aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/CodeGen/MachineCSE.cpp
blob: 4778c2aeb8c02576f08733f1bd2312bfa59ca16b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
//===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass performs global common subexpression elimination on machine
// instructions using a scoped hash table based value numbering scheme. It
// must be run while the machine function is still in SSA form.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/ScopedHashTable.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegister.h" 
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/RecyclingAllocator.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <iterator>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "machine-cse"

STATISTIC(NumCoalesces, "Number of copies coalesced");
STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
STATISTIC(NumPREs,      "Number of partial redundant expression"
                        " transformed to fully redundant");
STATISTIC(NumPhysCSEs,
          "Number of physreg referencing common subexpr eliminated");
STATISTIC(NumCrossBBCSEs,
          "Number of cross-MBB physreg referencing CS eliminated");
STATISTIC(NumCommutes,  "Number of copies coalesced after commuting");

namespace {

  class MachineCSE : public MachineFunctionPass {
    const TargetInstrInfo *TII;
    const TargetRegisterInfo *TRI;
    AliasAnalysis *AA;
    MachineDominatorTree *DT;
    MachineRegisterInfo *MRI;
    MachineBlockFrequencyInfo *MBFI;

  public:
    static char ID; // Pass identification

    MachineCSE() : MachineFunctionPass(ID) {
      initializeMachineCSEPass(*PassRegistry::getPassRegistry());
    }

    bool runOnMachineFunction(MachineFunction &MF) override;

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.setPreservesCFG();
      MachineFunctionPass::getAnalysisUsage(AU);
      AU.addRequired<AAResultsWrapperPass>();
      AU.addPreservedID(MachineLoopInfoID);
      AU.addRequired<MachineDominatorTree>();
      AU.addPreserved<MachineDominatorTree>();
      AU.addRequired<MachineBlockFrequencyInfo>();
      AU.addPreserved<MachineBlockFrequencyInfo>();
    }

    void releaseMemory() override {
      ScopeMap.clear();
      PREMap.clear();
      Exps.clear();
    }

  private:
    using AllocatorTy = RecyclingAllocator<BumpPtrAllocator,
                            ScopedHashTableVal<MachineInstr *, unsigned>>;
    using ScopedHTType =
        ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait,
                        AllocatorTy>;
    using ScopeType = ScopedHTType::ScopeTy;
    using PhysDefVector = SmallVector<std::pair<unsigned, unsigned>, 2>;

    unsigned LookAheadLimit = 0;
    DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap;
    DenseMap<MachineInstr *, MachineBasicBlock *, MachineInstrExpressionTrait>
        PREMap;
    ScopedHTType VNT;
    SmallVector<MachineInstr *, 64> Exps;
    unsigned CurrVN = 0;

    bool PerformTrivialCopyPropagation(MachineInstr *MI,
                                       MachineBasicBlock *MBB);
    bool isPhysDefTriviallyDead(MCRegister Reg, 
                                MachineBasicBlock::const_iterator I,
                                MachineBasicBlock::const_iterator E) const;
    bool hasLivePhysRegDefUses(const MachineInstr *MI,
                               const MachineBasicBlock *MBB,
                               SmallSet<MCRegister, 8> &PhysRefs, 
                               PhysDefVector &PhysDefs, bool &PhysUseDef) const;
    bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
                          SmallSet<MCRegister, 8> &PhysRefs, 
                          PhysDefVector &PhysDefs, bool &NonLocal) const;
    bool isCSECandidate(MachineInstr *MI);
    bool isProfitableToCSE(Register CSReg, Register Reg, 
                           MachineBasicBlock *CSBB, MachineInstr *MI);
    void EnterScope(MachineBasicBlock *MBB);
    void ExitScope(MachineBasicBlock *MBB);
    bool ProcessBlockCSE(MachineBasicBlock *MBB);
    void ExitScopeIfDone(MachineDomTreeNode *Node,
                         DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
    bool PerformCSE(MachineDomTreeNode *Node);

    bool isPRECandidate(MachineInstr *MI);
    bool ProcessBlockPRE(MachineDominatorTree *MDT, MachineBasicBlock *MBB);
    bool PerformSimplePRE(MachineDominatorTree *DT);
    /// Heuristics to see if it's profitable to move common computations of MBB
    /// and MBB1 to CandidateBB.
    bool isProfitableToHoistInto(MachineBasicBlock *CandidateBB,
                                 MachineBasicBlock *MBB,
                                 MachineBasicBlock *MBB1);
  };

} // end anonymous namespace

char MachineCSE::ID = 0;

char &llvm::MachineCSEID = MachineCSE::ID;

INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE,
                      "Machine Common Subexpression Elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE,
                    "Machine Common Subexpression Elimination", false, false)

/// The source register of a COPY machine instruction can be propagated to all
/// its users, and this propagation could increase the probability of finding
/// common subexpressions. If the COPY has only one user, the COPY itself can
/// be removed.
bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
                                               MachineBasicBlock *MBB) {
  bool Changed = false;
  for (MachineOperand &MO : MI->operands()) {
    if (!MO.isReg() || !MO.isUse())
      continue;
    Register Reg = MO.getReg();
    if (!Register::isVirtualRegister(Reg))
      continue;
    bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
    MachineInstr *DefMI = MRI->getVRegDef(Reg);
    if (!DefMI->isCopy())
      continue;
    Register SrcReg = DefMI->getOperand(1).getReg();
    if (!Register::isVirtualRegister(SrcReg))
      continue;
    if (DefMI->getOperand(0).getSubReg())
      continue;
    // FIXME: We should trivially coalesce subregister copies to expose CSE
    // opportunities on instructions with truncated operands (see
    // cse-add-with-overflow.ll). This can be done here as follows:
    // if (SrcSubReg)
    //  RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
    //                                     SrcSubReg);
    // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
    //
    // The 2-addr pass has been updated to handle coalesced subregs. However,
    // some machine-specific code still can't handle it.
    // To handle it properly we also need a way find a constrained subregister
    // class given a super-reg class and subreg index.
    if (DefMI->getOperand(1).getSubReg())
      continue;
    if (!MRI->constrainRegAttrs(SrcReg, Reg))
      continue;
    LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
    LLVM_DEBUG(dbgs() << "***     to: " << *MI);

    // Propagate SrcReg of copies to MI.
    MO.setReg(SrcReg);
    MRI->clearKillFlags(SrcReg);
    // Coalesce single use copies.
    if (OnlyOneUse) {
      // If (and only if) we've eliminated all uses of the copy, also
      // copy-propagate to any debug-users of MI, or they'll be left using
      // an undefined value.
      DefMI->changeDebugValuesDefReg(SrcReg);

      DefMI->eraseFromParent();
      ++NumCoalesces;
    }
    Changed = true;
  }

  return Changed;
}

bool MachineCSE::isPhysDefTriviallyDead( 
    MCRegister Reg, MachineBasicBlock::const_iterator I, 
    MachineBasicBlock::const_iterator E) const { 
  unsigned LookAheadLeft = LookAheadLimit;
  while (LookAheadLeft) {
    // Skip over dbg_value's.
    I = skipDebugInstructionsForward(I, E);

    if (I == E)
      // Reached end of block, we don't know if register is dead or not.
      return false;

    bool SeenDef = false;
    for (const MachineOperand &MO : I->operands()) {
      if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
        SeenDef = true;
      if (!MO.isReg() || !MO.getReg())
        continue;
      if (!TRI->regsOverlap(MO.getReg(), Reg))
        continue;
      if (MO.isUse())
        // Found a use!
        return false;
      SeenDef = true;
    }
    if (SeenDef)
      // See a def of Reg (or an alias) before encountering any use, it's
      // trivially dead.
      return true;

    --LookAheadLeft;
    ++I;
  }
  return false;
}

static bool isCallerPreservedOrConstPhysReg(MCRegister Reg, 
                                            const MachineFunction &MF,
                                            const TargetRegisterInfo &TRI) {
  // MachineRegisterInfo::isConstantPhysReg directly called by
  // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the
  // reserved registers to be frozen. That doesn't cause a problem  post-ISel as
  // most (if not all) targets freeze reserved registers right after ISel.
  //
  // It does cause issues mid-GlobalISel, however, hence the additional
  // reservedRegsFrozen check.
  const MachineRegisterInfo &MRI = MF.getRegInfo();
  return TRI.isCallerPreservedPhysReg(Reg, MF) ||
         (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg));
}

/// hasLivePhysRegDefUses - Return true if the specified instruction read/write
/// physical registers (except for dead defs of physical registers). It also
/// returns the physical register def by reference if it's the only one and the
/// instruction does not uses a physical register.
bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
                                       const MachineBasicBlock *MBB,
                                       SmallSet<MCRegister, 8> &PhysRefs, 
                                       PhysDefVector &PhysDefs,
                                       bool &PhysUseDef) const {
  // First, add all uses to PhysRefs.
  for (const MachineOperand &MO : MI->operands()) {
    if (!MO.isReg() || MO.isDef())
      continue;
    Register Reg = MO.getReg();
    if (!Reg)
      continue;
    if (Register::isVirtualRegister(Reg))
      continue;
    // Reading either caller preserved or constant physregs is ok.
    if (!isCallerPreservedOrConstPhysReg(Reg.asMCReg(), *MI->getMF(), *TRI)) 
      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
        PhysRefs.insert(*AI);
  }

  // Next, collect all defs into PhysDefs.  If any is already in PhysRefs
  // (which currently contains only uses), set the PhysUseDef flag.
  PhysUseDef = false;
  MachineBasicBlock::const_iterator I = MI; I = std::next(I);
  for (const auto &MOP : llvm::enumerate(MI->operands())) {
    const MachineOperand &MO = MOP.value();
    if (!MO.isReg() || !MO.isDef())
      continue;
    Register Reg = MO.getReg();
    if (!Reg)
      continue;
    if (Register::isVirtualRegister(Reg))
      continue;
    // Check against PhysRefs even if the def is "dead".
    if (PhysRefs.count(Reg.asMCReg())) 
      PhysUseDef = true;
    // If the def is dead, it's ok. But the def may not marked "dead". That's
    // common since this pass is run before livevariables. We can scan
    // forward a few instructions and check if it is obviously dead.
    if (!MO.isDead() && !isPhysDefTriviallyDead(Reg.asMCReg(), I, MBB->end())) 
      PhysDefs.push_back(std::make_pair(MOP.index(), Reg));
  }

  // Finally, add all defs to PhysRefs as well.
  for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
    for (MCRegAliasIterator AI(PhysDefs[i].second, TRI, true); AI.isValid();
         ++AI)
      PhysRefs.insert(*AI);

  return !PhysRefs.empty();
}

bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
                                  SmallSet<MCRegister, 8> &PhysRefs, 
                                  PhysDefVector &PhysDefs,
                                  bool &NonLocal) const {
  // For now conservatively returns false if the common subexpression is
  // not in the same basic block as the given instruction. The only exception
  // is if the common subexpression is in the sole predecessor block.
  const MachineBasicBlock *MBB = MI->getParent();
  const MachineBasicBlock *CSMBB = CSMI->getParent();

  bool CrossMBB = false;
  if (CSMBB != MBB) {
    if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
      return false;

    for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
      if (MRI->isAllocatable(PhysDefs[i].second) ||
          MRI->isReserved(PhysDefs[i].second))
        // Avoid extending live range of physical registers if they are
        //allocatable or reserved.
        return false;
    }
    CrossMBB = true;
  }
  MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
  MachineBasicBlock::const_iterator E = MI;
  MachineBasicBlock::const_iterator EE = CSMBB->end();
  unsigned LookAheadLeft = LookAheadLimit;
  while (LookAheadLeft) {
    // Skip over dbg_value's.
    while (I != E && I != EE && I->isDebugInstr())
      ++I;

    if (I == EE) {
      assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
      (void)CrossMBB;
      CrossMBB = false;
      NonLocal = true;
      I = MBB->begin();
      EE = MBB->end();
      continue;
    }

    if (I == E)
      return true;

    for (const MachineOperand &MO : I->operands()) {
      // RegMasks go on instructions like calls that clobber lots of physregs.
      // Don't attempt to CSE across such an instruction.
      if (MO.isRegMask())
        return false;
      if (!MO.isReg() || !MO.isDef())
        continue;
      Register MOReg = MO.getReg();
      if (Register::isVirtualRegister(MOReg))
        continue;
      if (PhysRefs.count(MOReg.asMCReg())) 
        return false;
    }

    --LookAheadLeft;
    ++I;
  }

  return false;
}

bool MachineCSE::isCSECandidate(MachineInstr *MI) {
  if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
      MI->isInlineAsm() || MI->isDebugInstr())
    return false;

  // Ignore copies.
  if (MI->isCopyLike())
    return false;

  // Ignore stuff that we obviously can't move.
  if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
      MI->mayRaiseFPException() || MI->hasUnmodeledSideEffects())
    return false;

  if (MI->mayLoad()) {
    // Okay, this instruction does a load. As a refinement, we allow the target
    // to decide whether the loaded value is actually a constant. If so, we can
    // actually use it as a load.
    if (!MI->isDereferenceableInvariantLoad(AA))
      // FIXME: we should be able to hoist loads with no other side effects if
      // there are no other instructions which can change memory in this loop.
      // This is a trivial form of alias analysis.
      return false;
  }

  // Ignore stack guard loads, otherwise the register that holds CSEed value may
  // be spilled and get loaded back with corrupted data.
  if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD)
    return false;

  return true;
}

/// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
/// common expression that defines Reg. CSBB is basic block where CSReg is
/// defined.
bool MachineCSE::isProfitableToCSE(Register CSReg, Register Reg, 
                                   MachineBasicBlock *CSBB, MachineInstr *MI) {
  // FIXME: Heuristics that works around the lack the live range splitting.

  // If CSReg is used at all uses of Reg, CSE should not increase register
  // pressure of CSReg.
  bool MayIncreasePressure = true;
  if (Register::isVirtualRegister(CSReg) && Register::isVirtualRegister(Reg)) {
    MayIncreasePressure = false;
    SmallPtrSet<MachineInstr*, 8> CSUses;
    for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
      CSUses.insert(&MI);
    }
    for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
      if (!CSUses.count(&MI)) {
        MayIncreasePressure = true;
        break;
      }
    }
  }
  if (!MayIncreasePressure) return true;

  // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
  // an immediate predecessor. We don't want to increase register pressure and
  // end up causing other computation to be spilled.
  if (TII->isAsCheapAsAMove(*MI)) {
    MachineBasicBlock *BB = MI->getParent();
    if (CSBB != BB && !CSBB->isSuccessor(BB))
      return false;
  }

  // Heuristics #2: If the expression doesn't not use a vr and the only use
  // of the redundant computation are copies, do not cse.
  bool HasVRegUse = false;
  for (const MachineOperand &MO : MI->operands()) {
    if (MO.isReg() && MO.isUse() && Register::isVirtualRegister(MO.getReg())) {
      HasVRegUse = true;
      break;
    }
  }
  if (!HasVRegUse) {
    bool HasNonCopyUse = false;
    for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
      // Ignore copies.
      if (!MI.isCopyLike()) {
        HasNonCopyUse = true;
        break;
      }
    }
    if (!HasNonCopyUse)
      return false;
  }

  // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
  // it unless the defined value is already used in the BB of the new use.
  bool HasPHI = false;
  for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) {
    HasPHI |= UseMI.isPHI();
    if (UseMI.getParent() == MI->getParent())
      return true;
  }

  return !HasPHI;
}

void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
  LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
  ScopeType *Scope = new ScopeType(VNT);
  ScopeMap[MBB] = Scope;
}

void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
  LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
  DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
  assert(SI != ScopeMap.end());
  delete SI->second;
  ScopeMap.erase(SI);
}

bool MachineCSE::ProcessBlockCSE(MachineBasicBlock *MBB) {
  bool Changed = false;

  SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
  SmallVector<unsigned, 2> ImplicitDefsToUpdate;
  SmallVector<unsigned, 2> ImplicitDefs;
  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
    MachineInstr *MI = &*I;
    ++I;

    if (!isCSECandidate(MI))
      continue;

    bool FoundCSE = VNT.count(MI);
    if (!FoundCSE) {
      // Using trivial copy propagation to find more CSE opportunities.
      if (PerformTrivialCopyPropagation(MI, MBB)) {
        Changed = true;

        // After coalescing MI itself may become a copy.
        if (MI->isCopyLike())
          continue;

        // Try again to see if CSE is possible.
        FoundCSE = VNT.count(MI);
      }
    }

    // Commute commutable instructions.
    bool Commuted = false;
    if (!FoundCSE && MI->isCommutable()) {
      if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) {
        Commuted = true;
        FoundCSE = VNT.count(NewMI);
        if (NewMI != MI) {
          // New instruction. It doesn't need to be kept.
          NewMI->eraseFromParent();
          Changed = true;
        } else if (!FoundCSE)
          // MI was changed but it didn't help, commute it back!
          (void)TII->commuteInstruction(*MI);
      }
    }

    // If the instruction defines physical registers and the values *may* be
    // used, then it's not safe to replace it with a common subexpression.
    // It's also not safe if the instruction uses physical registers.
    bool CrossMBBPhysDef = false;
    SmallSet<MCRegister, 8> PhysRefs; 
    PhysDefVector PhysDefs;
    bool PhysUseDef = false;
    if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
                                          PhysDefs, PhysUseDef)) {
      FoundCSE = false;

      // ... Unless the CS is local or is in the sole predecessor block
      // and it also defines the physical register which is not clobbered
      // in between and the physical register uses were not clobbered.
      // This can never be the case if the instruction both uses and
      // defines the same physical register, which was detected above.
      if (!PhysUseDef) {
        unsigned CSVN = VNT.lookup(MI);
        MachineInstr *CSMI = Exps[CSVN];
        if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
          FoundCSE = true;
      }
    }

    if (!FoundCSE) {
      VNT.insert(MI, CurrVN++);
      Exps.push_back(MI);
      continue;
    }

    // Found a common subexpression, eliminate it.
    unsigned CSVN = VNT.lookup(MI);
    MachineInstr *CSMI = Exps[CSVN];
    LLVM_DEBUG(dbgs() << "Examining: " << *MI);
    LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);

    // Check if it's profitable to perform this CSE.
    bool DoCSE = true;
    unsigned NumDefs = MI->getNumDefs();

    for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (!MO.isReg() || !MO.isDef())
        continue;
      Register OldReg = MO.getReg();
      Register NewReg = CSMI->getOperand(i).getReg();

      // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
      // we should make sure it is not dead at CSMI.
      if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
        ImplicitDefsToUpdate.push_back(i);

      // Keep track of implicit defs of CSMI and MI, to clear possibly
      // made-redundant kill flags.
      if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
        ImplicitDefs.push_back(OldReg);

      if (OldReg == NewReg) {
        --NumDefs;
        continue;
      }

      assert(Register::isVirtualRegister(OldReg) &&
             Register::isVirtualRegister(NewReg) &&
             "Do not CSE physical register defs!");

      if (!isProfitableToCSE(NewReg, OldReg, CSMI->getParent(), MI)) {
        LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
        DoCSE = false;
        break;
      }

      // Don't perform CSE if the result of the new instruction cannot exist
      // within the constraints (register class, bank, or low-level type) of
      // the old instruction.
      if (!MRI->constrainRegAttrs(NewReg, OldReg)) {
        LLVM_DEBUG(
            dbgs() << "*** Not the same register constraints, avoid CSE!\n");
        DoCSE = false;
        break;
      }

      CSEPairs.push_back(std::make_pair(OldReg, NewReg));
      --NumDefs;
    }

    // Actually perform the elimination.
    if (DoCSE) {
      for (const std::pair<unsigned, unsigned> &CSEPair : CSEPairs) { 
        unsigned OldReg = CSEPair.first;
        unsigned NewReg = CSEPair.second;
        // OldReg may have been unused but is used now, clear the Dead flag
        MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
        assert(Def != nullptr && "CSEd register has no unique definition?");
        Def->clearRegisterDeads(NewReg);
        // Replace with NewReg and clear kill flags which may be wrong now.
        MRI->replaceRegWith(OldReg, NewReg);
        MRI->clearKillFlags(NewReg);
      }

      // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
      // we should make sure it is not dead at CSMI.
      for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate)
        CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false);
      for (const auto &PhysDef : PhysDefs) 
        if (!MI->getOperand(PhysDef.first).isDead())
          CSMI->getOperand(PhysDef.first).setIsDead(false);

      // Go through implicit defs of CSMI and MI, and clear the kill flags on
      // their uses in all the instructions between CSMI and MI.
      // We might have made some of the kill flags redundant, consider:
      //   subs  ... implicit-def %nzcv    <- CSMI
      //   csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
      //   subs  ... implicit-def %nzcv    <- MI, to be eliminated
      //   csinc ... implicit killed %nzcv
      // Since we eliminated MI, and reused a register imp-def'd by CSMI
      // (here %nzcv), that register, if it was killed before MI, should have
      // that kill flag removed, because it's lifetime was extended.
      if (CSMI->getParent() == MI->getParent()) {
        for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II)
          for (auto ImplicitDef : ImplicitDefs)
            if (MachineOperand *MO = II->findRegisterUseOperand(
                    ImplicitDef, /*isKill=*/true, TRI))
              MO->setIsKill(false);
      } else {
        // If the instructions aren't in the same BB, bail out and clear the
        // kill flag on all uses of the imp-def'd register.
        for (auto ImplicitDef : ImplicitDefs)
          MRI->clearKillFlags(ImplicitDef);
      }

      if (CrossMBBPhysDef) {
        // Add physical register defs now coming in from a predecessor to MBB
        // livein list.
        while (!PhysDefs.empty()) {
          auto LiveIn = PhysDefs.pop_back_val();
          if (!MBB->isLiveIn(LiveIn.second))
            MBB->addLiveIn(LiveIn.second);
        }
        ++NumCrossBBCSEs;
      }

      MI->eraseFromParent();
      ++NumCSEs;
      if (!PhysRefs.empty())
        ++NumPhysCSEs;
      if (Commuted)
        ++NumCommutes;
      Changed = true;
    } else {
      VNT.insert(MI, CurrVN++);
      Exps.push_back(MI);
    }
    CSEPairs.clear();
    ImplicitDefsToUpdate.clear();
    ImplicitDefs.clear();
  }

  return Changed;
}

/// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
/// dominator tree node if its a leaf or all of its children are done. Walk
/// up the dominator tree to destroy ancestors which are now done.
void
MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
                        DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
  if (OpenChildren[Node])
    return;

  // Pop scope.
  ExitScope(Node->getBlock());

  // Now traverse upwards to pop ancestors whose offsprings are all done.
  while (MachineDomTreeNode *Parent = Node->getIDom()) {
    unsigned Left = --OpenChildren[Parent];
    if (Left != 0)
      break;
    ExitScope(Parent->getBlock());
    Node = Parent;
  }
}

bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
  SmallVector<MachineDomTreeNode*, 32> Scopes;
  SmallVector<MachineDomTreeNode*, 8> WorkList;
  DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;

  CurrVN = 0;

  // Perform a DFS walk to determine the order of visit.
  WorkList.push_back(Node);
  do {
    Node = WorkList.pop_back_val();
    Scopes.push_back(Node);
    OpenChildren[Node] = Node->getNumChildren();
    append_range(WorkList, Node->children()); 
  } while (!WorkList.empty());

  // Now perform CSE.
  bool Changed = false;
  for (MachineDomTreeNode *Node : Scopes) {
    MachineBasicBlock *MBB = Node->getBlock();
    EnterScope(MBB);
    Changed |= ProcessBlockCSE(MBB);
    // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
    ExitScopeIfDone(Node, OpenChildren);
  }

  return Changed;
}

// We use stronger checks for PRE candidate rather than for CSE ones to embrace
// checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps
// to exclude instrs created by PRE that won't be CSEed later.
bool MachineCSE::isPRECandidate(MachineInstr *MI) {
  if (!isCSECandidate(MI) ||
      MI->isNotDuplicable() ||
      MI->mayLoad() ||
      MI->isAsCheapAsAMove() ||
      MI->getNumDefs() != 1 ||
      MI->getNumExplicitDefs() != 1)
    return false;

  for (const auto &def : MI->defs()) 
    if (!Register::isVirtualRegister(def.getReg()))
      return false;

  for (const auto &use : MI->uses()) 
    if (use.isReg() && !Register::isVirtualRegister(use.getReg()))
      return false;

  return true;
}

bool MachineCSE::ProcessBlockPRE(MachineDominatorTree *DT,
                                 MachineBasicBlock *MBB) {
  bool Changed = false;
  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
    MachineInstr *MI = &*I;
    ++I;

    if (!isPRECandidate(MI))
      continue;

    if (!PREMap.count(MI)) {
      PREMap[MI] = MBB;
      continue;
    }

    auto MBB1 = PREMap[MI];
    assert(
        !DT->properlyDominates(MBB, MBB1) &&
        "MBB cannot properly dominate MBB1 while DFS through dominators tree!");
    auto CMBB = DT->findNearestCommonDominator(MBB, MBB1);
    if (!CMBB->isLegalToHoistInto())
      continue;

    if (!isProfitableToHoistInto(CMBB, MBB, MBB1))
      continue;

    // Two instrs are partial redundant if their basic blocks are reachable
    // from one to another but one doesn't dominate another.
    if (CMBB != MBB1) {
      auto BB = MBB->getBasicBlock(), BB1 = MBB1->getBasicBlock();
      if (BB != nullptr && BB1 != nullptr &&
          (isPotentiallyReachable(BB1, BB) ||
           isPotentiallyReachable(BB, BB1))) {

        assert(MI->getOperand(0).isDef() &&
               "First operand of instr with one explicit def must be this def");
        Register VReg = MI->getOperand(0).getReg();
        Register NewReg = MRI->cloneVirtualRegister(VReg);
        if (!isProfitableToCSE(NewReg, VReg, CMBB, MI))
          continue;
        MachineInstr &NewMI =
            TII->duplicate(*CMBB, CMBB->getFirstTerminator(), *MI);

        // When hoisting, make sure we don't carry the debug location of
        // the original instruction, as that's not correct and can cause
        // unexpected jumps when debugging optimized code.
        auto EmptyDL = DebugLoc();
        NewMI.setDebugLoc(EmptyDL);

        NewMI.getOperand(0).setReg(NewReg);

        PREMap[MI] = CMBB;
        ++NumPREs;
        Changed = true;
      }
    }
  }
  return Changed;
}

// This simple PRE (partial redundancy elimination) pass doesn't actually
// eliminate partial redundancy but transforms it to full redundancy,
// anticipating that the next CSE step will eliminate this created redundancy.
// If CSE doesn't eliminate this, than created instruction will remain dead
// and eliminated later by Remove Dead Machine Instructions pass.
bool MachineCSE::PerformSimplePRE(MachineDominatorTree *DT) {
  SmallVector<MachineDomTreeNode *, 32> BBs;

  PREMap.clear();
  bool Changed = false;
  BBs.push_back(DT->getRootNode());
  do {
    auto Node = BBs.pop_back_val();
    append_range(BBs, Node->children()); 

    MachineBasicBlock *MBB = Node->getBlock();
    Changed |= ProcessBlockPRE(DT, MBB);

  } while (!BBs.empty());

  return Changed;
}

bool MachineCSE::isProfitableToHoistInto(MachineBasicBlock *CandidateBB,
                                         MachineBasicBlock *MBB,
                                         MachineBasicBlock *MBB1) {
  if (CandidateBB->getParent()->getFunction().hasMinSize())
    return true;
  assert(DT->dominates(CandidateBB, MBB) && "CandidateBB should dominate MBB");
  assert(DT->dominates(CandidateBB, MBB1) &&
         "CandidateBB should dominate MBB1");
  return MBFI->getBlockFreq(CandidateBB) <=
         MBFI->getBlockFreq(MBB) + MBFI->getBlockFreq(MBB1);
}

bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;

  TII = MF.getSubtarget().getInstrInfo();
  TRI = MF.getSubtarget().getRegisterInfo();
  MRI = &MF.getRegInfo();
  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
  DT = &getAnalysis<MachineDominatorTree>();
  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
  LookAheadLimit = TII->getMachineCSELookAheadLimit();
  bool ChangedPRE, ChangedCSE;
  ChangedPRE = PerformSimplePRE(DT);
  ChangedCSE = PerformCSE(DT->getRootNode());
  return ChangedPRE || ChangedCSE;
}