1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
|
//===--------------------- RegisterFile.cpp ---------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file defines a register mapping file class. This class is responsible
/// for managing hardware register files and the tracking of data dependencies
/// between registers.
///
//===----------------------------------------------------------------------===//
#include "llvm/MCA/HardwareUnits/RegisterFile.h"
#include "llvm/MCA/Instruction.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "llvm-mca"
namespace llvm {
namespace mca {
RegisterFile::RegisterFile(const MCSchedModel &SM, const MCRegisterInfo &mri,
unsigned NumRegs)
: MRI(mri),
RegisterMappings(mri.getNumRegs(), {WriteRef(), RegisterRenamingInfo()}),
ZeroRegisters(mri.getNumRegs(), false) {
initialize(SM, NumRegs);
}
void RegisterFile::initialize(const MCSchedModel &SM, unsigned NumRegs) {
// Create a default register file that "sees" all the machine registers
// declared by the target. The number of physical registers in the default
// register file is set equal to `NumRegs`. A value of zero for `NumRegs`
// means: this register file has an unbounded number of physical registers.
RegisterFiles.emplace_back(NumRegs);
if (!SM.hasExtraProcessorInfo())
return;
// For each user defined register file, allocate a RegisterMappingTracker
// object. The size of every register file, as well as the mapping between
// register files and register classes is specified via tablegen.
const MCExtraProcessorInfo &Info = SM.getExtraProcessorInfo();
// Skip invalid register file at index 0.
for (unsigned I = 1, E = Info.NumRegisterFiles; I < E; ++I) {
const MCRegisterFileDesc &RF = Info.RegisterFiles[I];
assert(RF.NumPhysRegs && "Invalid PRF with zero physical registers!");
// The cost of a register definition is equivalent to the number of
// physical registers that are allocated at register renaming stage.
unsigned Length = RF.NumRegisterCostEntries;
const MCRegisterCostEntry *FirstElt =
&Info.RegisterCostTable[RF.RegisterCostEntryIdx];
addRegisterFile(RF, ArrayRef<MCRegisterCostEntry>(FirstElt, Length));
}
}
void RegisterFile::cycleStart() {
for (RegisterMappingTracker &RMT : RegisterFiles)
RMT.NumMoveEliminated = 0;
}
void RegisterFile::addRegisterFile(const MCRegisterFileDesc &RF,
ArrayRef<MCRegisterCostEntry> Entries) {
// A default register file is always allocated at index #0. That register file
// is mainly used to count the total number of mappings created by all
// register files at runtime. Users can limit the number of available physical
// registers in register file #0 through the command line flag
// `-register-file-size`.
unsigned RegisterFileIndex = RegisterFiles.size();
RegisterFiles.emplace_back(RF.NumPhysRegs, RF.MaxMovesEliminatedPerCycle,
RF.AllowZeroMoveEliminationOnly);
// Special case where there is no register class identifier in the set.
// An empty set of register classes means: this register file contains all
// the physical registers specified by the target.
// We optimistically assume that a register can be renamed at the cost of a
// single physical register. The constructor of RegisterFile ensures that
// a RegisterMapping exists for each logical register defined by the Target.
if (Entries.empty())
return;
// Now update the cost of individual registers.
for (const MCRegisterCostEntry &RCE : Entries) {
const MCRegisterClass &RC = MRI.getRegClass(RCE.RegisterClassID);
for (const MCPhysReg Reg : RC) {
RegisterRenamingInfo &Entry = RegisterMappings[Reg].second;
IndexPlusCostPairTy &IPC = Entry.IndexPlusCost;
if (IPC.first && IPC.first != RegisterFileIndex) {
// The only register file that is allowed to overlap is the default
// register file at index #0. The analysis is inaccurate if register
// files overlap.
errs() << "warning: register " << MRI.getName(Reg)
<< " defined in multiple register files.";
}
IPC = std::make_pair(RegisterFileIndex, RCE.Cost);
Entry.RenameAs = Reg;
Entry.AllowMoveElimination = RCE.AllowMoveElimination;
// Assume the same cost for each sub-register.
for (MCSubRegIterator I(Reg, &MRI); I.isValid(); ++I) {
RegisterRenamingInfo &OtherEntry = RegisterMappings[*I].second;
if (!OtherEntry.IndexPlusCost.first &&
(!OtherEntry.RenameAs ||
MRI.isSuperRegister(*I, OtherEntry.RenameAs))) {
OtherEntry.IndexPlusCost = IPC;
OtherEntry.RenameAs = Reg;
}
}
}
}
}
void RegisterFile::allocatePhysRegs(const RegisterRenamingInfo &Entry,
MutableArrayRef<unsigned> UsedPhysRegs) {
unsigned RegisterFileIndex = Entry.IndexPlusCost.first;
unsigned Cost = Entry.IndexPlusCost.second;
if (RegisterFileIndex) {
RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex];
RMT.NumUsedPhysRegs += Cost;
UsedPhysRegs[RegisterFileIndex] += Cost;
}
// Now update the default register mapping tracker.
RegisterFiles[0].NumUsedPhysRegs += Cost;
UsedPhysRegs[0] += Cost;
}
void RegisterFile::freePhysRegs(const RegisterRenamingInfo &Entry,
MutableArrayRef<unsigned> FreedPhysRegs) {
unsigned RegisterFileIndex = Entry.IndexPlusCost.first;
unsigned Cost = Entry.IndexPlusCost.second;
if (RegisterFileIndex) {
RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex];
RMT.NumUsedPhysRegs -= Cost;
FreedPhysRegs[RegisterFileIndex] += Cost;
}
// Now update the default register mapping tracker.
RegisterFiles[0].NumUsedPhysRegs -= Cost;
FreedPhysRegs[0] += Cost;
}
void RegisterFile::addRegisterWrite(WriteRef Write,
MutableArrayRef<unsigned> UsedPhysRegs) {
WriteState &WS = *Write.getWriteState();
MCPhysReg RegID = WS.getRegisterID();
assert(RegID && "Adding an invalid register definition?");
LLVM_DEBUG({
dbgs() << "RegisterFile: addRegisterWrite [ " << Write.getSourceIndex()
<< ", " << MRI.getName(RegID) << "]\n";
});
// If RenameAs is equal to RegID, then RegID is subject to register renaming
// and false dependencies on RegID are all eliminated.
// If RenameAs references the invalid register, then we optimistically assume
// that it can be renamed. In the absence of tablegen descriptors for register
// files, RenameAs is always set to the invalid register ID. In all other
// cases, RenameAs must be either equal to RegID, or it must reference a
// super-register of RegID.
// If RenameAs is a super-register of RegID, then a write to RegID has always
// a false dependency on RenameAs. The only exception is for when the write
// implicitly clears the upper portion of the underlying register.
// If a write clears its super-registers, then it is renamed as `RenameAs`.
bool IsWriteZero = WS.isWriteZero();
bool IsEliminated = WS.isEliminated();
bool ShouldAllocatePhysRegs = !IsWriteZero && !IsEliminated;
const RegisterRenamingInfo &RRI = RegisterMappings[RegID].second;
WS.setPRF(RRI.IndexPlusCost.first);
if (RRI.RenameAs && RRI.RenameAs != RegID) {
RegID = RRI.RenameAs;
WriteRef &OtherWrite = RegisterMappings[RegID].first;
if (!WS.clearsSuperRegisters()) {
// The processor keeps the definition of `RegID` together with register
// `RenameAs`. Since this partial write is not renamed, no physical
// register is allocated.
ShouldAllocatePhysRegs = false;
WriteState *OtherWS = OtherWrite.getWriteState();
if (OtherWS && (OtherWrite.getSourceIndex() != Write.getSourceIndex())) {
// This partial write has a false dependency on RenameAs.
assert(!IsEliminated && "Unexpected partial update!");
OtherWS->addUser(OtherWrite.getSourceIndex(), &WS);
}
}
}
// Update zero registers.
MCPhysReg ZeroRegisterID =
WS.clearsSuperRegisters() ? RegID : WS.getRegisterID();
ZeroRegisters.setBitVal(ZeroRegisterID, IsWriteZero);
for (MCSubRegIterator I(ZeroRegisterID, &MRI); I.isValid(); ++I)
ZeroRegisters.setBitVal(*I, IsWriteZero);
// If this is move has been eliminated, then the call to tryEliminateMove
// should have already updated all the register mappings.
if (!IsEliminated) {
// Update the mapping for register RegID including its sub-registers.
RegisterMappings[RegID].first = Write;
RegisterMappings[RegID].second.AliasRegID = 0U;
for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) {
RegisterMappings[*I].first = Write;
RegisterMappings[*I].second.AliasRegID = 0U;
}
// No physical registers are allocated for instructions that are optimized
// in hardware. For example, zero-latency data-dependency breaking
// instructions don't consume physical registers.
if (ShouldAllocatePhysRegs)
allocatePhysRegs(RegisterMappings[RegID].second, UsedPhysRegs);
}
if (!WS.clearsSuperRegisters())
return;
for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I) {
if (!IsEliminated) {
RegisterMappings[*I].first = Write;
RegisterMappings[*I].second.AliasRegID = 0U;
}
ZeroRegisters.setBitVal(*I, IsWriteZero);
}
}
void RegisterFile::removeRegisterWrite(
const WriteState &WS, MutableArrayRef<unsigned> FreedPhysRegs) {
// Early exit if this write was eliminated. A write eliminated at register
// renaming stage generates an alias, and it is not added to the PRF.
if (WS.isEliminated())
return;
MCPhysReg RegID = WS.getRegisterID();
assert(RegID != 0 && "Invalidating an already invalid register?");
assert(WS.getCyclesLeft() != UNKNOWN_CYCLES &&
"Invalidating a write of unknown cycles!");
assert(WS.getCyclesLeft() <= 0 && "Invalid cycles left for this write!");
bool ShouldFreePhysRegs = !WS.isWriteZero();
MCPhysReg RenameAs = RegisterMappings[RegID].second.RenameAs;
if (RenameAs && RenameAs != RegID) {
RegID = RenameAs;
if (!WS.clearsSuperRegisters()) {
// Keep the definition of `RegID` together with register `RenameAs`.
ShouldFreePhysRegs = false;
}
}
if (ShouldFreePhysRegs)
freePhysRegs(RegisterMappings[RegID].second, FreedPhysRegs);
WriteRef &WR = RegisterMappings[RegID].first;
if (WR.getWriteState() == &WS)
WR.invalidate();
for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) {
WriteRef &OtherWR = RegisterMappings[*I].first;
if (OtherWR.getWriteState() == &WS)
OtherWR.invalidate();
}
if (!WS.clearsSuperRegisters())
return;
for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I) {
WriteRef &OtherWR = RegisterMappings[*I].first;
if (OtherWR.getWriteState() == &WS)
OtherWR.invalidate();
}
}
bool RegisterFile::tryEliminateMove(WriteState &WS, ReadState &RS) {
const RegisterMapping &RMFrom = RegisterMappings[RS.getRegisterID()];
const RegisterMapping &RMTo = RegisterMappings[WS.getRegisterID()];
// From and To must be owned by the same PRF.
const RegisterRenamingInfo &RRIFrom = RMFrom.second;
const RegisterRenamingInfo &RRITo = RMTo.second;
unsigned RegisterFileIndex = RRIFrom.IndexPlusCost.first;
if (RegisterFileIndex != RRITo.IndexPlusCost.first)
return false;
// We only allow move elimination for writes that update a full physical
// register. On X86, move elimination is possible with 32-bit general purpose
// registers because writes to those registers are not partial writes. If a
// register move is a partial write, then we conservatively assume that move
// elimination fails, since it would either trigger a partial update, or the
// issue of a merge opcode.
//
// Note that this constraint may be lifted in future. For example, we could
// make this model more flexible, and let users customize the set of registers
// (i.e. register classes) that allow move elimination.
//
// For now, we assume that there is a strong correlation between registers
// that allow move elimination, and how those same registers are renamed in
// hardware.
if (RRITo.RenameAs && RRITo.RenameAs != WS.getRegisterID()) {
// Early exit if the PRF doesn't support move elimination for this register.
if (!RegisterMappings[RRITo.RenameAs].second.AllowMoveElimination)
return false;
if (!WS.clearsSuperRegisters())
return false;
}
RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex];
if (RMT.MaxMoveEliminatedPerCycle &&
RMT.NumMoveEliminated == RMT.MaxMoveEliminatedPerCycle)
return false;
bool IsZeroMove = ZeroRegisters[RS.getRegisterID()];
if (RMT.AllowZeroMoveEliminationOnly && !IsZeroMove)
return false;
// Construct an alias.
MCPhysReg AliasedReg =
RRIFrom.RenameAs ? RRIFrom.RenameAs : RS.getRegisterID();
MCPhysReg AliasReg = RRITo.RenameAs ? RRITo.RenameAs : WS.getRegisterID();
const RegisterRenamingInfo &RMAlias = RegisterMappings[AliasedReg].second;
if (RMAlias.AliasRegID)
AliasedReg = RMAlias.AliasRegID;
RegisterMappings[AliasReg].second.AliasRegID = AliasedReg;
for (MCSubRegIterator I(AliasReg, &MRI); I.isValid(); ++I)
RegisterMappings[*I].second.AliasRegID = AliasedReg;
if (IsZeroMove) {
WS.setWriteZero();
RS.setReadZero();
}
WS.setEliminated();
RMT.NumMoveEliminated++;
return true;
}
void RegisterFile::collectWrites(const ReadState &RS,
SmallVectorImpl<WriteRef> &Writes) const {
MCPhysReg RegID = RS.getRegisterID();
assert(RegID && RegID < RegisterMappings.size());
LLVM_DEBUG(dbgs() << "RegisterFile: collecting writes for register "
<< MRI.getName(RegID) << '\n');
// Check if this is an alias.
const RegisterRenamingInfo &RRI = RegisterMappings[RegID].second;
if (RRI.AliasRegID)
RegID = RRI.AliasRegID;
const WriteRef &WR = RegisterMappings[RegID].first;
if (WR.isValid())
Writes.push_back(WR);
// Handle potential partial register updates.
for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) {
const WriteRef &WR = RegisterMappings[*I].first;
if (WR.isValid())
Writes.push_back(WR);
}
// Remove duplicate entries and resize the input vector.
if (Writes.size() > 1) {
sort(Writes, [](const WriteRef &Lhs, const WriteRef &Rhs) {
return Lhs.getWriteState() < Rhs.getWriteState();
});
auto It = std::unique(Writes.begin(), Writes.end());
Writes.resize(std::distance(Writes.begin(), It));
}
LLVM_DEBUG({
for (const WriteRef &WR : Writes) {
const WriteState &WS = *WR.getWriteState();
dbgs() << "[PRF] Found a dependent use of Register "
<< MRI.getName(WS.getRegisterID()) << " (defined by instruction #"
<< WR.getSourceIndex() << ")\n";
}
});
}
void RegisterFile::addRegisterRead(ReadState &RS,
const MCSubtargetInfo &STI) const {
MCPhysReg RegID = RS.getRegisterID();
const RegisterRenamingInfo &RRI = RegisterMappings[RegID].second;
RS.setPRF(RRI.IndexPlusCost.first);
if (RS.isIndependentFromDef())
return;
if (ZeroRegisters[RS.getRegisterID()])
RS.setReadZero();
SmallVector<WriteRef, 4> DependentWrites;
collectWrites(RS, DependentWrites);
RS.setDependentWrites(DependentWrites.size());
// We know that this read depends on all the writes in DependentWrites.
// For each write, check if we have ReadAdvance information, and use it
// to figure out in how many cycles this read becomes available.
const ReadDescriptor &RD = RS.getDescriptor();
const MCSchedModel &SM = STI.getSchedModel();
const MCSchedClassDesc *SC = SM.getSchedClassDesc(RD.SchedClassID);
for (WriteRef &WR : DependentWrites) {
WriteState &WS = *WR.getWriteState();
unsigned WriteResID = WS.getWriteResourceID();
int ReadAdvance = STI.getReadAdvanceCycles(SC, RD.UseIndex, WriteResID);
WS.addUser(WR.getSourceIndex(), &RS, ReadAdvance);
}
}
unsigned RegisterFile::isAvailable(ArrayRef<MCPhysReg> Regs) const {
SmallVector<unsigned, 4> NumPhysRegs(getNumRegisterFiles());
// Find how many new mappings must be created for each register file.
for (const MCPhysReg RegID : Regs) {
const RegisterRenamingInfo &RRI = RegisterMappings[RegID].second;
const IndexPlusCostPairTy &Entry = RRI.IndexPlusCost;
if (Entry.first)
NumPhysRegs[Entry.first] += Entry.second;
NumPhysRegs[0] += Entry.second;
}
unsigned Response = 0;
for (unsigned I = 0, E = getNumRegisterFiles(); I < E; ++I) {
unsigned NumRegs = NumPhysRegs[I];
if (!NumRegs)
continue;
const RegisterMappingTracker &RMT = RegisterFiles[I];
if (!RMT.NumPhysRegs) {
// The register file has an unbounded number of microarchitectural
// registers.
continue;
}
if (RMT.NumPhysRegs < NumRegs) {
// The current register file is too small. This may occur if the number of
// microarchitectural registers in register file #0 was changed by the
// users via flag -reg-file-size. Alternatively, the scheduling model
// specified a too small number of registers for this register file.
LLVM_DEBUG(dbgs() << "Not enough registers in the register file.\n");
// FIXME: Normalize the instruction register count to match the
// NumPhysRegs value. This is a highly unusual case, and is not expected
// to occur. This normalization is hiding an inconsistency in either the
// scheduling model or in the value that the user might have specified
// for NumPhysRegs.
NumRegs = RMT.NumPhysRegs;
}
if (RMT.NumPhysRegs < (RMT.NumUsedPhysRegs + NumRegs))
Response |= (1U << I);
}
return Response;
}
#ifndef NDEBUG
void RegisterFile::dump() const {
for (unsigned I = 0, E = MRI.getNumRegs(); I < E; ++I) {
const RegisterMapping &RM = RegisterMappings[I];
const RegisterRenamingInfo &RRI = RM.second;
if (ZeroRegisters[I]) {
dbgs() << MRI.getName(I) << ", " << I
<< ", PRF=" << RRI.IndexPlusCost.first
<< ", Cost=" << RRI.IndexPlusCost.second
<< ", RenameAs=" << RRI.RenameAs << ", IsZero=" << ZeroRegisters[I]
<< ",";
RM.first.dump();
dbgs() << '\n';
}
}
for (unsigned I = 0, E = getNumRegisterFiles(); I < E; ++I) {
dbgs() << "Register File #" << I;
const RegisterMappingTracker &RMT = RegisterFiles[I];
dbgs() << "\n TotalMappings: " << RMT.NumPhysRegs
<< "\n NumUsedMappings: " << RMT.NumUsedPhysRegs << '\n';
}
}
#endif
} // namespace mca
} // namespace llvm
|