanupOnSignal(uintptr_t Context) {
  int Sig = (int)Context;

  if (llvm::is_contained(InfoSigs, Sig)) {
    InfoSignalHandler(Sig);
    return;
  }

  RemoveFilesToRemove();

  if (llvm::is_contained(IntSigs, Sig) || Sig == SIGPIPE)
    return;

  llvm::sys::RunSignalHandlers();
}

// The signal handler that runs.
static RETSIGTYPE SignalHandler(int Sig) {
  // Restore the signal behavior to default, so that the program actually
  // crashes when we return and the signal reissues.  This also ensures that if
  // we crash in our signal handler that the program will terminate immediately
  // instead of recursing in the signal handler.
  sys::unregisterHandlers(); 

  // Unmask all potentially blocked kill signals.
  sigset_t SigMask;
  sigfillset(&SigMask);
  sigprocmask(SIG_UNBLOCK, &SigMask, nullptr);

  {
    RemoveFilesToRemove();

    if (Sig == SIGPIPE)
      if (auto OldOneShotPipeFunction =
              OneShotPipeSignalFunction.exchange(nullptr))
        return OldOneShotPipeFunction();

    bool IsIntSig = llvm::is_contained(IntSigs, Sig); 
    if (IsIntSig) 
      if (auto OldInterruptFunction = InterruptFunction.exchange(nullptr))
        return OldInterruptFunction();

    if (Sig == SIGPIPE || IsIntSig) { 
      raise(Sig); // Execute the default handler. 
      return;
    } 
  }

  // Otherwise if it is a fault (like SEGV) run any handler.
  llvm::sys::RunSignalHandlers();

#ifdef __s390__
  // On S/390, certain signals are delivered with PSW Address pointing to
  // *after* the faulting instruction.  Simply returning from the signal
  // handler would continue execution after that point, instead of
  // re-raising the signal.  Raise the signal manually in those cases.
  if (Sig == SIGILL || Sig == SIGFPE || Sig == SIGTRAP)
    raise(Sig);
#endif
}

static RETSIGTYPE InfoSignalHandler(int Sig) {
  SaveAndRestore<int> SaveErrnoDuringASignalHandler(errno);
  if (SignalHandlerFunctionType CurrentInfoFunction = InfoSignalFunction)
    CurrentInfoFunction();
}

void llvm::sys::RunInterruptHandlers() {
  RemoveFilesToRemove();
}

void llvm::sys::SetInterruptFunction(void (*IF)()) {
  InterruptFunction.exchange(IF);
  RegisterHandlers();
}

void llvm::sys::SetInfoSignalFunction(void (*Handler)()) {
  InfoSignalFunction.exchange(Handler);
  RegisterHandlers();
}

void llvm::sys::SetOneShotPipeSignalFunction(void (*Handler)()) {
  OneShotPipeSignalFunction.exchange(Handler);
  RegisterHandlers();
}

void llvm::sys::DefaultOneShotPipeSignalHandler() {
  // Send a special return code that drivers can check for, from sysexits.h.
  exit(EX_IOERR);
}

// The public API
bool llvm::sys::RemoveFileOnSignal(StringRef Filename,
                                   std::string* ErrMsg) {
  // Ensure that cleanup will occur as soon as one file is added.
  static ManagedStatic<FilesToRemoveCleanup> FilesToRemoveCleanup;
  *FilesToRemoveCleanup;
  FileToRemoveList::insert(FilesToRemove, Filename.str());
  RegisterHandlers();
  return false;
}

// The public API
void llvm::sys::DontRemoveFileOnSignal(StringRef Filename) {
  FileToRemoveList::erase(FilesToRemove, Filename.str());
}

/// Add a function to be called when a signal is delivered to the process. The
/// handler can have a cookie passed to it to identify what instance of the
/// handler it is.
void llvm::sys::AddSignalHandler(sys::SignalHandlerCallback FnPtr,
                                 void *Cookie) { // Signal-safe.
  insertSignalHandler(FnPtr, Cookie);
  RegisterHandlers();
}

#if defined(HAVE_BACKTRACE) && ENABLE_BACKTRACES && HAVE_LINK_H &&    \
    (defined(__linux__) || defined(__FreeBSD__) ||                             \
     defined(__FreeBSD_kernel__) || defined(__NetBSD__))
struct DlIteratePhdrData {
  void **StackTrace;
  int depth;
  bool first;
  const char **modules;
  intptr_t *offsets;
  const char *main_exec_name;
};

static int dl_iterate_phdr_cb(dl_phdr_info *info, size_t size, void *arg) {
  DlIteratePhdrData *data = (DlIteratePhdrData*)arg;
  const char *name = data->first ? data->main_exec_name : info->dlpi_name;
  data->first = false;
  for (int i = 0; i < info->dlpi_phnum; i++) {
    const auto *phdr = &info->dlpi_phdr[i];
    if (phdr->p_type != PT_LOAD)
      continue;
    intptr_t beg = info->dlpi_addr + phdr->p_vaddr;
    intptr_t end = beg + phdr->p_memsz;
    for (int j = 0; j < data->depth; j++) {
      if (data->modules[j])
        continue;
      intptr_t addr = (intptr_t)data->StackTrace[j];
      if (beg <= addr && addr < end) {
        data->modules[j] = name;
        data->offsets[j] = addr - info->dlpi_addr;
      }
    }
  }
  return 0;
}

/// If this is an ELF platform, we can find all loaded modules and their virtual
/// addresses with dl_iterate_phdr.
static bool findModulesAndOffsets(void **StackTrace, int Depth,
                                  const char **Modules, intptr_t *Offsets,
                                  const char *MainExecutableName,
                                  StringSaver &StrPool) {
  DlIteratePhdrData data = {StackTrace, Depth,   true,
                            Modules,    Offsets, MainExecutableName};
  dl_iterate_phdr(dl_iterate_phdr_cb, &data);
  return true;
}
#else
/// This platform does not have dl_iterate_phdr, so we do not yet know how to
/// find all loaded DSOs.
static bool findModulesAndOffsets(void **StackTrace, int Depth,
                                  const char **Modules, intptr_t *Offsets,
                                  const char *MainExecutableName,
                                  StringSaver &StrPool) {
  return false;
}
#endif // defined(HAVE_BACKTRACE) && ENABLE_BACKTRACES && ...

#if ENABLE_BACKTRACES && defined(HAVE__UNWIND_BACKTRACE)
static int unwindBacktrace(void **StackTrace, int MaxEntries) {
  if (MaxEntries < 0)
    return 0;

  // Skip the first frame ('unwindBacktrace' itself).
  int Entries = -1;

  auto HandleFrame = [&](_Unwind_Context *Context) -> _Unwind_Reason_Code {
    // Apparently we need to detect reaching the end of the stack ourselves.
    void *IP = (void *)_Unwind_GetIP(Context);
    if (!IP)
      return _URC_END_OF_STACK;

    assert(Entries < MaxEntries && "recursively called after END_OF_STACK?");
    if (Entries >= 0)
      StackTrace[Entries] = IP;

    if (++Entries == MaxEntries)
      return _URC_END_OF_STACK;
    return _URC_NO_REASON;
  };

  _Unwind_Backtrace(
      [](_Unwind_Context *Context, void *Handler) {
        return (*static_cast<decltype(HandleFrame) *>(Handler))(Context);
      },
      static_cast<void *>(&HandleFrame));
  return std::max(Entries, 0);
}
#endif

// In the case of a program crash or fault, print out a stack trace so that the
// user has an indication of why and where we died.
//
// On glibc systems we have the 'backtrace' function, which works nicely, but
// doesn't demangle symbols.
void llvm::sys::PrintStackTrace(raw_ostream &OS, int Depth) { 
#if ENABLE_BACKTRACES
  static void *StackTrace[256];
  int depth = 0;
#if defined(HAVE_BACKTRACE)
  // Use backtrace() to output a backtrace on Linux systems with glibc.
  if (!depth)
    depth = backtrace(StackTrace, static_cast<int>(array_lengthof(StackTrace)));
#endif
#if defined(HAVE__UNWIND_BACKTRACE)
  // Try _Unwind_Backtrace() if backtrace() failed.
  if (!depth)
    depth = unwindBacktrace(StackTrace,
                        static_cast<int>(array_lengthof(StackTrace)));
#endif
  if (!depth)
    return;
  // If "Depth" is not provided by the caller, use the return value of 
  // backtrace() for printing a symbolized stack trace. 
  if (!Depth) 
    Depth = depth; 
  if (printSymbolizedStackTrace(Argv0, StackTrace, Depth, OS)) 
    return;
  OS << "Stack dump without symbol names (ensure you have llvm-symbolizer in " 
        "your PATH or set the environment var `LLVM_SYMBOLIZER_PATH` to point " 
        "to it):\n"; 
#if HAVE_DLFCN_H && HAVE_DLADDR
  int width = 0;
  for (int i = 0; i < depth; ++i) {
    Dl_info dlinfo;
    dladdr(StackTrace[i], &dlinfo);
    const char* name = strrchr(dlinfo.dli_fname, '/');

    int nwidth;
    if (!name) nwidth = strlen(dlinfo.dli_fname);
    else       nwidth = strlen(name) - 1;

    if (nwidth > width) width = nwidth;
  }

  for (int i = 0; i < depth; ++i) {
    Dl_info dlinfo;
    dladdr(StackTrace[i], &dlinfo);

    OS << format("%-2d", i);

    const char* name = strrchr(dlinfo.dli_fname, '/');
    if (!name) OS << format(" %-*s", width, dlinfo.dli_fname);
    else       OS << format(" %-*s", width, name+1);

    OS << format(" %#0*lx", (int)(sizeof(void*) * 2) + 2,
                 (unsigned long)StackTrace[i]);

    if (dlinfo.dli_sname != nullptr) {
      OS << ' ';
      int res;
      char* d = itaniumDemangle(dlinfo.dli_sname, nullptr, nullptr, &res);
      if (!d) OS << dlinfo.dli_sname;
      else    OS << d;
      free(d);

      OS << format(" + %tu", (static_cast<const char*>(StackTrace[i])-
                              static_cast<const char*>(dlinfo.dli_saddr)));
    }
    OS << '\n';
  }
#elif defined(HAVE_BACKTRACE)
  backtrace_symbols_fd(StackTrace, Depth, STDERR_FILENO); 
#endif
#endif
}

static void PrintStackTraceSignalHandler(void *) {
  sys::PrintStackTrace(llvm::errs());
}

void llvm::sys::DisableSystemDialogsOnCrash() {}

/// When an error signal (such as SIGABRT or SIGSEGV) is delivered to the
/// process, print a stack trace and then exit.
void llvm::sys::PrintStackTraceOnErrorSignal(StringRef Argv0,
                                             bool DisableCrashReporting) {
  ::Argv0 = Argv0;

  AddSignalHandler(PrintStackTraceSignalHandler, nullptr);

#if defined(__APPLE__) && ENABLE_CRASH_OVERRIDES
  // Environment variable to disable any kind of crash dialog.
  if (DisableCrashReporting || getenv("LLVM_DISABLE_CRASH_REPORT")) {
    mach_port_t self = mach_task_self();

    exception_mask_t mask = EXC_MASK_CRASH;

    kern_return_t ret = task_set_exception_ports(self,
                             mask,
                             MACH_PORT_NULL,
                             EXCEPTION_STATE_IDENTITY | MACH_EXCEPTION_CODES,
                             THREAD_STATE_NONE);
    (void)ret;
  }
#endif
}