aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/CodeGen/VirtRegMap.cpp
blob: 5e0ff9d9092c5921b7e1ffae40087e005a1fdf5e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
//===- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the VirtRegMap class.
//
// It also contains implementations of the Spiller interface, which, given a
// virtual register map and a machine function, eliminates all virtual
// references by replacing them with physical register references - adding spill
// code as necessary.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/VirtRegMap.h"
#include "LiveDebugVariables.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveStacks.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/Pass.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <iterator>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "regalloc"

STATISTIC(NumSpillSlots, "Number of spill slots allocated");
STATISTIC(NumIdCopies,   "Number of identity moves eliminated after rewriting");

//===----------------------------------------------------------------------===//
//  VirtRegMap implementation
//===----------------------------------------------------------------------===//

char VirtRegMap::ID = 0;

INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)

bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
  MRI = &mf.getRegInfo();
  TII = mf.getSubtarget().getInstrInfo();
  TRI = mf.getSubtarget().getRegisterInfo();
  MF = &mf;

  Virt2PhysMap.clear();
  Virt2StackSlotMap.clear();
  Virt2SplitMap.clear();
  Virt2ShapeMap.clear();

  grow();
  return false;
}

void VirtRegMap::grow() {
  unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
  Virt2PhysMap.resize(NumRegs);
  Virt2StackSlotMap.resize(NumRegs);
  Virt2SplitMap.resize(NumRegs);
}

void VirtRegMap::assignVirt2Phys(Register virtReg, MCPhysReg physReg) {
  assert(virtReg.isVirtual() && Register::isPhysicalRegister(physReg));
  assert(Virt2PhysMap[virtReg.id()] == NO_PHYS_REG &&
         "attempt to assign physical register to already mapped "
         "virtual register");
  assert(!getRegInfo().isReserved(physReg) &&
         "Attempt to map virtReg to a reserved physReg");
  Virt2PhysMap[virtReg.id()] = physReg;
}

unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
  unsigned Size = TRI->getSpillSize(*RC);
  Align Alignment = TRI->getSpillAlign(*RC);
  int SS = MF->getFrameInfo().CreateSpillStackObject(Size, Alignment);
  ++NumSpillSlots;
  return SS;
}

bool VirtRegMap::hasPreferredPhys(Register VirtReg) {
  Register Hint = MRI->getSimpleHint(VirtReg);
  if (!Hint.isValid())
    return false;
  if (Hint.isVirtual())
    Hint = getPhys(Hint);
  return Register(getPhys(VirtReg)) == Hint;
}

bool VirtRegMap::hasKnownPreference(Register VirtReg) {
  std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg);
  if (Register::isPhysicalRegister(Hint.second))
    return true;
  if (Register::isVirtualRegister(Hint.second))
    return hasPhys(Hint.second);
  return false;
}

int VirtRegMap::assignVirt2StackSlot(Register virtReg) {
  assert(virtReg.isVirtual());
  assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
         "attempt to assign stack slot to already spilled register");
  const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
  return Virt2StackSlotMap[virtReg.id()] = createSpillSlot(RC);
}

void VirtRegMap::assignVirt2StackSlot(Register virtReg, int SS) {
  assert(virtReg.isVirtual());
  assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
         "attempt to assign stack slot to already spilled register");
  assert((SS >= 0 ||
          (SS >= MF->getFrameInfo().getObjectIndexBegin())) &&
         "illegal fixed frame index");
  Virt2StackSlotMap[virtReg.id()] = SS;
}

void VirtRegMap::print(raw_ostream &OS, const Module*) const {
  OS << "********** REGISTER MAP **********\n";
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    unsigned Reg = Register::index2VirtReg(i);
    if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
      OS << '[' << printReg(Reg, TRI) << " -> "
         << printReg(Virt2PhysMap[Reg], TRI) << "] "
         << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
    }
  }

  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    unsigned Reg = Register::index2VirtReg(i);
    if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
      OS << '[' << printReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
         << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
    }
  }
  OS << '\n';
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void VirtRegMap::dump() const {
  print(dbgs());
}
#endif

//===----------------------------------------------------------------------===//
//                              VirtRegRewriter
//===----------------------------------------------------------------------===//
//
// The VirtRegRewriter is the last of the register allocator passes.
// It rewrites virtual registers to physical registers as specified in the
// VirtRegMap analysis. It also updates live-in information on basic blocks
// according to LiveIntervals.
//
namespace {

class VirtRegRewriter : public MachineFunctionPass {
  MachineFunction *MF;
  const TargetRegisterInfo *TRI;
  const TargetInstrInfo *TII;
  MachineRegisterInfo *MRI;
  SlotIndexes *Indexes;
  LiveIntervals *LIS;
  VirtRegMap *VRM;

  void rewrite();
  void addMBBLiveIns();
  bool readsUndefSubreg(const MachineOperand &MO) const;
  void addLiveInsForSubRanges(const LiveInterval &LI, Register PhysReg) const;
  void handleIdentityCopy(MachineInstr &MI) const;
  void expandCopyBundle(MachineInstr &MI) const;
  bool subRegLiveThrough(const MachineInstr &MI, MCRegister SuperPhysReg) const;

public:
  static char ID;

  VirtRegRewriter() : MachineFunctionPass(ID) {}

  void getAnalysisUsage(AnalysisUsage &AU) const override;

  bool runOnMachineFunction(MachineFunction&) override;

  MachineFunctionProperties getSetProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoVRegs);
  }
};

} // end anonymous namespace

char VirtRegRewriter::ID = 0;

char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;

INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
                      "Virtual Register Rewriter", false, false)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
INITIALIZE_PASS_DEPENDENCY(LiveStacks)
INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
                    "Virtual Register Rewriter", false, false)

void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<LiveIntervals>();
  AU.addRequired<SlotIndexes>();
  AU.addPreserved<SlotIndexes>();
  AU.addRequired<LiveDebugVariables>();
  AU.addRequired<LiveStacks>();
  AU.addPreserved<LiveStacks>();
  AU.addRequired<VirtRegMap>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
  MF = &fn;
  TRI = MF->getSubtarget().getRegisterInfo();
  TII = MF->getSubtarget().getInstrInfo();
  MRI = &MF->getRegInfo();
  Indexes = &getAnalysis<SlotIndexes>();
  LIS = &getAnalysis<LiveIntervals>();
  VRM = &getAnalysis<VirtRegMap>();
  LLVM_DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
                    << "********** Function: " << MF->getName() << '\n');
  LLVM_DEBUG(VRM->dump());

  // Add kill flags while we still have virtual registers.
  LIS->addKillFlags(VRM);

  // Live-in lists on basic blocks are required for physregs.
  addMBBLiveIns();

  // Rewrite virtual registers.
  rewrite();

  // Write out new DBG_VALUE instructions.
  getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);

  // All machine operands and other references to virtual registers have been
  // replaced. Remove the virtual registers and release all the transient data.
  VRM->clearAllVirt();
  MRI->clearVirtRegs();
  return true;
}

void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI,
                                             Register PhysReg) const {
  assert(!LI.empty());
  assert(LI.hasSubRanges());

  using SubRangeIteratorPair =
      std::pair<const LiveInterval::SubRange *, LiveInterval::const_iterator>;

  SmallVector<SubRangeIteratorPair, 4> SubRanges;
  SlotIndex First;
  SlotIndex Last;
  for (const LiveInterval::SubRange &SR : LI.subranges()) {
    SubRanges.push_back(std::make_pair(&SR, SR.begin()));
    if (!First.isValid() || SR.segments.front().start < First)
      First = SR.segments.front().start;
    if (!Last.isValid() || SR.segments.back().end > Last)
      Last = SR.segments.back().end;
  }

  // Check all mbb start positions between First and Last while
  // simulatenously advancing an iterator for each subrange.
  for (SlotIndexes::MBBIndexIterator MBBI = Indexes->findMBBIndex(First);
       MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) {
    SlotIndex MBBBegin = MBBI->first;
    // Advance all subrange iterators so that their end position is just
    // behind MBBBegin (or the iterator is at the end).
    LaneBitmask LaneMask;
    for (auto &RangeIterPair : SubRanges) {
      const LiveInterval::SubRange *SR = RangeIterPair.first;
      LiveInterval::const_iterator &SRI = RangeIterPair.second;
      while (SRI != SR->end() && SRI->end <= MBBBegin)
        ++SRI;
      if (SRI == SR->end())
        continue;
      if (SRI->start <= MBBBegin)
        LaneMask |= SR->LaneMask;
    }
    if (LaneMask.none())
      continue;
    MachineBasicBlock *MBB = MBBI->second;
    MBB->addLiveIn(PhysReg, LaneMask);
  }
}

// Compute MBB live-in lists from virtual register live ranges and their
// assignments.
void VirtRegRewriter::addMBBLiveIns() {
  for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
    Register VirtReg = Register::index2VirtReg(Idx);
    if (MRI->reg_nodbg_empty(VirtReg))
      continue;
    LiveInterval &LI = LIS->getInterval(VirtReg);
    if (LI.empty() || LIS->intervalIsInOneMBB(LI))
      continue;
    // This is a virtual register that is live across basic blocks. Its
    // assigned PhysReg must be marked as live-in to those blocks.
    Register PhysReg = VRM->getPhys(VirtReg);
    assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register.");

    if (LI.hasSubRanges()) {
      addLiveInsForSubRanges(LI, PhysReg);
    } else {
      // Go over MBB begin positions and see if we have segments covering them.
      // The following works because segments and the MBBIndex list are both
      // sorted by slot indexes.
      SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin();
      for (const auto &Seg : LI) {
        I = Indexes->advanceMBBIndex(I, Seg.start);
        for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) {
          MachineBasicBlock *MBB = I->second;
          MBB->addLiveIn(PhysReg);
        }
      }
    }
  }

  // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in
  // each MBB's LiveIns set before calling addLiveIn on them.
  for (MachineBasicBlock &MBB : *MF)
    MBB.sortUniqueLiveIns();
}

/// Returns true if the given machine operand \p MO only reads undefined lanes.
/// The function only works for use operands with a subregister set.
bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const {
  // Shortcut if the operand is already marked undef.
  if (MO.isUndef())
    return true;

  Register Reg = MO.getReg();
  const LiveInterval &LI = LIS->getInterval(Reg);
  const MachineInstr &MI = *MO.getParent();
  SlotIndex BaseIndex = LIS->getInstructionIndex(MI);
  // This code is only meant to handle reading undefined subregisters which
  // we couldn't properly detect before.
  assert(LI.liveAt(BaseIndex) &&
         "Reads of completely dead register should be marked undef already");
  unsigned SubRegIdx = MO.getSubReg();
  assert(SubRegIdx != 0 && LI.hasSubRanges());
  LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
  // See if any of the relevant subregister liveranges is defined at this point.
  for (const LiveInterval::SubRange &SR : LI.subranges()) {
    if ((SR.LaneMask & UseMask).any() && SR.liveAt(BaseIndex))
      return false;
  }
  return true;
}

void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) const {
  if (!MI.isIdentityCopy())
    return;
  LLVM_DEBUG(dbgs() << "Identity copy: " << MI);
  ++NumIdCopies;

  // Copies like:
  //    %r0 = COPY undef %r0
  //    %al = COPY %al, implicit-def %eax
  // give us additional liveness information: The target (super-)register
  // must not be valid before this point. Replace the COPY with a KILL
  // instruction to maintain this information.
  if (MI.getOperand(1).isUndef() || MI.getNumOperands() > 2) {
    MI.setDesc(TII->get(TargetOpcode::KILL));
    LLVM_DEBUG(dbgs() << "  replace by: " << MI);
    return;
  }

  if (Indexes)
    Indexes->removeSingleMachineInstrFromMaps(MI);
  MI.eraseFromBundle();
  LLVM_DEBUG(dbgs() << "  deleted.\n");
}

/// The liverange splitting logic sometimes produces bundles of copies when
/// subregisters are involved. Expand these into a sequence of copy instructions
/// after processing the last in the bundle. Does not update LiveIntervals
/// which we shouldn't need for this instruction anymore.
void VirtRegRewriter::expandCopyBundle(MachineInstr &MI) const {
  if (!MI.isCopy() && !MI.isKill())
    return;

  if (MI.isBundledWithPred() && !MI.isBundledWithSucc()) {
    SmallVector<MachineInstr *, 2> MIs({&MI});

    // Only do this when the complete bundle is made out of COPYs and KILLs.
    MachineBasicBlock &MBB = *MI.getParent();
    for (MachineBasicBlock::reverse_instr_iterator I =
         std::next(MI.getReverseIterator()), E = MBB.instr_rend();
         I != E && I->isBundledWithSucc(); ++I) {
      if (!I->isCopy() && !I->isKill())
        return;
      MIs.push_back(&*I);
    }
    MachineInstr *FirstMI = MIs.back();

    auto anyRegsAlias = [](const MachineInstr *Dst,
                           ArrayRef<MachineInstr *> Srcs,
                           const TargetRegisterInfo *TRI) {
      for (const MachineInstr *Src : Srcs)
        if (Src != Dst)
          if (TRI->regsOverlap(Dst->getOperand(0).getReg(),
                               Src->getOperand(1).getReg()))
            return true;
      return false;
    };

    // If any of the destination registers in the bundle of copies alias any of
    // the source registers, try to schedule the instructions to avoid any
    // clobbering.
    for (int E = MIs.size(), PrevE = E; E > 1; PrevE = E) {
      for (int I = E; I--; )
        if (!anyRegsAlias(MIs[I], makeArrayRef(MIs).take_front(E), TRI)) {
          if (I + 1 != E)
            std::swap(MIs[I], MIs[E - 1]);
          --E;
        }
      if (PrevE == E) {
        MF->getFunction().getContext().emitError(
            "register rewriting failed: cycle in copy bundle");
        break;
      }
    }

    MachineInstr *BundleStart = FirstMI;
    for (MachineInstr *BundledMI : llvm::reverse(MIs)) {
      // If instruction is in the middle of the bundle, move it before the
      // bundle starts, otherwise, just unbundle it. When we get to the last
      // instruction, the bundle will have been completely undone.
      if (BundledMI != BundleStart) {
        BundledMI->removeFromBundle();
        MBB.insert(BundleStart, BundledMI);
      } else if (BundledMI->isBundledWithSucc()) {
        BundledMI->unbundleFromSucc();
        BundleStart = &*std::next(BundledMI->getIterator());
      }

      if (Indexes && BundledMI != FirstMI)
        Indexes->insertMachineInstrInMaps(*BundledMI);
    }
  }
}

/// Check whether (part of) \p SuperPhysReg is live through \p MI.
/// \pre \p MI defines a subregister of a virtual register that
/// has been assigned to \p SuperPhysReg.
bool VirtRegRewriter::subRegLiveThrough(const MachineInstr &MI,
                                        MCRegister SuperPhysReg) const {
  SlotIndex MIIndex = LIS->getInstructionIndex(MI);
  SlotIndex BeforeMIUses = MIIndex.getBaseIndex();
  SlotIndex AfterMIDefs = MIIndex.getBoundaryIndex();
  for (MCRegUnitIterator Unit(SuperPhysReg, TRI); Unit.isValid(); ++Unit) {
    const LiveRange &UnitRange = LIS->getRegUnit(*Unit);
    // If the regunit is live both before and after MI,
    // we assume it is live through.
    // Generally speaking, this is not true, because something like
    // "RU = op RU" would match that description.
    // However, we know that we are trying to assess whether
    // a def of a virtual reg, vreg, is live at the same time of RU.
    // If we are in the "RU = op RU" situation, that means that vreg
    // is defined at the same time as RU (i.e., "vreg, RU = op RU").
    // Thus, vreg and RU interferes and vreg cannot be assigned to
    // SuperPhysReg. Therefore, this situation cannot happen.
    if (UnitRange.liveAt(AfterMIDefs) && UnitRange.liveAt(BeforeMIUses))
      return true;
  }
  return false;
}

void VirtRegRewriter::rewrite() {
  bool NoSubRegLiveness = !MRI->subRegLivenessEnabled();
  SmallVector<Register, 8> SuperDeads;
  SmallVector<Register, 8> SuperDefs;
  SmallVector<Register, 8> SuperKills;

  for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
       MBBI != MBBE; ++MBBI) {
    LLVM_DEBUG(MBBI->print(dbgs(), Indexes));
    for (MachineBasicBlock::instr_iterator
           MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) {
      MachineInstr *MI = &*MII;
      ++MII;

      for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
           MOE = MI->operands_end(); MOI != MOE; ++MOI) {
        MachineOperand &MO = *MOI;

        // Make sure MRI knows about registers clobbered by regmasks.
        if (MO.isRegMask())
          MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());

        if (!MO.isReg() || !MO.getReg().isVirtual())
          continue;
        Register VirtReg = MO.getReg();
        MCRegister PhysReg = VRM->getPhys(VirtReg);
        assert(PhysReg != VirtRegMap::NO_PHYS_REG &&
               "Instruction uses unmapped VirtReg");
        assert(!MRI->isReserved(PhysReg) && "Reserved register assignment");

        // Preserve semantics of sub-register operands.
        unsigned SubReg = MO.getSubReg();
        if (SubReg != 0) {
          if (NoSubRegLiveness || !MRI->shouldTrackSubRegLiveness(VirtReg)) {
            // A virtual register kill refers to the whole register, so we may
            // have to add implicit killed operands for the super-register.  A
            // partial redef always kills and redefines the super-register.
            if ((MO.readsReg() && (MO.isDef() || MO.isKill())) ||
                (MO.isDef() && subRegLiveThrough(*MI, PhysReg)))
              SuperKills.push_back(PhysReg);

            if (MO.isDef()) {
              // Also add implicit defs for the super-register.
              if (MO.isDead())
                SuperDeads.push_back(PhysReg);
              else
                SuperDefs.push_back(PhysReg);
            }
          } else {
            if (MO.isUse()) {
              if (readsUndefSubreg(MO))
                // We need to add an <undef> flag if the subregister is
                // completely undefined (and we are not adding super-register
                // defs).
                MO.setIsUndef(true);
            } else if (!MO.isDead()) {
              assert(MO.isDef());
            }
          }

          // The def undef and def internal flags only make sense for
          // sub-register defs, and we are substituting a full physreg.  An
          // implicit killed operand from the SuperKills list will represent the
          // partial read of the super-register.
          if (MO.isDef()) {
            MO.setIsUndef(false);
            MO.setIsInternalRead(false);
          }

          // PhysReg operands cannot have subregister indexes.
          PhysReg = TRI->getSubReg(PhysReg, SubReg);
          assert(PhysReg.isValid() && "Invalid SubReg for physical register");
          MO.setSubReg(0);
        }
        // Rewrite. Note we could have used MachineOperand::substPhysReg(), but
        // we need the inlining here.
        MO.setReg(PhysReg);
        MO.setIsRenamable(true);
      }

      // Add any missing super-register kills after rewriting the whole
      // instruction.
      while (!SuperKills.empty())
        MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true);

      while (!SuperDeads.empty())
        MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true);

      while (!SuperDefs.empty())
        MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI);

      LLVM_DEBUG(dbgs() << "> " << *MI);

      expandCopyBundle(*MI);

      // We can remove identity copies right now.
      handleIdentityCopy(*MI);
    }
  }
}