aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/CodeGen/PHIElimination.cpp
blob: 72c2eb06dc462c1662f300b9602ac9ed80c41d0b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
//===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass eliminates machine instruction PHI nodes by inserting copy
// instructions.  This destroys SSA information, but is the desired input for
// some register allocators.
//
//===----------------------------------------------------------------------===//

#include "PHIEliminationUtils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <iterator>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "phi-node-elimination"

static cl::opt<bool>
DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
                     cl::Hidden, cl::desc("Disable critical edge splitting "
                                          "during PHI elimination"));

static cl::opt<bool>
SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
                      cl::Hidden, cl::desc("Split all critical edges during "
                                           "PHI elimination"));

static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
    "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
    cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));

namespace {

  class PHIElimination : public MachineFunctionPass {
    MachineRegisterInfo *MRI; // Machine register information
    LiveVariables *LV;
    LiveIntervals *LIS;

  public:
    static char ID; // Pass identification, replacement for typeid

    PHIElimination() : MachineFunctionPass(ID) {
      initializePHIEliminationPass(*PassRegistry::getPassRegistry());
    }

    bool runOnMachineFunction(MachineFunction &MF) override;
    void getAnalysisUsage(AnalysisUsage &AU) const override;

  private:
    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
    /// in predecessor basic blocks.
    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);

    void LowerPHINode(MachineBasicBlock &MBB,
                      MachineBasicBlock::iterator LastPHIIt);

    /// analyzePHINodes - Gather information about the PHI nodes in
    /// here. In particular, we want to map the number of uses of a virtual
    /// register which is used in a PHI node. We map that to the BB the
    /// vreg is coming from. This is used later to determine when the vreg
    /// is killed in the BB.
    void analyzePHINodes(const MachineFunction& MF);

    /// Split critical edges where necessary for good coalescer performance.
    bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
                       MachineLoopInfo *MLI,
                       std::vector<SparseBitVector<>> *LiveInSets);

    // These functions are temporary abstractions around LiveVariables and
    // LiveIntervals, so they can go away when LiveVariables does.
    bool isLiveIn(Register Reg, const MachineBasicBlock *MBB); 
    bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB); 

    using BBVRegPair = std::pair<unsigned, Register>; 
    using VRegPHIUse = DenseMap<BBVRegPair, unsigned>;

    VRegPHIUse VRegPHIUseCount;

    // Defs of PHI sources which are implicit_def.
    SmallPtrSet<MachineInstr*, 4> ImpDefs;

    // Map reusable lowered PHI node -> incoming join register.
    using LoweredPHIMap =
        DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>;
    LoweredPHIMap LoweredPHIs;
  };

} // end anonymous namespace

STATISTIC(NumLowered, "Number of phis lowered");
STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
STATISTIC(NumReused, "Number of reused lowered phis");

char PHIElimination::ID = 0;

char& llvm::PHIEliminationID = PHIElimination::ID;

INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE,
                      "Eliminate PHI nodes for register allocation",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(LiveVariables)
INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE,
                    "Eliminate PHI nodes for register allocation", false, false)

void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addUsedIfAvailable<LiveVariables>();
  AU.addPreserved<LiveVariables>();
  AU.addPreserved<SlotIndexes>();
  AU.addPreserved<LiveIntervals>();
  AU.addPreserved<MachineDominatorTree>();
  AU.addPreserved<MachineLoopInfo>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
  MRI = &MF.getRegInfo();
  LV = getAnalysisIfAvailable<LiveVariables>();
  LIS = getAnalysisIfAvailable<LiveIntervals>();

  bool Changed = false;

  // Split critical edges to help the coalescer.
  if (!DisableEdgeSplitting && (LV || LIS)) {
    // A set of live-in regs for each MBB which is used to update LV
    // efficiently also with large functions.
    std::vector<SparseBitVector<>> LiveInSets;
    if (LV) {
      LiveInSets.resize(MF.size());
      for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) {
        // Set the bit for this register for each MBB where it is
        // live-through or live-in (killed).
        unsigned VirtReg = Register::index2VirtReg(Index);
        MachineInstr *DefMI = MRI->getVRegDef(VirtReg);
        if (!DefMI)
          continue;
        LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg);
        SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin();
        SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end();
        while (AliveBlockItr != EndItr) {
          unsigned BlockNum = *(AliveBlockItr++);
          LiveInSets[BlockNum].set(Index);
        }
        // The register is live into an MBB in which it is killed but not
        // defined. See comment for VarInfo in LiveVariables.h.
        MachineBasicBlock *DefMBB = DefMI->getParent();
        if (VI.Kills.size() > 1 ||
            (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB))
          for (auto *MI : VI.Kills)
            LiveInSets[MI->getParent()->getNumber()].set(Index);
      }
    }

    MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
    for (auto &MBB : MF)
      Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr));
  }

  // This pass takes the function out of SSA form.
  MRI->leaveSSA();

  // Populate VRegPHIUseCount
  analyzePHINodes(MF);

  // Eliminate PHI instructions by inserting copies into predecessor blocks.
  for (auto &MBB : MF)
    Changed |= EliminatePHINodes(MF, MBB);

  // Remove dead IMPLICIT_DEF instructions.
  for (MachineInstr *DefMI : ImpDefs) {
    Register DefReg = DefMI->getOperand(0).getReg();
    if (MRI->use_nodbg_empty(DefReg)) {
      if (LIS)
        LIS->RemoveMachineInstrFromMaps(*DefMI);
      DefMI->eraseFromParent();
    }
  }

  // Clean up the lowered PHI instructions.
  for (auto &I : LoweredPHIs) {
    if (LIS)
      LIS->RemoveMachineInstrFromMaps(*I.first);
    MF.DeleteMachineInstr(I.first);
  }

  // TODO: we should use the incremental DomTree updater here.
  if (Changed)
    if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>())
      MDT->getBase().recalculate(MF);

  LoweredPHIs.clear();
  ImpDefs.clear();
  VRegPHIUseCount.clear();

  MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);

  return Changed;
}

/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
/// predecessor basic blocks.
bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
                                       MachineBasicBlock &MBB) {
  if (MBB.empty() || !MBB.front().isPHI())
    return false;   // Quick exit for basic blocks without PHIs.

  // Get an iterator to the last PHI node.
  MachineBasicBlock::iterator LastPHIIt =
    std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));

  while (MBB.front().isPHI())
    LowerPHINode(MBB, LastPHIIt);

  return true;
}

/// Return true if all defs of VirtReg are implicit-defs.
/// This includes registers with no defs.
static bool isImplicitlyDefined(unsigned VirtReg,
                                const MachineRegisterInfo &MRI) {
  for (MachineInstr &DI : MRI.def_instructions(VirtReg))
    if (!DI.isImplicitDef())
      return false;
  return true;
}

/// Return true if all sources of the phi node are implicit_def's, or undef's.
static bool allPhiOperandsUndefined(const MachineInstr &MPhi,
                                    const MachineRegisterInfo &MRI) {
  for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) {
    const MachineOperand &MO = MPhi.getOperand(I);
    if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef())
      return false;
  }
  return true;
}
/// LowerPHINode - Lower the PHI node at the top of the specified block.
void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
                                  MachineBasicBlock::iterator LastPHIIt) {
  ++NumLowered;

  MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);

  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
  MachineInstr *MPhi = MBB.remove(&*MBB.begin());

  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
  Register DestReg = MPhi->getOperand(0).getReg();
  assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
  bool isDead = MPhi->getOperand(0).isDead();

  // Create a new register for the incoming PHI arguments.
  MachineFunction &MF = *MBB.getParent();
  unsigned IncomingReg = 0;
  bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?

  // Insert a register to register copy at the top of the current block (but
  // after any remaining phi nodes) which copies the new incoming register
  // into the phi node destination.
  MachineInstr *PHICopy = nullptr;
  const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
  if (allPhiOperandsUndefined(*MPhi, *MRI))
    // If all sources of a PHI node are implicit_def or undef uses, just emit an
    // implicit_def instead of a copy.
    PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
            TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
  else {
    // Can we reuse an earlier PHI node? This only happens for critical edges,
    // typically those created by tail duplication.
    unsigned &entry = LoweredPHIs[MPhi];
    if (entry) {
      // An identical PHI node was already lowered. Reuse the incoming register.
      IncomingReg = entry;
      reusedIncoming = true;
      ++NumReused;
      LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for "
                        << *MPhi);
    } else {
      const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
      entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
    }
    // Give the target possiblity to handle special cases fallthrough otherwise
    PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
                                  IncomingReg, DestReg);
  }

  // Update live variable information if there is any.
  if (LV) {
    if (IncomingReg) {
      LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);

      // Increment use count of the newly created virtual register.
      LV->setPHIJoin(IncomingReg);

      MachineInstr *OldKill = nullptr; 
      bool IsPHICopyAfterOldKill = false; 
 
      if (reusedIncoming && (OldKill = VI.findKill(&MBB))) { 
        // Calculate whether the PHICopy is after the OldKill. 
        // In general, the PHICopy is inserted as the first non-phi instruction 
        // by default, so it's before the OldKill. But some Target hooks for 
        // createPHIDestinationCopy() may modify the default insert position of 
        // PHICopy. 
        for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end(); 
             I != E; ++I) { 
          if (I == PHICopy) 
            break; 
 
          if (I == OldKill) { 
            IsPHICopyAfterOldKill = true; 
            break; 
          } 
        }
      } 

      // When we are reusing the incoming register and it has been marked killed 
      // by OldKill, if the PHICopy is after the OldKill, we should remove the 
      // killed flag from OldKill. 
      if (IsPHICopyAfterOldKill) { 
        LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill); 
        LV->removeVirtualRegisterKilled(IncomingReg, *OldKill); 
        LLVM_DEBUG(MBB.dump()); 
      } 
 
      // Add information to LiveVariables to know that the first used incoming 
      // value or the resued incoming value whose PHICopy is after the OldKIll 
      // is killed. Note that because the value is defined in several places 
      // (once each for each incoming block), the "def" block and instruction 
      // fields for the VarInfo is not filled in. 
      if (!OldKill || IsPHICopyAfterOldKill) 
        LV->addVirtualRegisterKilled(IncomingReg, *PHICopy); 
    }

    // Since we are going to be deleting the PHI node, if it is the last use of
    // any registers, or if the value itself is dead, we need to move this
    // information over to the new copy we just inserted.
    LV->removeVirtualRegistersKilled(*MPhi);

    // If the result is dead, update LV.
    if (isDead) {
      LV->addVirtualRegisterDead(DestReg, *PHICopy);
      LV->removeVirtualRegisterDead(DestReg, *MPhi);
    }
  }

  // Update LiveIntervals for the new copy or implicit def.
  if (LIS) {
    SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy);

    SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
    if (IncomingReg) {
      // Add the region from the beginning of MBB to the copy instruction to
      // IncomingReg's live interval.
      LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
      VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
      if (!IncomingVNI)
        IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
                                              LIS->getVNInfoAllocator());
      IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
                                                  DestCopyIndex.getRegSlot(),
                                                  IncomingVNI));
    }

    LiveInterval &DestLI = LIS->getInterval(DestReg);
    assert(!DestLI.empty() && "PHIs should have nonempty LiveIntervals."); 
    if (DestLI.endIndex().isDead()) {
      // A dead PHI's live range begins and ends at the start of the MBB, but
      // the lowered copy, which will still be dead, needs to begin and end at
      // the copy instruction.
      VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
      assert(OrigDestVNI && "PHI destination should be live at block entry.");
      DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
      DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
                           LIS->getVNInfoAllocator());
      DestLI.removeValNo(OrigDestVNI);
    } else {
      // Otherwise, remove the region from the beginning of MBB to the copy
      // instruction from DestReg's live interval.
      DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
      VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
      assert(DestVNI && "PHI destination should be live at its definition.");
      DestVNI->def = DestCopyIndex.getRegSlot();
    }
  }

  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
                                 MPhi->getOperand(i).getReg())];

  // Now loop over all of the incoming arguments, changing them to copy into the
  // IncomingReg register in the corresponding predecessor basic block.
  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
  for (int i = NumSrcs - 1; i >= 0; --i) {
    Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg();
    unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
    bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
      isImplicitlyDefined(SrcReg, *MRI);
    assert(Register::isVirtualRegister(SrcReg) &&
           "Machine PHI Operands must all be virtual registers!");

    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
    // path the PHI.
    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();

    // Check to make sure we haven't already emitted the copy for this block.
    // This can happen because PHI nodes may have multiple entries for the same
    // basic block.
    if (!MBBsInsertedInto.insert(&opBlock).second)
      continue;  // If the copy has already been emitted, we're done.

    MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg); 
    if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) { 
      assert(SrcRegDef->getOperand(0).isReg() && 
             SrcRegDef->getOperand(0).isDef() && 
             "Expected operand 0 to be a reg def!"); 
      // Now that the PHI's use has been removed (as the instruction was 
      // removed) there should be no other uses of the SrcReg. 
      assert(MRI->use_empty(SrcReg) && 
             "Expected a single use from UnspillableTerminator"); 
      SrcRegDef->getOperand(0).setReg(IncomingReg); 
      continue; 
    } 
 
    // Find a safe location to insert the copy, this may be the first terminator
    // in the block (or end()).
    MachineBasicBlock::iterator InsertPos =
      findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);

    // Insert the copy.
    MachineInstr *NewSrcInstr = nullptr;
    if (!reusedIncoming && IncomingReg) {
      if (SrcUndef) {
        // The source register is undefined, so there is no need for a real
        // COPY, but we still need to ensure joint dominance by defs.
        // Insert an IMPLICIT_DEF instruction.
        NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
                              TII->get(TargetOpcode::IMPLICIT_DEF),
                              IncomingReg);

        // Clean up the old implicit-def, if there even was one.
        if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
          if (DefMI->isImplicitDef())
            ImpDefs.insert(DefMI);
      } else {
        NewSrcInstr =
            TII->createPHISourceCopy(opBlock, InsertPos, MPhi->getDebugLoc(),
                                     SrcReg, SrcSubReg, IncomingReg);
      }
    }

    // We only need to update the LiveVariables kill of SrcReg if this was the
    // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
    // out of the predecessor. We can also ignore undef sources.
    if (LV && !SrcUndef &&
        !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
        !LV->isLiveOut(SrcReg, opBlock)) {
      // We want to be able to insert a kill of the register if this PHI (aka,
      // the copy we just inserted) is the last use of the source value. Live
      // variable analysis conservatively handles this by saying that the value
      // is live until the end of the block the PHI entry lives in. If the value
      // really is dead at the PHI copy, there will be no successor blocks which
      // have the value live-in.

      // Okay, if we now know that the value is not live out of the block, we
      // can add a kill marker in this block saying that it kills the incoming
      // value!

      // In our final twist, we have to decide which instruction kills the
      // register.  In most cases this is the copy, however, terminator
      // instructions at the end of the block may also use the value. In this
      // case, we should mark the last such terminator as being the killing
      // block, not the copy.
      MachineBasicBlock::iterator KillInst = opBlock.end();
      MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
      for (MachineBasicBlock::iterator Term = FirstTerm;
          Term != opBlock.end(); ++Term) {
        if (Term->readsRegister(SrcReg))
          KillInst = Term;
      }

      if (KillInst == opBlock.end()) {
        // No terminator uses the register.

        if (reusedIncoming || !IncomingReg) {
          // We may have to rewind a bit if we didn't insert a copy this time.
          KillInst = FirstTerm;
          while (KillInst != opBlock.begin()) {
            --KillInst;
            if (KillInst->isDebugInstr())
              continue;
            if (KillInst->readsRegister(SrcReg))
              break;
          }
        } else {
          // We just inserted this copy.
          KillInst = NewSrcInstr;
        }
      }
      assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");

      // Finally, mark it killed.
      LV->addVirtualRegisterKilled(SrcReg, *KillInst);

      // This vreg no longer lives all of the way through opBlock.
      unsigned opBlockNum = opBlock.getNumber();
      LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
    }

    if (LIS) {
      if (NewSrcInstr) {
        LIS->InsertMachineInstrInMaps(*NewSrcInstr);
        LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
      }

      if (!SrcUndef &&
          !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
        LiveInterval &SrcLI = LIS->getInterval(SrcReg);

        bool isLiveOut = false;
        for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
             SE = opBlock.succ_end(); SI != SE; ++SI) {
          SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
          VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);

          // Definitions by other PHIs are not truly live-in for our purposes.
          if (VNI && VNI->def != startIdx) {
            isLiveOut = true;
            break;
          }
        }

        if (!isLiveOut) {
          MachineBasicBlock::iterator KillInst = opBlock.end();
          MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
          for (MachineBasicBlock::iterator Term = FirstTerm;
              Term != opBlock.end(); ++Term) {
            if (Term->readsRegister(SrcReg))
              KillInst = Term;
          }

          if (KillInst == opBlock.end()) {
            // No terminator uses the register.

            if (reusedIncoming || !IncomingReg) {
              // We may have to rewind a bit if we didn't just insert a copy.
              KillInst = FirstTerm;
              while (KillInst != opBlock.begin()) {
                --KillInst;
                if (KillInst->isDebugInstr())
                  continue;
                if (KillInst->readsRegister(SrcReg))
                  break;
              }
            } else {
              // We just inserted this copy.
              KillInst = std::prev(InsertPos);
            }
          }
          assert(KillInst->readsRegister(SrcReg) &&
                 "Cannot find kill instruction");

          SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
          SrcLI.removeSegment(LastUseIndex.getRegSlot(),
                              LIS->getMBBEndIdx(&opBlock));
        }
      }
    }
  }

  // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
  if (reusedIncoming || !IncomingReg) {
    if (LIS)
      LIS->RemoveMachineInstrFromMaps(*MPhi);
    MF.DeleteMachineInstr(MPhi);
  }
}

/// analyzePHINodes - Gather information about the PHI nodes in here. In
/// particular, we want to map the number of uses of a virtual register which is
/// used in a PHI node. We map that to the BB the vreg is coming from. This is
/// used later to determine when the vreg is killed in the BB.
void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
  for (const auto &MBB : MF)
    for (const auto &BBI : MBB) {
      if (!BBI.isPHI())
        break;
      for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
        ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(),
                                     BBI.getOperand(i).getReg())];
    }
}

bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
                                   MachineBasicBlock &MBB,
                                   MachineLoopInfo *MLI,
                                   std::vector<SparseBitVector<>> *LiveInSets) {
  if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
    return false;   // Quick exit for basic blocks without PHIs.

  const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
  bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();

  bool Changed = false;
  for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
       BBI != BBE && BBI->isPHI(); ++BBI) {
    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
      Register Reg = BBI->getOperand(i).getReg();
      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
      // Is there a critical edge from PreMBB to MBB?
      if (PreMBB->succ_size() == 1)
        continue;

      // Avoid splitting backedges of loops. It would introduce small
      // out-of-line blocks into the loop which is very bad for code placement.
      if (PreMBB == &MBB && !SplitAllCriticalEdges)
        continue;
      const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
      if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
        continue;

      // LV doesn't consider a phi use live-out, so isLiveOut only returns true
      // when the source register is live-out for some other reason than a phi
      // use. That means the copy we will insert in PreMBB won't be a kill, and
      // there is a risk it may not be coalesced away.
      //
      // If the copy would be a kill, there is no need to split the edge.
      bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
      if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
        continue;
      if (ShouldSplit) {
        LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge "
                          << printMBBReference(*PreMBB) << " -> "
                          << printMBBReference(MBB) << ": " << *BBI);
      }

      // If Reg is not live-in to MBB, it means it must be live-in to some
      // other PreMBB successor, and we can avoid the interference by splitting
      // the edge.
      //
      // If Reg *is* live-in to MBB, the interference is inevitable and a copy
      // is likely to be left after coalescing. If we are looking at a loop
      // exiting edge, split it so we won't insert code in the loop, otherwise
      // don't bother.
      ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);

      // Check for a loop exiting edge.
      if (!ShouldSplit && CurLoop != PreLoop) {
        LLVM_DEBUG({
          dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
          if (PreLoop)
            dbgs() << "PreLoop: " << *PreLoop;
          if (CurLoop)
            dbgs() << "CurLoop: " << *CurLoop;
        });
        // This edge could be entering a loop, exiting a loop, or it could be
        // both: Jumping directly form one loop to the header of a sibling
        // loop.
        // Split unless this edge is entering CurLoop from an outer loop.
        ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
      }
      if (!ShouldSplit && !SplitAllCriticalEdges)
        continue;
      if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) {
        LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
        continue;
      }
      Changed = true;
      ++NumCriticalEdgesSplit;
    }
  }
  return Changed;
}

bool PHIElimination::isLiveIn(Register Reg, const MachineBasicBlock *MBB) { 
  assert((LV || LIS) &&
         "isLiveIn() requires either LiveVariables or LiveIntervals");
  if (LIS)
    return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
  else
    return LV->isLiveIn(Reg, *MBB);
}

bool PHIElimination::isLiveOutPastPHIs(Register Reg, 
                                       const MachineBasicBlock *MBB) {
  assert((LV || LIS) &&
         "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
  // LiveVariables considers uses in PHIs to be in the predecessor basic block,
  // so that a register used only in a PHI is not live out of the block. In
  // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
  // in the predecessor basic block, so that a register used only in a PHI is live
  // out of the block.
  if (LIS) {
    const LiveInterval &LI = LIS->getInterval(Reg);
    for (const MachineBasicBlock *SI : MBB->successors())
      if (LI.liveAt(LIS->getMBBStartIdx(SI)))
        return true;
    return false;
  } else {
    return LV->isLiveOut(Reg, *MBB);
  }
}