1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
|
//===-- TimeProfiler.cpp - Hierarchical Time Profiler ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements hierarchical time profiler.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/TimeProfiler.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/JSON.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/Threading.h"
#include <algorithm>
#include <cassert>
#include <chrono>
#include <mutex>
#include <string>
#include <vector>
using namespace std::chrono;
using namespace llvm;
static std::mutex Mu;
// List of all instances
static std::vector<TimeTraceProfiler *>
ThreadTimeTraceProfilerInstances; // GUARDED_BY(Mu)
// Per Thread instance
static LLVM_THREAD_LOCAL TimeTraceProfiler *TimeTraceProfilerInstance = nullptr;
TimeTraceProfiler *llvm::getTimeTraceProfilerInstance() {
return TimeTraceProfilerInstance;
}
typedef duration<steady_clock::rep, steady_clock::period> DurationType;
typedef time_point<steady_clock> TimePointType;
typedef std::pair<size_t, DurationType> CountAndDurationType;
typedef std::pair<std::string, CountAndDurationType>
NameAndCountAndDurationType;
namespace {
struct Entry {
const TimePointType Start;
TimePointType End;
const std::string Name;
const std::string Detail;
Entry(TimePointType &&S, TimePointType &&E, std::string &&N, std::string &&Dt)
: Start(std::move(S)), End(std::move(E)), Name(std::move(N)),
Detail(std::move(Dt)) {}
// Calculate timings for FlameGraph. Cast time points to microsecond precision
// rather than casting duration. This avoid truncation issues causing inner
// scopes overruning outer scopes.
steady_clock::rep getFlameGraphStartUs(TimePointType StartTime) const {
return (time_point_cast<microseconds>(Start) -
time_point_cast<microseconds>(StartTime))
.count();
}
steady_clock::rep getFlameGraphDurUs() const {
return (time_point_cast<microseconds>(End) -
time_point_cast<microseconds>(Start))
.count();
}
};
} // namespace
struct llvm::TimeTraceProfiler {
TimeTraceProfiler(unsigned TimeTraceGranularity = 0, StringRef ProcName = "")
: BeginningOfTime(system_clock::now()), StartTime(steady_clock::now()),
ProcName(ProcName), Pid(sys::Process::getProcessId()),
Tid(llvm::get_threadid()), TimeTraceGranularity(TimeTraceGranularity) {
llvm::get_thread_name(ThreadName);
}
void begin(std::string Name, llvm::function_ref<std::string()> Detail) {
Stack.emplace_back(steady_clock::now(), TimePointType(), std::move(Name),
Detail());
}
void end() {
assert(!Stack.empty() && "Must call begin() first");
Entry &E = Stack.back();
E.End = steady_clock::now();
// Check that end times monotonically increase.
assert((Entries.empty() ||
(E.getFlameGraphStartUs(StartTime) + E.getFlameGraphDurUs() >=
Entries.back().getFlameGraphStartUs(StartTime) +
Entries.back().getFlameGraphDurUs())) &&
"TimeProfiler scope ended earlier than previous scope");
// Calculate duration at full precision for overall counts.
DurationType Duration = E.End - E.Start;
// Only include sections longer or equal to TimeTraceGranularity msec.
if (duration_cast<microseconds>(Duration).count() >= TimeTraceGranularity)
Entries.emplace_back(E);
// Track total time taken by each "name", but only the topmost levels of
// them; e.g. if there's a template instantiation that instantiates other
// templates from within, we only want to add the topmost one. "topmost"
// happens to be the ones that don't have any currently open entries above
// itself.
if (std::find_if(++Stack.rbegin(), Stack.rend(), [&](const Entry &Val) {
return Val.Name == E.Name;
}) == Stack.rend()) {
auto &CountAndTotal = CountAndTotalPerName[E.Name];
CountAndTotal.first++;
CountAndTotal.second += Duration;
}
Stack.pop_back();
}
// Write events from this TimeTraceProfilerInstance and
// ThreadTimeTraceProfilerInstances.
void write(raw_pwrite_stream &OS) {
// Acquire Mutex as reading ThreadTimeTraceProfilerInstances.
std::lock_guard<std::mutex> Lock(Mu);
assert(Stack.empty() &&
"All profiler sections should be ended when calling write");
assert(llvm::all_of(ThreadTimeTraceProfilerInstances,
[](const auto &TTP) { return TTP->Stack.empty(); }) &&
"All profiler sections should be ended when calling write");
json::OStream J(OS);
J.objectBegin();
J.attributeBegin("traceEvents");
J.arrayBegin();
// Emit all events for the main flame graph.
auto writeEvent = [&](const auto &E, uint64_t Tid) {
auto StartUs = E.getFlameGraphStartUs(StartTime);
auto DurUs = E.getFlameGraphDurUs();
J.object([&] {
J.attribute("pid", Pid);
J.attribute("tid", int64_t(Tid));
J.attribute("ph", "X");
J.attribute("ts", StartUs);
J.attribute("dur", DurUs);
J.attribute("name", E.Name);
if (!E.Detail.empty()) {
J.attributeObject("args", [&] { J.attribute("detail", E.Detail); });
}
});
};
for (const Entry &E : Entries)
writeEvent(E, this->Tid);
for (const TimeTraceProfiler *TTP : ThreadTimeTraceProfilerInstances)
for (const Entry &E : TTP->Entries)
writeEvent(E, TTP->Tid);
// Emit totals by section name as additional "thread" events, sorted from
// longest one.
// Find highest used thread id.
uint64_t MaxTid = this->Tid;
for (const TimeTraceProfiler *TTP : ThreadTimeTraceProfilerInstances)
MaxTid = std::max(MaxTid, TTP->Tid);
// Combine all CountAndTotalPerName from threads into one.
StringMap<CountAndDurationType> AllCountAndTotalPerName;
auto combineStat = [&](const auto &Stat) {
StringRef Key = Stat.getKey();
auto Value = Stat.getValue();
auto &CountAndTotal = AllCountAndTotalPerName[Key];
CountAndTotal.first += Value.first;
CountAndTotal.second += Value.second;
};
for (const auto &Stat : CountAndTotalPerName)
combineStat(Stat);
for (const TimeTraceProfiler *TTP : ThreadTimeTraceProfilerInstances)
for (const auto &Stat : TTP->CountAndTotalPerName)
combineStat(Stat);
std::vector<NameAndCountAndDurationType> SortedTotals;
SortedTotals.reserve(AllCountAndTotalPerName.size());
for (const auto &Total : AllCountAndTotalPerName)
SortedTotals.emplace_back(std::string(Total.getKey()), Total.getValue());
llvm::sort(SortedTotals, [](const NameAndCountAndDurationType &A,
const NameAndCountAndDurationType &B) {
return A.second.second > B.second.second;
});
// Report totals on separate threads of tracing file.
uint64_t TotalTid = MaxTid + 1;
for (const NameAndCountAndDurationType &Total : SortedTotals) {
auto DurUs = duration_cast<microseconds>(Total.second.second).count();
auto Count = AllCountAndTotalPerName[Total.first].first;
J.object([&] {
J.attribute("pid", Pid);
J.attribute("tid", int64_t(TotalTid));
J.attribute("ph", "X");
J.attribute("ts", 0);
J.attribute("dur", DurUs);
J.attribute("name", "Total " + Total.first);
J.attributeObject("args", [&] {
J.attribute("count", int64_t(Count));
J.attribute("avg ms", int64_t(DurUs / Count / 1000));
});
});
++TotalTid;
}
auto writeMetadataEvent = [&](const char *Name, uint64_t Tid,
StringRef arg) {
J.object([&] {
J.attribute("cat", "");
J.attribute("pid", Pid);
J.attribute("tid", int64_t(Tid));
J.attribute("ts", 0);
J.attribute("ph", "M");
J.attribute("name", Name);
J.attributeObject("args", [&] { J.attribute("name", arg); });
});
};
writeMetadataEvent("process_name", Tid, ProcName);
writeMetadataEvent("thread_name", Tid, ThreadName);
for (const TimeTraceProfiler *TTP : ThreadTimeTraceProfilerInstances)
writeMetadataEvent("thread_name", TTP->Tid, TTP->ThreadName);
J.arrayEnd();
J.attributeEnd();
// Emit the absolute time when this TimeProfiler started.
// This can be used to combine the profiling data from
// multiple processes and preserve actual time intervals.
J.attribute("beginningOfTime",
time_point_cast<microseconds>(BeginningOfTime)
.time_since_epoch()
.count());
J.objectEnd();
}
SmallVector<Entry, 16> Stack;
SmallVector<Entry, 128> Entries;
StringMap<CountAndDurationType> CountAndTotalPerName;
const time_point<system_clock> BeginningOfTime;
const TimePointType StartTime;
const std::string ProcName;
const sys::Process::Pid Pid;
SmallString<0> ThreadName;
const uint64_t Tid;
// Minimum time granularity (in microseconds)
const unsigned TimeTraceGranularity;
};
void llvm::timeTraceProfilerInitialize(unsigned TimeTraceGranularity,
StringRef ProcName) {
assert(TimeTraceProfilerInstance == nullptr &&
"Profiler should not be initialized");
TimeTraceProfilerInstance = new TimeTraceProfiler(
TimeTraceGranularity, llvm::sys::path::filename(ProcName));
}
// Removes all TimeTraceProfilerInstances.
// Called from main thread.
void llvm::timeTraceProfilerCleanup() {
delete TimeTraceProfilerInstance;
std::lock_guard<std::mutex> Lock(Mu);
for (auto TTP : ThreadTimeTraceProfilerInstances)
delete TTP;
ThreadTimeTraceProfilerInstances.clear();
}
// Finish TimeTraceProfilerInstance on a worker thread.
// This doesn't remove the instance, just moves the pointer to global vector.
void llvm::timeTraceProfilerFinishThread() {
std::lock_guard<std::mutex> Lock(Mu);
ThreadTimeTraceProfilerInstances.push_back(TimeTraceProfilerInstance);
TimeTraceProfilerInstance = nullptr;
}
void llvm::timeTraceProfilerWrite(raw_pwrite_stream &OS) {
assert(TimeTraceProfilerInstance != nullptr &&
"Profiler object can't be null");
TimeTraceProfilerInstance->write(OS);
}
Error llvm::timeTraceProfilerWrite(StringRef PreferredFileName,
StringRef FallbackFileName) {
assert(TimeTraceProfilerInstance != nullptr &&
"Profiler object can't be null");
std::string Path = PreferredFileName.str();
if (Path.empty()) {
Path = FallbackFileName == "-" ? "out" : FallbackFileName.str();
Path += ".time-trace";
}
std::error_code EC;
raw_fd_ostream OS(Path, EC, sys::fs::OF_Text);
if (EC)
return createStringError(EC, "Could not open " + Path);
timeTraceProfilerWrite(OS);
return Error::success();
}
void llvm::timeTraceProfilerBegin(StringRef Name, StringRef Detail) {
if (TimeTraceProfilerInstance != nullptr)
TimeTraceProfilerInstance->begin(std::string(Name),
[&]() { return std::string(Detail); });
}
void llvm::timeTraceProfilerBegin(StringRef Name,
llvm::function_ref<std::string()> Detail) {
if (TimeTraceProfilerInstance != nullptr)
TimeTraceProfilerInstance->begin(std::string(Name), Detail);
}
void llvm::timeTraceProfilerEnd() {
if (TimeTraceProfilerInstance != nullptr)
TimeTraceProfilerInstance->end();
}
|