aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/CodeGen/SelectionDAG/StatepointLowering.cpp
blob: 0172646c22ec1b835d21dd0769ef3d832fdef939 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
//===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file includes support code use by SelectionDAGBuilder when lowering a
// statepoint sequence in SelectionDAG IR.
//
//===----------------------------------------------------------------------===//

#include "StatepointLowering.h"
#include "SelectionDAGBuilder.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/GCMetadata.h"
#include "llvm/CodeGen/GCStrategy.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <tuple>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "statepoint-lowering"

STATISTIC(NumSlotsAllocatedForStatepoints,
          "Number of stack slots allocated for statepoints");
STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
STATISTIC(StatepointMaxSlotsRequired,
          "Maximum number of stack slots required for a singe statepoint");

cl::opt<bool> UseRegistersForDeoptValues(
    "use-registers-for-deopt-values", cl::Hidden, cl::init(false),
    cl::desc("Allow using registers for non pointer deopt args"));

cl::opt<bool> UseRegistersForGCPointersInLandingPad(
    "use-registers-for-gc-values-in-landing-pad", cl::Hidden, cl::init(false),
    cl::desc("Allow using registers for gc pointer in landing pad"));

cl::opt<unsigned> MaxRegistersForGCPointers(
    "max-registers-for-gc-values", cl::Hidden, cl::init(0),
    cl::desc("Max number of VRegs allowed to pass GC pointer meta args in"));

cl::opt<bool> AlwaysSpillBase("statepoint-always-spill-base", cl::Hidden,
                              cl::init(true),
                              cl::desc("Force spilling of base GC pointers"));

typedef FunctionLoweringInfo::StatepointRelocationRecord RecordType;

static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
                                 SelectionDAGBuilder &Builder, uint64_t Value) {
  SDLoc L = Builder.getCurSDLoc();
  Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
                                              MVT::i64));
  Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
}

void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
  // Consistency check
  assert(PendingGCRelocateCalls.empty() &&
         "Trying to visit statepoint before finished processing previous one");
  Locations.clear();
  NextSlotToAllocate = 0;
  // Need to resize this on each safepoint - we need the two to stay in sync and
  // the clear patterns of a SelectionDAGBuilder have no relation to
  // FunctionLoweringInfo.  Also need to ensure used bits get cleared.
  AllocatedStackSlots.clear();
  AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
}

void StatepointLoweringState::clear() {
  Locations.clear();
  AllocatedStackSlots.clear();
  assert(PendingGCRelocateCalls.empty() &&
         "cleared before statepoint sequence completed");
}

SDValue
StatepointLoweringState::allocateStackSlot(EVT ValueType,
                                           SelectionDAGBuilder &Builder) {
  NumSlotsAllocatedForStatepoints++;
  MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();

  unsigned SpillSize = ValueType.getStoreSize();
  assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?");

  // First look for a previously created stack slot which is not in
  // use (accounting for the fact arbitrary slots may already be
  // reserved), or to create a new stack slot and use it.

  const size_t NumSlots = AllocatedStackSlots.size();
  assert(NextSlotToAllocate <= NumSlots && "Broken invariant");

  assert(AllocatedStackSlots.size() ==
         Builder.FuncInfo.StatepointStackSlots.size() &&
         "Broken invariant");

  for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
    if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
      const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
      if (MFI.getObjectSize(FI) == SpillSize) {
        AllocatedStackSlots.set(NextSlotToAllocate);
        // TODO: Is ValueType the right thing to use here?
        return Builder.DAG.getFrameIndex(FI, ValueType);
      }
    }
  }

  // Couldn't find a free slot, so create a new one:

  SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
  const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
  MFI.markAsStatepointSpillSlotObjectIndex(FI);

  Builder.FuncInfo.StatepointStackSlots.push_back(FI);
  AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true);
  assert(AllocatedStackSlots.size() ==
         Builder.FuncInfo.StatepointStackSlots.size() &&
         "Broken invariant");

  StatepointMaxSlotsRequired.updateMax(
      Builder.FuncInfo.StatepointStackSlots.size());

  return SpillSlot;
}

/// Utility function for reservePreviousStackSlotForValue. Tries to find
/// stack slot index to which we have spilled value for previous statepoints.
/// LookUpDepth specifies maximum DFS depth this function is allowed to look.
static Optional<int> findPreviousSpillSlot(const Value *Val,
                                           SelectionDAGBuilder &Builder,
                                           int LookUpDepth) {
  // Can not look any further - give up now
  if (LookUpDepth <= 0)
    return None;

  // Spill location is known for gc relocates
  if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
    const auto &RelocationMap =
        Builder.FuncInfo.StatepointRelocationMaps[Relocate->getStatepoint()];

    auto It = RelocationMap.find(Relocate->getDerivedPtr());
    if (It == RelocationMap.end())
      return None;

    auto &Record = It->second;
    if (Record.type != RecordType::Spill)
      return None;

    return Record.payload.FI;
  }

  // Look through bitcast instructions.
  if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
    return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);

  // Look through phi nodes
  // All incoming values should have same known stack slot, otherwise result
  // is unknown.
  if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
    Optional<int> MergedResult = None;

    for (auto &IncomingValue : Phi->incoming_values()) {
      Optional<int> SpillSlot =
          findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
      if (!SpillSlot.hasValue())
        return None;

      if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
        return None;

      MergedResult = SpillSlot;
    }
    return MergedResult;
  }

  // TODO: We can do better for PHI nodes. In cases like this:
  //   ptr = phi(relocated_pointer, not_relocated_pointer)
  //   statepoint(ptr)
  // We will return that stack slot for ptr is unknown. And later we might
  // assign different stack slots for ptr and relocated_pointer. This limits
  // llvm's ability to remove redundant stores.
  // Unfortunately it's hard to accomplish in current infrastructure.
  // We use this function to eliminate spill store completely, while
  // in example we still need to emit store, but instead of any location
  // we need to use special "preferred" location.

  // TODO: handle simple updates.  If a value is modified and the original
  // value is no longer live, it would be nice to put the modified value in the
  // same slot.  This allows folding of the memory accesses for some
  // instructions types (like an increment).
  //   statepoint (i)
  //   i1 = i+1
  //   statepoint (i1)
  // However we need to be careful for cases like this:
  //   statepoint(i)
  //   i1 = i+1
  //   statepoint(i, i1)
  // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
  // put handling of simple modifications in this function like it's done
  // for bitcasts we might end up reserving i's slot for 'i+1' because order in
  // which we visit values is unspecified.

  // Don't know any information about this instruction
  return None;
}

/// Return true if-and-only-if the given SDValue can be lowered as either a
/// constant argument or a stack reference.  The key point is that the value
/// doesn't need to be spilled or tracked as a vreg use.
static bool willLowerDirectly(SDValue Incoming) {
  // We are making an unchecked assumption that the frame size <= 2^16 as that
  // is the largest offset which can be encoded in the stackmap format.
  if (isa<FrameIndexSDNode>(Incoming))
    return true;

  // The largest constant describeable in the StackMap format is 64 bits.
  // Potential Optimization:  Constants values are sign extended by consumer,
  // and thus there are many constants of static type > 64 bits whose value
  // happens to be sext(Con64) and could thus be lowered directly.
  if (Incoming.getValueType().getSizeInBits() > 64)
    return false;

  return (isa<ConstantSDNode>(Incoming) || isa<ConstantFPSDNode>(Incoming) ||
          Incoming.isUndef());
}

/// Try to find existing copies of the incoming values in stack slots used for
/// statepoint spilling.  If we can find a spill slot for the incoming value,
/// mark that slot as allocated, and reuse the same slot for this safepoint.
/// This helps to avoid series of loads and stores that only serve to reshuffle
/// values on the stack between calls.
static void reservePreviousStackSlotForValue(const Value *IncomingValue,
                                             SelectionDAGBuilder &Builder) {
  SDValue Incoming = Builder.getValue(IncomingValue);

  // If we won't spill this, we don't need to check for previously allocated
  // stack slots.
  if (willLowerDirectly(Incoming))
    return;

  SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
  if (OldLocation.getNode())
    // Duplicates in input
    return;

  const int LookUpDepth = 6;
  Optional<int> Index =
      findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
  if (!Index.hasValue())
    return;

  const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;

  auto SlotIt = find(StatepointSlots, *Index);
  assert(SlotIt != StatepointSlots.end() &&
         "Value spilled to the unknown stack slot");

  // This is one of our dedicated lowering slots
  const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
  if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
    // stack slot already assigned to someone else, can't use it!
    // TODO: currently we reserve space for gc arguments after doing
    // normal allocation for deopt arguments.  We should reserve for
    // _all_ deopt and gc arguments, then start allocating.  This
    // will prevent some moves being inserted when vm state changes,
    // but gc state doesn't between two calls.
    return;
  }
  // Reserve this stack slot
  Builder.StatepointLowering.reserveStackSlot(Offset);

  // Cache this slot so we find it when going through the normal
  // assignment loop.
  SDValue Loc =
      Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy());
  Builder.StatepointLowering.setLocation(Incoming, Loc);
}

/// Extract call from statepoint, lower it and return pointer to the
/// call node. Also update NodeMap so that getValue(statepoint) will
/// reference lowered call result
static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
    SelectionDAGBuilder::StatepointLoweringInfo &SI,
    SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) {
  SDValue ReturnValue, CallEndVal;
  std::tie(ReturnValue, CallEndVal) =
      Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
  SDNode *CallEnd = CallEndVal.getNode();

  // Get a call instruction from the call sequence chain.  Tail calls are not
  // allowed.  The following code is essentially reverse engineering X86's
  // LowerCallTo.
  //
  // We are expecting DAG to have the following form:
  //
  // ch = eh_label (only in case of invoke statepoint)
  //   ch, glue = callseq_start ch
  //   ch, glue = X86::Call ch, glue
  //   ch, glue = callseq_end ch, glue
  //   get_return_value ch, glue
  //
  // get_return_value can either be a sequence of CopyFromReg instructions
  // to grab the return value from the return register(s), or it can be a LOAD
  // to load a value returned by reference via a stack slot.

  bool HasDef = !SI.CLI.RetTy->isVoidTy();
  if (HasDef) {
    if (CallEnd->getOpcode() == ISD::LOAD)
      CallEnd = CallEnd->getOperand(0).getNode();
    else
      while (CallEnd->getOpcode() == ISD::CopyFromReg)
        CallEnd = CallEnd->getOperand(0).getNode();
  }

  assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
  return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
}

static MachineMemOperand* getMachineMemOperand(MachineFunction &MF,
                                               FrameIndexSDNode &FI) {
  auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex());
  auto MMOFlags = MachineMemOperand::MOStore |
    MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
  auto &MFI = MF.getFrameInfo();
  return MF.getMachineMemOperand(PtrInfo, MMOFlags,
                                 MFI.getObjectSize(FI.getIndex()),
                                 MFI.getObjectAlign(FI.getIndex()));
}

/// Spill a value incoming to the statepoint. It might be either part of
/// vmstate
/// or gcstate. In both cases unconditionally spill it on the stack unless it
/// is a null constant. Return pair with first element being frame index
/// containing saved value and second element with outgoing chain from the
/// emitted store
static std::tuple<SDValue, SDValue, MachineMemOperand*>
spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
                             SelectionDAGBuilder &Builder) {
  SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
  MachineMemOperand* MMO = nullptr;

  // Emit new store if we didn't do it for this ptr before
  if (!Loc.getNode()) {
    Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
                                                       Builder);
    int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
    // We use TargetFrameIndex so that isel will not select it into LEA
    Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy());

    // Right now we always allocate spill slots that are of the same
    // size as the value we're about to spill (the size of spillee can
    // vary since we spill vectors of pointers too).  At some point we
    // can consider allowing spills of smaller values to larger slots
    // (i.e. change the '==' in the assert below to a '>=').
    MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
    assert((MFI.getObjectSize(Index) * 8) ==
           (int64_t)Incoming.getValueSizeInBits() &&
           "Bad spill:  stack slot does not match!");

    // Note: Using the alignment of the spill slot (rather than the abi or
    // preferred alignment) is required for correctness when dealing with spill
    // slots with preferred alignments larger than frame alignment..
    auto &MF = Builder.DAG.getMachineFunction();
    auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
    auto *StoreMMO = MF.getMachineMemOperand(
        PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index),
        MFI.getObjectAlign(Index));
    Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
                                 StoreMMO);

    MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc));

    Builder.StatepointLowering.setLocation(Incoming, Loc);
  }

  assert(Loc.getNode());
  return std::make_tuple(Loc, Chain, MMO);
}

/// Lower a single value incoming to a statepoint node.  This value can be
/// either a deopt value or a gc value, the handling is the same.  We special
/// case constants and allocas, then fall back to spilling if required.
static void
lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot,
                             SmallVectorImpl<SDValue> &Ops,
                             SmallVectorImpl<MachineMemOperand *> &MemRefs,
                             SelectionDAGBuilder &Builder) {
  
  if (willLowerDirectly(Incoming)) {
    if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
      // This handles allocas as arguments to the statepoint (this is only
      // really meaningful for a deopt value.  For GC, we'd be trying to
      // relocate the address of the alloca itself?)
      assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
             "Incoming value is a frame index!");
      Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
                                                    Builder.getFrameIndexTy()));

      auto &MF = Builder.DAG.getMachineFunction();
      auto *MMO = getMachineMemOperand(MF, *FI);
      MemRefs.push_back(MMO);
      return;
    }

    assert(Incoming.getValueType().getSizeInBits() <= 64);
    
    if (Incoming.isUndef()) {
      // Put an easily recognized constant that's unlikely to be a valid
      // value so that uses of undef by the consumer of the stackmap is
      // easily recognized. This is legal since the compiler is always
      // allowed to chose an arbitrary value for undef.
      pushStackMapConstant(Ops, Builder, 0xFEFEFEFE);
      return;
    }

    // If the original value was a constant, make sure it gets recorded as
    // such in the stackmap.  This is required so that the consumer can
    // parse any internal format to the deopt state.  It also handles null
    // pointers and other constant pointers in GC states.
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
      pushStackMapConstant(Ops, Builder, C->getSExtValue());
      return;
    } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Incoming)) {
      pushStackMapConstant(Ops, Builder,
                           C->getValueAPF().bitcastToAPInt().getZExtValue());
      return;
    }

    llvm_unreachable("unhandled direct lowering case");
  }



  if (!RequireSpillSlot) {
    // If this value is live in (not live-on-return, or live-through), we can
    // treat it the same way patchpoint treats it's "live in" values.  We'll
    // end up folding some of these into stack references, but they'll be
    // handled by the register allocator.  Note that we do not have the notion
    // of a late use so these values might be placed in registers which are
    // clobbered by the call.  This is fine for live-in. For live-through
    // fix-up pass should be executed to force spilling of such registers.
    Ops.push_back(Incoming);
  } else {
    // Otherwise, locate a spill slot and explicitly spill it so it can be
    // found by the runtime later.  Note: We know all of these spills are
    // independent, but don't bother to exploit that chain wise.  DAGCombine
    // will happily do so as needed, so doing it here would be a small compile
    // time win at most. 
    SDValue Chain = Builder.getRoot();
    auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
    Ops.push_back(std::get<0>(Res));
    if (auto *MMO = std::get<2>(Res))
      MemRefs.push_back(MMO);
    Chain = std::get<1>(Res);;
    Builder.DAG.setRoot(Chain);
  }

}

/// Lower deopt state and gc pointer arguments of the statepoint.  The actual
/// lowering is described in lowerIncomingStatepointValue.  This function is
/// responsible for lowering everything in the right position and playing some
/// tricks to avoid redundant stack manipulation where possible.  On
/// completion, 'Ops' will contain ready to use operands for machine code
/// statepoint. The chain nodes will have already been created and the DAG root
/// will be set to the last value spilled (if any were).
static void
lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
                        SmallVectorImpl<MachineMemOperand *> &MemRefs,
                        SmallVectorImpl<SDValue> &GCPtrs,
                        DenseMap<SDValue, int> &LowerAsVReg,
                        SelectionDAGBuilder::StatepointLoweringInfo &SI,
                        SelectionDAGBuilder &Builder) {
  // Lower the deopt and gc arguments for this statepoint.  Layout will be:
  // deopt argument length, deopt arguments.., gc arguments...
#ifndef NDEBUG
  if (auto *GFI = Builder.GFI) {
    // Check that each of the gc pointer and bases we've gotten out of the
    // safepoint is something the strategy thinks might be a pointer (or vector
    // of pointers) into the GC heap.  This is basically just here to help catch
    // errors during statepoint insertion. TODO: This should actually be in the
    // Verifier, but we can't get to the GCStrategy from there (yet).
    GCStrategy &S = GFI->getStrategy();
    for (const Value *V : SI.Bases) {
      auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
      if (Opt.hasValue()) {
        assert(Opt.getValue() &&
               "non gc managed base pointer found in statepoint");
      }
    }
    for (const Value *V : SI.Ptrs) {
      auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
      if (Opt.hasValue()) {
        assert(Opt.getValue() &&
               "non gc managed derived pointer found in statepoint");
      }
    }
    assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!");
  } else {
    assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!");
    assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!");
  }
#endif

  // Figure out what lowering strategy we're going to use for each part
  // Note: Is is conservatively correct to lower both "live-in" and "live-out"
  // as "live-through". A "live-through" variable is one which is "live-in",
  // "live-out", and live throughout the lifetime of the call (i.e. we can find
  // it from any PC within the transitive callee of the statepoint).  In
  // particular, if the callee spills callee preserved registers we may not
  // be able to find a value placed in that register during the call.  This is
  // fine for live-out, but not for live-through.  If we were willing to make
  // assumptions about the code generator producing the callee, we could
  // potentially allow live-through values in callee saved registers.
  const bool LiveInDeopt =
    SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;

  // Decide which deriver pointers will go on VRegs
  unsigned MaxVRegPtrs = MaxRegistersForGCPointers.getValue();

  // Pointers used on exceptional path of invoke statepoint.
  // We cannot assing them to VRegs.
  SmallSet<SDValue, 8> LPadPointers;
  if (!UseRegistersForGCPointersInLandingPad)
    if (auto *StInvoke = dyn_cast_or_null<InvokeInst>(SI.StatepointInstr)) {
      LandingPadInst *LPI = StInvoke->getLandingPadInst();
      for (auto *Relocate : SI.GCRelocates)
        if (Relocate->getOperand(0) == LPI) {
          LPadPointers.insert(Builder.getValue(Relocate->getBasePtr()));
          LPadPointers.insert(Builder.getValue(Relocate->getDerivedPtr()));
        }
    }

  LLVM_DEBUG(dbgs() << "Deciding how to lower GC Pointers:\n");

  // List of unique lowered GC Pointer values.
  SmallSetVector<SDValue, 16> LoweredGCPtrs;
  // Map lowered GC Pointer value to the index in above vector
  DenseMap<SDValue, unsigned> GCPtrIndexMap;

  unsigned CurNumVRegs = 0;

  auto canPassGCPtrOnVReg = [&](SDValue SD) {
    if (SD.getValueType().isVector())
      return false;
    if (LPadPointers.count(SD))
      return false;
    return !willLowerDirectly(SD);
  };

  auto processGCPtr = [&](const Value *V) {
    SDValue PtrSD = Builder.getValue(V);
    if (!LoweredGCPtrs.insert(PtrSD))
      return; // skip duplicates
    GCPtrIndexMap[PtrSD] = LoweredGCPtrs.size() - 1;

    assert(!LowerAsVReg.count(PtrSD) && "must not have been seen");
    if (LowerAsVReg.size() == MaxVRegPtrs)
      return;
    assert(V->getType()->isVectorTy() == PtrSD.getValueType().isVector() &&
           "IR and SD types disagree");
    if (!canPassGCPtrOnVReg(PtrSD)) {
      LLVM_DEBUG(dbgs() << "direct/spill "; PtrSD.dump(&Builder.DAG));
      return;
    }
    LLVM_DEBUG(dbgs() << "vreg "; PtrSD.dump(&Builder.DAG));
    LowerAsVReg[PtrSD] = CurNumVRegs++;
  };

  // Process derived pointers first to give them more chance to go on VReg.
  for (const Value *V : SI.Ptrs)
    processGCPtr(V);
  for (const Value *V : SI.Bases)
    processGCPtr(V);

  LLVM_DEBUG(dbgs() << LowerAsVReg.size() << " pointers will go in vregs\n");

  auto isGCValue = [&](const Value *V) {
    auto *Ty = V->getType();
    if (!Ty->isPtrOrPtrVectorTy())
      return false;
    if (auto *GFI = Builder.GFI)
      if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
        return *IsManaged;
    return true; // conservative
  };

  auto requireSpillSlot = [&](const Value *V) {
    if (isGCValue(V))
      return !LowerAsVReg.count(Builder.getValue(V));
    return !(LiveInDeopt || UseRegistersForDeoptValues);
  };

  // Before we actually start lowering (and allocating spill slots for values),
  // reserve any stack slots which we judge to be profitable to reuse for a
  // particular value.  This is purely an optimization over the code below and
  // doesn't change semantics at all.  It is important for performance that we
  // reserve slots for both deopt and gc values before lowering either.
  for (const Value *V : SI.DeoptState) {
    if (requireSpillSlot(V))
      reservePreviousStackSlotForValue(V, Builder);
  }

  for (const Value *V : SI.Ptrs) {
    SDValue SDV = Builder.getValue(V);
    if (!LowerAsVReg.count(SDV))
      reservePreviousStackSlotForValue(V, Builder);
  }

  for (const Value *V : SI.Bases) {
    SDValue SDV = Builder.getValue(V);
    if (!LowerAsVReg.count(SDV))
      reservePreviousStackSlotForValue(V, Builder);
  }

  // First, prefix the list with the number of unique values to be
  // lowered.  Note that this is the number of *Values* not the
  // number of SDValues required to lower them.
  const int NumVMSArgs = SI.DeoptState.size();
  pushStackMapConstant(Ops, Builder, NumVMSArgs);

  // The vm state arguments are lowered in an opaque manner.  We do not know
  // what type of values are contained within.
  LLVM_DEBUG(dbgs() << "Lowering deopt state\n");
  for (const Value *V : SI.DeoptState) {
    SDValue Incoming;
    // If this is a function argument at a static frame index, generate it as
    // the frame index.
    if (const Argument *Arg = dyn_cast<Argument>(V)) {
      int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg);
      if (FI != INT_MAX)
        Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy());
    }
    if (!Incoming.getNode())
      Incoming = Builder.getValue(V);
    LLVM_DEBUG(dbgs() << "Value " << *V
                      << " requireSpillSlot = " << requireSpillSlot(V) << "\n");
    lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs,
                                 Builder);
  }

  // Finally, go ahead and lower all the gc arguments.
  pushStackMapConstant(Ops, Builder, LoweredGCPtrs.size());
  for (SDValue SDV : LoweredGCPtrs)
    lowerIncomingStatepointValue(SDV, !LowerAsVReg.count(SDV), Ops, MemRefs,
                                 Builder);

  // Copy to out vector. LoweredGCPtrs will be empty after this point.
  GCPtrs = LoweredGCPtrs.takeVector();

  // If there are any explicit spill slots passed to the statepoint, record
  // them, but otherwise do not do anything special.  These are user provided
  // allocas and give control over placement to the consumer.  In this case,
  // it is the contents of the slot which may get updated, not the pointer to
  // the alloca
  SmallVector<SDValue, 4> Allocas;
  for (Value *V : SI.GCArgs) {
    SDValue Incoming = Builder.getValue(V);
    if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
      // This handles allocas as arguments to the statepoint
      assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
             "Incoming value is a frame index!");
      Allocas.push_back(Builder.DAG.getTargetFrameIndex(
          FI->getIndex(), Builder.getFrameIndexTy()));

      auto &MF = Builder.DAG.getMachineFunction();
      auto *MMO = getMachineMemOperand(MF, *FI);
      MemRefs.push_back(MMO);
    }
  }
  pushStackMapConstant(Ops, Builder, Allocas.size());
  Ops.append(Allocas.begin(), Allocas.end());

  // Now construct GC base/derived map;
  pushStackMapConstant(Ops, Builder, SI.Ptrs.size());
  SDLoc L = Builder.getCurSDLoc();
  for (unsigned i = 0; i < SI.Ptrs.size(); ++i) {
    SDValue Base = Builder.getValue(SI.Bases[i]);
    assert(GCPtrIndexMap.count(Base) && "base not found in index map");
    Ops.push_back(
        Builder.DAG.getTargetConstant(GCPtrIndexMap[Base], L, MVT::i64));
    SDValue Derived = Builder.getValue(SI.Ptrs[i]);
    assert(GCPtrIndexMap.count(Derived) && "derived not found in index map");
    Ops.push_back(
        Builder.DAG.getTargetConstant(GCPtrIndexMap[Derived], L, MVT::i64));
  }
}

SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
    SelectionDAGBuilder::StatepointLoweringInfo &SI) {
  // The basic scheme here is that information about both the original call and
  // the safepoint is encoded in the CallInst.  We create a temporary call and
  // lower it, then reverse engineer the calling sequence.

  NumOfStatepoints++;
  // Clear state
  StatepointLowering.startNewStatepoint(*this);
  assert(SI.Bases.size() == SI.Ptrs.size() &&
         SI.Ptrs.size() <= SI.GCRelocates.size());

  LLVM_DEBUG(dbgs() << "Lowering statepoint " << *SI.StatepointInstr << "\n");
#ifndef NDEBUG
  for (auto *Reloc : SI.GCRelocates)
    if (Reloc->getParent() == SI.StatepointInstr->getParent())
      StatepointLowering.scheduleRelocCall(*Reloc);
#endif

  // Lower statepoint vmstate and gcstate arguments

  // All lowered meta args.
  SmallVector<SDValue, 10> LoweredMetaArgs;
  // Lowered GC pointers (subset of above).
  SmallVector<SDValue, 16> LoweredGCArgs;
  SmallVector<MachineMemOperand*, 16> MemRefs;
  // Maps derived pointer SDValue to statepoint result of relocated pointer.
  DenseMap<SDValue, int> LowerAsVReg;
  lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, LoweredGCArgs, LowerAsVReg,
                          SI, *this);

  // Now that we've emitted the spills, we need to update the root so that the
  // call sequence is ordered correctly.
  SI.CLI.setChain(getRoot());

  // Get call node, we will replace it later with statepoint
  SDValue ReturnVal;
  SDNode *CallNode;
  std::tie(ReturnVal, CallNode) =
      lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports);

  // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
  // nodes with all the appropriate arguments and return values.

  // Call Node: Chain, Target, {Args}, RegMask, [Glue]
  SDValue Chain = CallNode->getOperand(0);

  SDValue Glue;
  bool CallHasIncomingGlue = CallNode->getGluedNode();
  if (CallHasIncomingGlue) {
    // Glue is always last operand
    Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
  }

  // Build the GC_TRANSITION_START node if necessary.
  //
  // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
  // order in which they appear in the call to the statepoint intrinsic. If
  // any of the operands is a pointer-typed, that operand is immediately
  // followed by a SRCVALUE for the pointer that may be used during lowering
  // (e.g. to form MachinePointerInfo values for loads/stores).
  const bool IsGCTransition =
      (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
      (uint64_t)StatepointFlags::GCTransition;
  if (IsGCTransition) {
    SmallVector<SDValue, 8> TSOps;

    // Add chain
    TSOps.push_back(Chain);

    // Add GC transition arguments
    for (const Value *V : SI.GCTransitionArgs) {
      TSOps.push_back(getValue(V));
      if (V->getType()->isPointerTy())
        TSOps.push_back(DAG.getSrcValue(V));
    }

    // Add glue if necessary
    if (CallHasIncomingGlue)
      TSOps.push_back(Glue);

    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);

    SDValue GCTransitionStart =
        DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);

    Chain = GCTransitionStart.getValue(0);
    Glue = GCTransitionStart.getValue(1);
  }

  // TODO: Currently, all of these operands are being marked as read/write in
  // PrologEpilougeInserter.cpp, we should special case the VMState arguments
  // and flags to be read-only.
  SmallVector<SDValue, 40> Ops;

  // Add the <id> and <numBytes> constants.
  Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
  Ops.push_back(
      DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));

  // Calculate and push starting position of vmstate arguments
  // Get number of arguments incoming directly into call node
  unsigned NumCallRegArgs =
      CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
  Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));

  // Add call target
  SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
  Ops.push_back(CallTarget);

  // Add call arguments
  // Get position of register mask in the call
  SDNode::op_iterator RegMaskIt;
  if (CallHasIncomingGlue)
    RegMaskIt = CallNode->op_end() - 2;
  else
    RegMaskIt = CallNode->op_end() - 1;
  Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);

  // Add a constant argument for the calling convention
  pushStackMapConstant(Ops, *this, SI.CLI.CallConv);

  // Add a constant argument for the flags
  uint64_t Flags = SI.StatepointFlags;
  assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
         "Unknown flag used");
  pushStackMapConstant(Ops, *this, Flags);

  // Insert all vmstate and gcstate arguments
  llvm::append_range(Ops, LoweredMetaArgs);

  // Add register mask from call node
  Ops.push_back(*RegMaskIt);

  // Add chain
  Ops.push_back(Chain);

  // Same for the glue, but we add it only if original call had it
  if (Glue.getNode())
    Ops.push_back(Glue);

  // Compute return values.  Provide a glue output since we consume one as
  // input.  This allows someone else to chain off us as needed.
  SmallVector<EVT, 8> NodeTys;
  for (auto SD : LoweredGCArgs) {
    if (!LowerAsVReg.count(SD))
      continue;
    NodeTys.push_back(SD.getValueType());
  }
  LLVM_DEBUG(dbgs() << "Statepoint has " << NodeTys.size() << " results\n");
  assert(NodeTys.size() == LowerAsVReg.size() && "Inconsistent GC Ptr lowering");
  NodeTys.push_back(MVT::Other);
  NodeTys.push_back(MVT::Glue);

  unsigned NumResults = NodeTys.size();
  MachineSDNode *StatepointMCNode =
    DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
  DAG.setNodeMemRefs(StatepointMCNode, MemRefs);

  // For values lowered to tied-defs, create the virtual registers.  Note that
  // for simplicity, we *always* create a vreg even within a single block.
  DenseMap<SDValue, Register> VirtRegs;
  for (const auto *Relocate : SI.GCRelocates) {
    Value *Derived = Relocate->getDerivedPtr();
    SDValue SD = getValue(Derived);
    if (!LowerAsVReg.count(SD))
      continue;

    // Handle multiple gc.relocates of the same input efficiently.
    if (VirtRegs.count(SD))
      continue;

    SDValue Relocated = SDValue(StatepointMCNode, LowerAsVReg[SD]);

    auto *RetTy = Relocate->getType();
    Register Reg = FuncInfo.CreateRegs(RetTy);
    RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
                     DAG.getDataLayout(), Reg, RetTy, None);
    SDValue Chain = DAG.getRoot();
    RFV.getCopyToRegs(Relocated, DAG, getCurSDLoc(), Chain, nullptr);
    PendingExports.push_back(Chain);

    VirtRegs[SD] = Reg;
  }

  // Record for later use how each relocation was lowered.  This is needed to
  // allow later gc.relocates to mirror the lowering chosen.
  const Instruction *StatepointInstr = SI.StatepointInstr;
  auto &RelocationMap = FuncInfo.StatepointRelocationMaps[StatepointInstr];
  for (const GCRelocateInst *Relocate : SI.GCRelocates) {
    const Value *V = Relocate->getDerivedPtr();
    SDValue SDV = getValue(V);
    SDValue Loc = StatepointLowering.getLocation(SDV);

    RecordType Record;
    if (LowerAsVReg.count(SDV)) {
      Record.type = RecordType::VReg;
      assert(VirtRegs.count(SDV));
      Record.payload.Reg = VirtRegs[SDV];
    } else if (Loc.getNode()) {
      Record.type = RecordType::Spill;
      Record.payload.FI = cast<FrameIndexSDNode>(Loc)->getIndex();
    } else {
      Record.type = RecordType::NoRelocate;
      // If we didn't relocate a value, we'll essentialy end up inserting an
      // additional use of the original value when lowering the gc.relocate.
      // We need to make sure the value is available at the new use, which
      // might be in another block.
      if (Relocate->getParent() != StatepointInstr->getParent())
        ExportFromCurrentBlock(V);
    }
    RelocationMap[V] = Record;
  }

  

  SDNode *SinkNode = StatepointMCNode;

  // Build the GC_TRANSITION_END node if necessary.
  //
  // See the comment above regarding GC_TRANSITION_START for the layout of
  // the operands to the GC_TRANSITION_END node.
  if (IsGCTransition) {
    SmallVector<SDValue, 8> TEOps;

    // Add chain
    TEOps.push_back(SDValue(StatepointMCNode, NumResults - 2));

    // Add GC transition arguments
    for (const Value *V : SI.GCTransitionArgs) {
      TEOps.push_back(getValue(V));
      if (V->getType()->isPointerTy())
        TEOps.push_back(DAG.getSrcValue(V));
    }

    // Add glue
    TEOps.push_back(SDValue(StatepointMCNode, NumResults - 1));

    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);

    SDValue GCTransitionStart =
        DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);

    SinkNode = GCTransitionStart.getNode();
  }

  // Replace original call
  // Call: ch,glue = CALL ...
  // Statepoint: [gc relocates],ch,glue = STATEPOINT ...
  unsigned NumSinkValues = SinkNode->getNumValues();
  SDValue StatepointValues[2] = {SDValue(SinkNode, NumSinkValues - 2),
                                 SDValue(SinkNode, NumSinkValues - 1)};
  DAG.ReplaceAllUsesWith(CallNode, StatepointValues);
  // Remove original call node
  DAG.DeleteNode(CallNode);

  // Since we always emit CopyToRegs (even for local relocates), we must
  // update root, so that they are emitted before any local uses.
  (void)getControlRoot();

  // TODO: A better future implementation would be to emit a single variable
  // argument, variable return value STATEPOINT node here and then hookup the
  // return value of each gc.relocate to the respective output of the
  // previously emitted STATEPOINT value.  Unfortunately, this doesn't appear
  // to actually be possible today.

  return ReturnVal;
}

void
SelectionDAGBuilder::LowerStatepoint(const GCStatepointInst &I,
                                     const BasicBlock *EHPadBB /*= nullptr*/) {
  assert(I.getCallingConv() != CallingConv::AnyReg &&
         "anyregcc is not supported on statepoints!");

#ifndef NDEBUG
  // Check that the associated GCStrategy expects to encounter statepoints.
  assert(GFI->getStrategy().useStatepoints() &&
         "GCStrategy does not expect to encounter statepoints");
#endif

  SDValue ActualCallee;
  SDValue Callee = getValue(I.getActualCalledOperand());

  if (I.getNumPatchBytes() > 0) {
    // If we've been asked to emit a nop sequence instead of a call instruction
    // for this statepoint then don't lower the call target, but use a constant
    // `undef` instead.  Not lowering the call target lets statepoint clients
    // get away without providing a physical address for the symbolic call
    // target at link time.
    ActualCallee = DAG.getUNDEF(Callee.getValueType());
  } else {
    ActualCallee = Callee;
  }

  StatepointLoweringInfo SI(DAG);
  populateCallLoweringInfo(SI.CLI, &I, GCStatepointInst::CallArgsBeginPos,
                           I.getNumCallArgs(), ActualCallee,
                           I.getActualReturnType(), false /* IsPatchPoint */);

  // There may be duplication in the gc.relocate list; such as two copies of
  // each relocation on normal and exceptional path for an invoke.  We only
  // need to spill once and record one copy in the stackmap, but we need to
  // reload once per gc.relocate.  (Dedupping gc.relocates is trickier and best
  // handled as a CSE problem elsewhere.)
  // TODO: There a couple of major stackmap size optimizations we could do
  // here if we wished.
  // 1) If we've encountered a derived pair {B, D}, we don't need to actually
  // record {B,B} if it's seen later.
  // 2) Due to rematerialization, actual derived pointers are somewhat rare;
  // given that, we could change the format to record base pointer relocations
  // separately with half the space. This would require a format rev and a
  // fairly major rework of the STATEPOINT node though.
  SmallSet<SDValue, 8> Seen;
  for (const GCRelocateInst *Relocate : I.getGCRelocates()) {
    SI.GCRelocates.push_back(Relocate);

    SDValue DerivedSD = getValue(Relocate->getDerivedPtr());
    if (Seen.insert(DerivedSD).second) {
      SI.Bases.push_back(Relocate->getBasePtr());
      SI.Ptrs.push_back(Relocate->getDerivedPtr());
    }
  }

  SI.GCArgs = ArrayRef<const Use>(I.gc_args_begin(), I.gc_args_end());
  SI.StatepointInstr = &I;
  SI.ID = I.getID();

  SI.DeoptState = ArrayRef<const Use>(I.deopt_begin(), I.deopt_end());
  SI.GCTransitionArgs = ArrayRef<const Use>(I.gc_transition_args_begin(),
                                            I.gc_transition_args_end());

  SI.StatepointFlags = I.getFlags();
  SI.NumPatchBytes = I.getNumPatchBytes();
  SI.EHPadBB = EHPadBB;

  SDValue ReturnValue = LowerAsSTATEPOINT(SI);

  // Export the result value if needed
  const GCResultInst *GCResult = I.getGCResult();
  Type *RetTy = I.getActualReturnType();

  if (RetTy->isVoidTy() || !GCResult) {
    // The return value is not needed, just generate a poison value. 
    setValue(&I, DAG.getIntPtrConstant(-1, getCurSDLoc()));
    return;
  }

  if (GCResult->getParent() == I.getParent()) {
    // Result value will be used in a same basic block. Don't export it or
    // perform any explicit register copies. The gc_result will simply grab
    // this value. 
    setValue(&I, ReturnValue);
    return;
  }

  // Result value will be used in a different basic block so we need to export
  // it now.  Default exporting mechanism will not work here because statepoint
  // call has a different type than the actual call. It means that by default
  // llvm will create export register of the wrong type (always i32 in our
  // case). So instead we need to create export register with correct type
  // manually.
  // TODO: To eliminate this problem we can remove gc.result intrinsics
  //       completely and make statepoint call to return a tuple.
  unsigned Reg = FuncInfo.CreateRegs(RetTy);
  RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
                   DAG.getDataLayout(), Reg, RetTy,
                   I.getCallingConv());
  SDValue Chain = DAG.getEntryNode();
  
  RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
  PendingExports.push_back(Chain);
  FuncInfo.ValueMap[&I] = Reg;
}

void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
    const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB,
    bool VarArgDisallowed, bool ForceVoidReturnTy) {
  StatepointLoweringInfo SI(DAG);
  unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin();
  populateCallLoweringInfo(
      SI.CLI, Call, ArgBeginIndex, Call->getNumArgOperands(), Callee,
      ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(),
      false);
  if (!VarArgDisallowed)
    SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg();

  auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt);

  unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;

  auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes());
  SI.ID = SD.StatepointID.getValueOr(DefaultID);
  SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0);

  SI.DeoptState =
      ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
  SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
  SI.EHPadBB = EHPadBB;

  // NB! The GC arguments are deliberately left empty.

  if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
    ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal);
    setValue(Call, ReturnVal);
  }
}

void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
    const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) {
  LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB,
                                   /* VarArgDisallowed = */ false,
                                   /* ForceVoidReturnTy  = */ false);
}

void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
  // The result value of the gc_result is simply the result of the actual
  // call.  We've already emitted this, so just grab the value.
  const GCStatepointInst *SI = CI.getStatepoint();

  if (SI->getParent() == CI.getParent()) {
    setValue(&CI, getValue(SI));
    return;
  }
  // Statepoint is in different basic block so we should have stored call
  // result in a virtual register.
  // We can not use default getValue() functionality to copy value from this
  // register because statepoint and actual call return types can be
  // different, and getValue() will use CopyFromReg of the wrong type,
  // which is always i32 in our case.
  Type *RetTy = SI->getActualReturnType();
  SDValue CopyFromReg = getCopyFromRegs(SI, RetTy);
  
  assert(CopyFromReg.getNode());
  setValue(&CI, CopyFromReg);
}

void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
#ifndef NDEBUG
  // Consistency check
  // We skip this check for relocates not in the same basic block as their
  // statepoint. It would be too expensive to preserve validation info through
  // different basic blocks.
  if (Relocate.getStatepoint()->getParent() == Relocate.getParent())
    StatepointLowering.relocCallVisited(Relocate);

  auto *Ty = Relocate.getType()->getScalarType();
  if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
    assert(*IsManaged && "Non gc managed pointer relocated!");
#endif

  const Value *DerivedPtr = Relocate.getDerivedPtr();
  auto &RelocationMap =
    FuncInfo.StatepointRelocationMaps[Relocate.getStatepoint()];
  auto SlotIt = RelocationMap.find(DerivedPtr);
  assert(SlotIt != RelocationMap.end() && "Relocating not lowered gc value");
  const RecordType &Record = SlotIt->second;

  // If relocation was done via virtual register..
  if (Record.type == RecordType::VReg) {
    Register InReg = Record.payload.Reg;
    RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
                     DAG.getDataLayout(), InReg, Relocate.getType(),
                     None); // This is not an ABI copy.
    // We generate copy to/from regs even for local uses, hence we must
    // chain with current root to ensure proper ordering of copies w.r.t.
    // statepoint.
    SDValue Chain = DAG.getRoot();
    SDValue Relocation = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
                                             Chain, nullptr, nullptr);
    setValue(&Relocate, Relocation);
    return;
  }
  
  SDValue SD = getValue(DerivedPtr);

  if (SD.isUndef() && SD.getValueType().getSizeInBits() <= 64) {
    // Lowering relocate(undef) as arbitrary constant. Current constant value
    // is chosen such that it's unlikely to be a valid pointer.
    setValue(&Relocate, DAG.getTargetConstant(0xFEFEFEFE, SDLoc(SD), MVT::i64));
    return;
  }


  // We didn't need to spill these special cases (constants and allocas).
  // See the handling in spillIncomingValueForStatepoint for detail.
  if (Record.type == RecordType::NoRelocate) {
    setValue(&Relocate, SD);
    return;
  }

  assert(Record.type == RecordType::Spill);

  unsigned Index = Record.payload.FI;;
  SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy());

  // All the reloads are independent and are reading memory only modified by
  // statepoints (i.e. no other aliasing stores); informing SelectionDAG of
  // this this let's CSE kick in for free and allows reordering of instructions
  // if possible.  The lowering for statepoint sets the root, so this is
  // ordering all reloads with the either a) the statepoint node itself, or b)
  // the entry of the current block for an invoke statepoint.
  const SDValue Chain = DAG.getRoot(); // != Builder.getRoot()

  auto &MF = DAG.getMachineFunction();
  auto &MFI = MF.getFrameInfo();
  auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
  auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
                                          MFI.getObjectSize(Index),
                                          MFI.getObjectAlign(Index));

  auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
                                                         Relocate.getType());

  SDValue SpillLoad = DAG.getLoad(LoadVT, getCurSDLoc(), Chain,
                                  SpillSlot, LoadMMO);
  PendingLoads.push_back(SpillLoad.getValue(1));

  assert(SpillLoad.getNode());
  setValue(&Relocate, SpillLoad);
}

void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
  const auto &TLI = DAG.getTargetLoweringInfo();
  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
                                         TLI.getPointerTy(DAG.getDataLayout()));

  // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
  // call.  We also do not lower the return value to any virtual register, and
  // change the immediately following return to a trap instruction.
  LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
                                   /* VarArgDisallowed = */ true,
                                   /* ForceVoidReturnTy = */ true);
}

void SelectionDAGBuilder::LowerDeoptimizingReturn() {
  // We do not lower the return value from llvm.deoptimize to any virtual
  // register, and change the immediately following return to a trap
  // instruction.
  if (DAG.getTarget().Options.TrapUnreachable)
    DAG.setRoot(
        DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
}