aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/ProfileData/ProfileSummaryBuilder.cpp
blob: 0f1e6d1a65f6cf98cf854e1d651f4a7fc003cc41 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
//=-- ProfilesummaryBuilder.cpp - Profile summary computation ---------------=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for computing profile summary data.
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Type.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/ProfileData/ProfileCommon.h"
#include "llvm/ProfileData/SampleProf.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h" 

using namespace llvm;

cl::opt<bool> UseContextLessSummary( 
    "profile-summary-contextless", cl::Hidden, cl::init(false), cl::ZeroOrMore, 
    cl::desc("Merge context profiles before calculating thresholds.")); 
 
// A set of cutoff values. Each value, when divided by ProfileSummary::Scale
// (which is 1000000) is a desired percentile of total counts.
static const uint32_t DefaultCutoffsData[] = {
    10000,  /*  1% */
    100000, /* 10% */
    200000, 300000, 400000, 500000, 600000, 700000, 800000,
    900000, 950000, 990000, 999000, 999900, 999990, 999999};
const ArrayRef<uint32_t> ProfileSummaryBuilder::DefaultCutoffs =
    DefaultCutoffsData;

const ProfileSummaryEntry &
ProfileSummaryBuilder::getEntryForPercentile(SummaryEntryVector &DS,
                                             uint64_t Percentile) {
  auto It = partition_point(DS, [=](const ProfileSummaryEntry &Entry) {
    return Entry.Cutoff < Percentile;
  });
  // The required percentile has to be <= one of the percentiles in the
  // detailed summary.
  if (It == DS.end())
    report_fatal_error("Desired percentile exceeds the maximum cutoff");
  return *It;
}

void InstrProfSummaryBuilder::addRecord(const InstrProfRecord &R) {
  // The first counter is not necessarily an entry count for IR
  // instrumentation profiles.
  // Eventually MaxFunctionCount will become obsolete and this can be
  // removed.
  addEntryCount(R.Counts[0]);
  for (size_t I = 1, E = R.Counts.size(); I < E; ++I)
    addInternalCount(R.Counts[I]);
}

// To compute the detailed summary, we consider each line containing samples as
// equivalent to a block with a count in the instrumented profile.
void SampleProfileSummaryBuilder::addRecord(
    const sampleprof::FunctionSamples &FS, bool isCallsiteSample) {
  if (!isCallsiteSample) {
    NumFunctions++;
    if (FS.getHeadSamples() > MaxFunctionCount)
      MaxFunctionCount = FS.getHeadSamples();
  }
  for (const auto &I : FS.getBodySamples())
    addCount(I.second.getSamples());
  for (const auto &I : FS.getCallsiteSamples())
    for (const auto &CS : I.second)
      addRecord(CS.second, true);
}

// The argument to this method is a vector of cutoff percentages and the return
// value is a vector of (Cutoff, MinCount, NumCounts) triplets.
void ProfileSummaryBuilder::computeDetailedSummary() {
  if (DetailedSummaryCutoffs.empty())
    return;
  llvm::sort(DetailedSummaryCutoffs);
  auto Iter = CountFrequencies.begin();
  const auto End = CountFrequencies.end();

  uint32_t CountsSeen = 0;
  uint64_t CurrSum = 0, Count = 0;

  for (const uint32_t Cutoff : DetailedSummaryCutoffs) {
    assert(Cutoff <= 999999);
    APInt Temp(128, TotalCount);
    APInt N(128, Cutoff);
    APInt D(128, ProfileSummary::Scale);
    Temp *= N;
    Temp = Temp.sdiv(D);
    uint64_t DesiredCount = Temp.getZExtValue();
    assert(DesiredCount <= TotalCount);
    while (CurrSum < DesiredCount && Iter != End) {
      Count = Iter->first;
      uint32_t Freq = Iter->second;
      CurrSum += (Count * Freq);
      CountsSeen += Freq;
      Iter++;
    }
    assert(CurrSum >= DesiredCount);
    ProfileSummaryEntry PSE = {Cutoff, Count, CountsSeen};
    DetailedSummary.push_back(PSE);
  }
}

std::unique_ptr<ProfileSummary> SampleProfileSummaryBuilder::getSummary() {
  computeDetailedSummary();
  return std::make_unique<ProfileSummary>(
      ProfileSummary::PSK_Sample, DetailedSummary, TotalCount, MaxCount, 0,
      MaxFunctionCount, NumCounts, NumFunctions);
}

std::unique_ptr<ProfileSummary> 
SampleProfileSummaryBuilder::computeSummaryForProfiles( 
    const StringMap<sampleprof::FunctionSamples> &Profiles) { 
  assert(NumFunctions == 0 && 
         "This can only be called on an empty summary builder"); 
  StringMap<sampleprof::FunctionSamples> ContextLessProfiles; 
  const StringMap<sampleprof::FunctionSamples> *ProfilesToUse = &Profiles; 
  // For CSSPGO, context-sensitive profile effectively split a function profile 
  // into many copies each representing the CFG profile of a particular calling 
  // context. That makes the count distribution looks more flat as we now have 
  // more function profiles each with lower counts, which in turn leads to lower 
  // hot thresholds. To compensate for that, by defauly we merge context 
  // profiles before coumputing profile summary. 
  if (UseContextLessSummary || (sampleprof::FunctionSamples::ProfileIsCS && 
                                !UseContextLessSummary.getNumOccurrences())) { 
    for (const auto &I : Profiles) { 
      ContextLessProfiles[I.second.getName()].merge(I.second); 
    } 
    ProfilesToUse = &ContextLessProfiles; 
  } 
 
  for (const auto &I : *ProfilesToUse) { 
    const sampleprof::FunctionSamples &Profile = I.second; 
    addRecord(Profile); 
  } 
 
  return getSummary(); 
} 
 
std::unique_ptr<ProfileSummary> InstrProfSummaryBuilder::getSummary() {
  computeDetailedSummary();
  return std::make_unique<ProfileSummary>(
      ProfileSummary::PSK_Instr, DetailedSummary, TotalCount, MaxCount,
      MaxInternalBlockCount, MaxFunctionCount, NumCounts, NumFunctions);
}

void InstrProfSummaryBuilder::addEntryCount(uint64_t Count) {
  NumFunctions++; 
 
  // Skip invalid count. 
  if (Count == (uint64_t)-1) 
    return; 
 
  addCount(Count);
  if (Count > MaxFunctionCount)
    MaxFunctionCount = Count;
}

void InstrProfSummaryBuilder::addInternalCount(uint64_t Count) {
  // Skip invalid count. 
  if (Count == (uint64_t)-1) 
    return; 
 
  addCount(Count);
  if (Count > MaxInternalBlockCount)
    MaxInternalBlockCount = Count;
}