aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/CodeGen/MachineBlockPlacement.cpp
blob: 048baa460e49cf73c5bd960d5792be2ea22f2741 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
//===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements basic block placement transformations using the CFG
// structure and branch probability estimates.
//
// The pass strives to preserve the structure of the CFG (that is, retain
// a topological ordering of basic blocks) in the absence of a *strong* signal
// to the contrary from probabilities. However, within the CFG structure, it
// attempts to choose an ordering which favors placing more likely sequences of
// blocks adjacent to each other.
//
// The algorithm works from the inner-most loop within a function outward, and
// at each stage walks through the basic blocks, trying to coalesce them into
// sequential chains where allowed by the CFG (or demanded by heavy
// probabilities). Finally, it walks the blocks in topological order, and the
// first time it reaches a chain of basic blocks, it schedules them in the
// function in-order.
//
//===----------------------------------------------------------------------===//

#include "BranchFolding.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachinePostDominators.h"
#include "llvm/CodeGen/MachineSizeOpts.h"
#include "llvm/CodeGen/TailDuplicator.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "block-placement"

STATISTIC(NumCondBranches, "Number of conditional branches");
STATISTIC(NumUncondBranches, "Number of unconditional branches");
STATISTIC(CondBranchTakenFreq,
          "Potential frequency of taking conditional branches");
STATISTIC(UncondBranchTakenFreq,
          "Potential frequency of taking unconditional branches");

static cl::opt<unsigned> AlignAllBlock(
    "align-all-blocks",
    cl::desc("Force the alignment of all blocks in the function in log2 format "
             "(e.g 4 means align on 16B boundaries)."),
    cl::init(0), cl::Hidden);

static cl::opt<unsigned> AlignAllNonFallThruBlocks(
    "align-all-nofallthru-blocks",
    cl::desc("Force the alignment of all blocks that have no fall-through "
             "predecessors (i.e. don't add nops that are executed). In log2 "
             "format (e.g 4 means align on 16B boundaries)."),
    cl::init(0), cl::Hidden);

// FIXME: Find a good default for this flag and remove the flag.
static cl::opt<unsigned> ExitBlockBias(
    "block-placement-exit-block-bias",
    cl::desc("Block frequency percentage a loop exit block needs "
             "over the original exit to be considered the new exit."),
    cl::init(0), cl::Hidden);

// Definition:
// - Outlining: placement of a basic block outside the chain or hot path.

static cl::opt<unsigned> LoopToColdBlockRatio(
    "loop-to-cold-block-ratio",
    cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
             "(frequency of block) is greater than this ratio"),
    cl::init(5), cl::Hidden);

static cl::opt<bool> ForceLoopColdBlock(
    "force-loop-cold-block",
    cl::desc("Force outlining cold blocks from loops."),
    cl::init(false), cl::Hidden);

static cl::opt<bool>
    PreciseRotationCost("precise-rotation-cost",
                        cl::desc("Model the cost of loop rotation more "
                                 "precisely by using profile data."),
                        cl::init(false), cl::Hidden);

static cl::opt<bool>
    ForcePreciseRotationCost("force-precise-rotation-cost",
                             cl::desc("Force the use of precise cost "
                                      "loop rotation strategy."),
                             cl::init(false), cl::Hidden);

static cl::opt<unsigned> MisfetchCost(
    "misfetch-cost",
    cl::desc("Cost that models the probabilistic risk of an instruction "
             "misfetch due to a jump comparing to falling through, whose cost "
             "is zero."),
    cl::init(1), cl::Hidden);

static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
                                      cl::desc("Cost of jump instructions."),
                                      cl::init(1), cl::Hidden);
static cl::opt<bool>
TailDupPlacement("tail-dup-placement",
              cl::desc("Perform tail duplication during placement. "
                       "Creates more fallthrough opportunites in "
                       "outline branches."),
              cl::init(true), cl::Hidden);

static cl::opt<bool>
BranchFoldPlacement("branch-fold-placement",
              cl::desc("Perform branch folding during placement. "
                       "Reduces code size."),
              cl::init(true), cl::Hidden);

// Heuristic for tail duplication.
static cl::opt<unsigned> TailDupPlacementThreshold(
    "tail-dup-placement-threshold",
    cl::desc("Instruction cutoff for tail duplication during layout. "
             "Tail merging during layout is forced to have a threshold "
             "that won't conflict."), cl::init(2),
    cl::Hidden);

// Heuristic for aggressive tail duplication.
static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
    "tail-dup-placement-aggressive-threshold",
    cl::desc("Instruction cutoff for aggressive tail duplication during "
             "layout. Used at -O3. Tail merging during layout is forced to "
             "have a threshold that won't conflict."), cl::init(4),
    cl::Hidden);

// Heuristic for tail duplication.
static cl::opt<unsigned> TailDupPlacementPenalty(
    "tail-dup-placement-penalty",
    cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
             "Copying can increase fallthrough, but it also increases icache "
             "pressure. This parameter controls the penalty to account for that. "
             "Percent as integer."),
    cl::init(2),
    cl::Hidden);

// Heuristic for tail duplication if profile count is used in cost model.
static cl::opt<unsigned> TailDupProfilePercentThreshold(
    "tail-dup-profile-percent-threshold",
    cl::desc("If profile count information is used in tail duplication cost "
             "model, the gained fall through number from tail duplication "
             "should be at least this percent of hot count."),
    cl::init(50), cl::Hidden);

// Heuristic for triangle chains.
static cl::opt<unsigned> TriangleChainCount(
    "triangle-chain-count",
    cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
             "triangle tail duplication heuristic to kick in. 0 to disable."),
    cl::init(2),
    cl::Hidden);

extern cl::opt<unsigned> StaticLikelyProb;
extern cl::opt<unsigned> ProfileLikelyProb;

// Internal option used to control BFI display only after MBP pass.
// Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
// -view-block-layout-with-bfi=
extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;

// Command line option to specify the name of the function for CFG dump
// Defined in Analysis/BlockFrequencyInfo.cpp:  -view-bfi-func-name=
extern cl::opt<std::string> ViewBlockFreqFuncName;

namespace {

class BlockChain;

/// Type for our function-wide basic block -> block chain mapping.
using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>;

/// A chain of blocks which will be laid out contiguously.
///
/// This is the datastructure representing a chain of consecutive blocks that
/// are profitable to layout together in order to maximize fallthrough
/// probabilities and code locality. We also can use a block chain to represent
/// a sequence of basic blocks which have some external (correctness)
/// requirement for sequential layout.
///
/// Chains can be built around a single basic block and can be merged to grow
/// them. They participate in a block-to-chain mapping, which is updated
/// automatically as chains are merged together.
class BlockChain {
  /// The sequence of blocks belonging to this chain.
  ///
  /// This is the sequence of blocks for a particular chain. These will be laid
  /// out in-order within the function.
  SmallVector<MachineBasicBlock *, 4> Blocks;

  /// A handle to the function-wide basic block to block chain mapping.
  ///
  /// This is retained in each block chain to simplify the computation of child
  /// block chains for SCC-formation and iteration. We store the edges to child
  /// basic blocks, and map them back to their associated chains using this
  /// structure.
  BlockToChainMapType &BlockToChain;

public:
  /// Construct a new BlockChain.
  ///
  /// This builds a new block chain representing a single basic block in the
  /// function. It also registers itself as the chain that block participates
  /// in with the BlockToChain mapping.
  BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
      : Blocks(1, BB), BlockToChain(BlockToChain) {
    assert(BB && "Cannot create a chain with a null basic block");
    BlockToChain[BB] = this;
  }

  /// Iterator over blocks within the chain.
  using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator;
  using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator;

  /// Beginning of blocks within the chain.
  iterator begin() { return Blocks.begin(); }
  const_iterator begin() const { return Blocks.begin(); }

  /// End of blocks within the chain.
  iterator end() { return Blocks.end(); }
  const_iterator end() const { return Blocks.end(); }

  bool remove(MachineBasicBlock* BB) {
    for(iterator i = begin(); i != end(); ++i) {
      if (*i == BB) {
        Blocks.erase(i);
        return true;
      }
    }
    return false;
  }

  /// Merge a block chain into this one.
  ///
  /// This routine merges a block chain into this one. It takes care of forming
  /// a contiguous sequence of basic blocks, updating the edge list, and
  /// updating the block -> chain mapping. It does not free or tear down the
  /// old chain, but the old chain's block list is no longer valid.
  void merge(MachineBasicBlock *BB, BlockChain *Chain) {
    assert(BB && "Can't merge a null block.");
    assert(!Blocks.empty() && "Can't merge into an empty chain.");

    // Fast path in case we don't have a chain already.
    if (!Chain) {
      assert(!BlockToChain[BB] &&
             "Passed chain is null, but BB has entry in BlockToChain.");
      Blocks.push_back(BB);
      BlockToChain[BB] = this;
      return;
    }

    assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
    assert(Chain->begin() != Chain->end());

    // Update the incoming blocks to point to this chain, and add them to the
    // chain structure.
    for (MachineBasicBlock *ChainBB : *Chain) {
      Blocks.push_back(ChainBB);
      assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
      BlockToChain[ChainBB] = this;
    }
  }

#ifndef NDEBUG
  /// Dump the blocks in this chain.
  LLVM_DUMP_METHOD void dump() {
    for (MachineBasicBlock *MBB : *this)
      MBB->dump();
  }
#endif // NDEBUG

  /// Count of predecessors of any block within the chain which have not
  /// yet been scheduled.  In general, we will delay scheduling this chain
  /// until those predecessors are scheduled (or we find a sufficiently good
  /// reason to override this heuristic.)  Note that when forming loop chains,
  /// blocks outside the loop are ignored and treated as if they were already
  /// scheduled.
  ///
  /// Note: This field is reinitialized multiple times - once for each loop,
  /// and then once for the function as a whole.
  unsigned UnscheduledPredecessors = 0;
};

class MachineBlockPlacement : public MachineFunctionPass {
  /// A type for a block filter set.
  using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>;

  /// Pair struct containing basic block and taildup profitability
  struct BlockAndTailDupResult {
    MachineBasicBlock *BB;
    bool ShouldTailDup;
  };

  /// Triple struct containing edge weight and the edge.
  struct WeightedEdge {
    BlockFrequency Weight;
    MachineBasicBlock *Src;
    MachineBasicBlock *Dest;
  };

  /// work lists of blocks that are ready to be laid out
  SmallVector<MachineBasicBlock *, 16> BlockWorkList;
  SmallVector<MachineBasicBlock *, 16> EHPadWorkList;

  /// Edges that have already been computed as optimal.
  DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;

  /// Machine Function
  MachineFunction *F;

  /// A handle to the branch probability pass.
  const MachineBranchProbabilityInfo *MBPI;

  /// A handle to the function-wide block frequency pass.
  std::unique_ptr<MBFIWrapper> MBFI;

  /// A handle to the loop info.
  MachineLoopInfo *MLI;

  /// Preferred loop exit.
  /// Member variable for convenience. It may be removed by duplication deep
  /// in the call stack.
  MachineBasicBlock *PreferredLoopExit;

  /// A handle to the target's instruction info.
  const TargetInstrInfo *TII;

  /// A handle to the target's lowering info.
  const TargetLoweringBase *TLI;

  /// A handle to the post dominator tree.
  MachinePostDominatorTree *MPDT;

  ProfileSummaryInfo *PSI;

  /// Duplicator used to duplicate tails during placement.
  ///
  /// Placement decisions can open up new tail duplication opportunities, but
  /// since tail duplication affects placement decisions of later blocks, it
  /// must be done inline.
  TailDuplicator TailDup;

  /// Partial tail duplication threshold.
  BlockFrequency DupThreshold;

  /// True:  use block profile count to compute tail duplication cost.
  /// False: use block frequency to compute tail duplication cost.
  bool UseProfileCount;

  /// Allocator and owner of BlockChain structures.
  ///
  /// We build BlockChains lazily while processing the loop structure of
  /// a function. To reduce malloc traffic, we allocate them using this
  /// slab-like allocator, and destroy them after the pass completes. An
  /// important guarantee is that this allocator produces stable pointers to
  /// the chains.
  SpecificBumpPtrAllocator<BlockChain> ChainAllocator;

  /// Function wide BasicBlock to BlockChain mapping.
  ///
  /// This mapping allows efficiently moving from any given basic block to the
  /// BlockChain it participates in, if any. We use it to, among other things,
  /// allow implicitly defining edges between chains as the existing edges
  /// between basic blocks.
  DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;

#ifndef NDEBUG
  /// The set of basic blocks that have terminators that cannot be fully
  /// analyzed.  These basic blocks cannot be re-ordered safely by
  /// MachineBlockPlacement, and we must preserve physical layout of these
  /// blocks and their successors through the pass.
  SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
#endif

  /// Get block profile count or frequency according to UseProfileCount.
  /// The return value is used to model tail duplication cost.
  BlockFrequency getBlockCountOrFrequency(const MachineBasicBlock *BB) {
    if (UseProfileCount) {
      auto Count = MBFI->getBlockProfileCount(BB);
      if (Count)
        return *Count;
      else
        return 0;
    } else
      return MBFI->getBlockFreq(BB);
  }

  /// Scale the DupThreshold according to basic block size.
  BlockFrequency scaleThreshold(MachineBasicBlock *BB);
  void initDupThreshold();

  /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
  /// if the count goes to 0, add them to the appropriate work list.
  void markChainSuccessors(
      const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
      const BlockFilterSet *BlockFilter = nullptr);

  /// Decrease the UnscheduledPredecessors count for a single block, and
  /// if the count goes to 0, add them to the appropriate work list.
  void markBlockSuccessors(
      const BlockChain &Chain, const MachineBasicBlock *BB,
      const MachineBasicBlock *LoopHeaderBB,
      const BlockFilterSet *BlockFilter = nullptr);

  BranchProbability
  collectViableSuccessors(
      const MachineBasicBlock *BB, const BlockChain &Chain,
      const BlockFilterSet *BlockFilter,
      SmallVector<MachineBasicBlock *, 4> &Successors);
  bool isBestSuccessor(MachineBasicBlock *BB, MachineBasicBlock *Pred,
                       BlockFilterSet *BlockFilter);
  void findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock *> &Candidates,
                               MachineBasicBlock *BB,
                               BlockFilterSet *BlockFilter);
  bool repeatedlyTailDuplicateBlock(
      MachineBasicBlock *BB, MachineBasicBlock *&LPred,
      const MachineBasicBlock *LoopHeaderBB,
      BlockChain &Chain, BlockFilterSet *BlockFilter,
      MachineFunction::iterator &PrevUnplacedBlockIt);
  bool maybeTailDuplicateBlock(
      MachineBasicBlock *BB, MachineBasicBlock *LPred,
      BlockChain &Chain, BlockFilterSet *BlockFilter,
      MachineFunction::iterator &PrevUnplacedBlockIt,
      bool &DuplicatedToLPred);
  bool hasBetterLayoutPredecessor(
      const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
      const BlockChain &SuccChain, BranchProbability SuccProb,
      BranchProbability RealSuccProb, const BlockChain &Chain,
      const BlockFilterSet *BlockFilter);
  BlockAndTailDupResult selectBestSuccessor(
      const MachineBasicBlock *BB, const BlockChain &Chain,
      const BlockFilterSet *BlockFilter);
  MachineBasicBlock *selectBestCandidateBlock(
      const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
  MachineBasicBlock *getFirstUnplacedBlock(
      const BlockChain &PlacedChain,
      MachineFunction::iterator &PrevUnplacedBlockIt,
      const BlockFilterSet *BlockFilter);

  /// Add a basic block to the work list if it is appropriate.
  ///
  /// If the optional parameter BlockFilter is provided, only MBB
  /// present in the set will be added to the worklist. If nullptr
  /// is provided, no filtering occurs.
  void fillWorkLists(const MachineBasicBlock *MBB,
                     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
                     const BlockFilterSet *BlockFilter);

  void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
                  BlockFilterSet *BlockFilter = nullptr);
  bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock,
                               const MachineBasicBlock *OldTop);
  bool hasViableTopFallthrough(const MachineBasicBlock *Top,
                               const BlockFilterSet &LoopBlockSet);
  BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top,
                                    const BlockFilterSet &LoopBlockSet);
  BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop,
                                  const MachineBasicBlock *OldTop,
                                  const MachineBasicBlock *ExitBB,
                                  const BlockFilterSet &LoopBlockSet);
  MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop,
      const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
  MachineBasicBlock *findBestLoopTop(
      const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
  MachineBasicBlock *findBestLoopExit(
      const MachineLoop &L, const BlockFilterSet &LoopBlockSet,
      BlockFrequency &ExitFreq);
  BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
  void buildLoopChains(const MachineLoop &L);
  void rotateLoop(
      BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
      BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet);
  void rotateLoopWithProfile(
      BlockChain &LoopChain, const MachineLoop &L,
      const BlockFilterSet &LoopBlockSet);
  void buildCFGChains();
  void optimizeBranches();
  void alignBlocks();
  /// Returns true if a block should be tail-duplicated to increase fallthrough
  /// opportunities.
  bool shouldTailDuplicate(MachineBasicBlock *BB);
  /// Check the edge frequencies to see if tail duplication will increase
  /// fallthroughs.
  bool isProfitableToTailDup(
    const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
    BranchProbability QProb,
    const BlockChain &Chain, const BlockFilterSet *BlockFilter);

  /// Check for a trellis layout.
  bool isTrellis(const MachineBasicBlock *BB,
                 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
                 const BlockChain &Chain, const BlockFilterSet *BlockFilter);

  /// Get the best successor given a trellis layout.
  BlockAndTailDupResult getBestTrellisSuccessor(
      const MachineBasicBlock *BB,
      const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
      BranchProbability AdjustedSumProb, const BlockChain &Chain,
      const BlockFilterSet *BlockFilter);

  /// Get the best pair of non-conflicting edges.
  static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
      const MachineBasicBlock *BB,
      MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);

  /// Returns true if a block can tail duplicate into all unplaced
  /// predecessors. Filters based on loop.
  bool canTailDuplicateUnplacedPreds(
      const MachineBasicBlock *BB, MachineBasicBlock *Succ,
      const BlockChain &Chain, const BlockFilterSet *BlockFilter);

  /// Find chains of triangles to tail-duplicate where a global analysis works,
  /// but a local analysis would not find them.
  void precomputeTriangleChains();

public:
  static char ID; // Pass identification, replacement for typeid

  MachineBlockPlacement() : MachineFunctionPass(ID) {
    initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
  }

  bool runOnMachineFunction(MachineFunction &F) override;

  bool allowTailDupPlacement() const {
    assert(F);
    return TailDupPlacement && !F->getTarget().requiresStructuredCFG();
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<MachineBranchProbabilityInfo>();
    AU.addRequired<MachineBlockFrequencyInfo>();
    if (TailDupPlacement)
      AU.addRequired<MachinePostDominatorTree>();
    AU.addRequired<MachineLoopInfo>();
    AU.addRequired<ProfileSummaryInfoWrapperPass>();
    AU.addRequired<TargetPassConfig>();
    MachineFunctionPass::getAnalysisUsage(AU);
  }
};

} // end anonymous namespace

char MachineBlockPlacement::ID = 0;

char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;

INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
                      "Branch Probability Basic Block Placement", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
                    "Branch Probability Basic Block Placement", false, false)

#ifndef NDEBUG
/// Helper to print the name of a MBB.
///
/// Only used by debug logging.
static std::string getBlockName(const MachineBasicBlock *BB) {
  std::string Result;
  raw_string_ostream OS(Result);
  OS << printMBBReference(*BB);
  OS << " ('" << BB->getName() << "')";
  OS.flush();
  return Result;
}
#endif

/// Mark a chain's successors as having one fewer preds.
///
/// When a chain is being merged into the "placed" chain, this routine will
/// quickly walk the successors of each block in the chain and mark them as
/// having one fewer active predecessor. It also adds any successors of this
/// chain which reach the zero-predecessor state to the appropriate worklist.
void MachineBlockPlacement::markChainSuccessors(
    const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
    const BlockFilterSet *BlockFilter) {
  // Walk all the blocks in this chain, marking their successors as having
  // a predecessor placed.
  for (MachineBasicBlock *MBB : Chain) {
    markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
  }
}

/// Mark a single block's successors as having one fewer preds.
///
/// Under normal circumstances, this is only called by markChainSuccessors,
/// but if a block that was to be placed is completely tail-duplicated away,
/// and was duplicated into the chain end, we need to redo markBlockSuccessors
/// for just that block.
void MachineBlockPlacement::markBlockSuccessors(
    const BlockChain &Chain, const MachineBasicBlock *MBB,
    const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
  // Add any successors for which this is the only un-placed in-loop
  // predecessor to the worklist as a viable candidate for CFG-neutral
  // placement. No subsequent placement of this block will violate the CFG
  // shape, so we get to use heuristics to choose a favorable placement.
  for (MachineBasicBlock *Succ : MBB->successors()) {
    if (BlockFilter && !BlockFilter->count(Succ))
      continue;
    BlockChain &SuccChain = *BlockToChain[Succ];
    // Disregard edges within a fixed chain, or edges to the loop header.
    if (&Chain == &SuccChain || Succ == LoopHeaderBB)
      continue;

    // This is a cross-chain edge that is within the loop, so decrement the
    // loop predecessor count of the destination chain.
    if (SuccChain.UnscheduledPredecessors == 0 ||
        --SuccChain.UnscheduledPredecessors > 0)
      continue;

    auto *NewBB = *SuccChain.begin();
    if (NewBB->isEHPad())
      EHPadWorkList.push_back(NewBB);
    else
      BlockWorkList.push_back(NewBB);
  }
}

/// This helper function collects the set of successors of block
/// \p BB that are allowed to be its layout successors, and return
/// the total branch probability of edges from \p BB to those
/// blocks.
BranchProbability MachineBlockPlacement::collectViableSuccessors(
    const MachineBasicBlock *BB, const BlockChain &Chain,
    const BlockFilterSet *BlockFilter,
    SmallVector<MachineBasicBlock *, 4> &Successors) {
  // Adjust edge probabilities by excluding edges pointing to blocks that is
  // either not in BlockFilter or is already in the current chain. Consider the
  // following CFG:
  //
  //     --->A
  //     |  / \
  //     | B   C
  //     |  \ / \
  //     ----D   E
  //
  // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
  // A->C is chosen as a fall-through, D won't be selected as a successor of C
  // due to CFG constraint (the probability of C->D is not greater than
  // HotProb to break topo-order). If we exclude E that is not in BlockFilter
  // when calculating the probability of C->D, D will be selected and we
  // will get A C D B as the layout of this loop.
  auto AdjustedSumProb = BranchProbability::getOne();
  for (MachineBasicBlock *Succ : BB->successors()) {
    bool SkipSucc = false;
    if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
      SkipSucc = true;
    } else {
      BlockChain *SuccChain = BlockToChain[Succ];
      if (SuccChain == &Chain) {
        SkipSucc = true;
      } else if (Succ != *SuccChain->begin()) {
        LLVM_DEBUG(dbgs() << "    " << getBlockName(Succ)
                          << " -> Mid chain!\n");
        continue;
      }
    }
    if (SkipSucc)
      AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
    else
      Successors.push_back(Succ);
  }

  return AdjustedSumProb;
}

/// The helper function returns the branch probability that is adjusted
/// or normalized over the new total \p AdjustedSumProb.
static BranchProbability
getAdjustedProbability(BranchProbability OrigProb,
                       BranchProbability AdjustedSumProb) {
  BranchProbability SuccProb;
  uint32_t SuccProbN = OrigProb.getNumerator();
  uint32_t SuccProbD = AdjustedSumProb.getNumerator();
  if (SuccProbN >= SuccProbD)
    SuccProb = BranchProbability::getOne();
  else
    SuccProb = BranchProbability(SuccProbN, SuccProbD);

  return SuccProb;
}

/// Check if \p BB has exactly the successors in \p Successors.
static bool
hasSameSuccessors(MachineBasicBlock &BB,
                  SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
  if (BB.succ_size() != Successors.size())
    return false;
  // We don't want to count self-loops
  if (Successors.count(&BB))
    return false;
  for (MachineBasicBlock *Succ : BB.successors())
    if (!Successors.count(Succ))
      return false;
  return true;
}

/// Check if a block should be tail duplicated to increase fallthrough
/// opportunities.
/// \p BB Block to check.
bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
  // Blocks with single successors don't create additional fallthrough
  // opportunities. Don't duplicate them. TODO: When conditional exits are
  // analyzable, allow them to be duplicated.
  bool IsSimple = TailDup.isSimpleBB(BB);

  if (BB->succ_size() == 1)
    return false;
  return TailDup.shouldTailDuplicate(IsSimple, *BB);
}

/// Compare 2 BlockFrequency's with a small penalty for \p A.
/// In order to be conservative, we apply a X% penalty to account for
/// increased icache pressure and static heuristics. For small frequencies
/// we use only the numerators to improve accuracy. For simplicity, we assume the
/// penalty is less than 100%
/// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
                            uint64_t EntryFreq) {
  BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
  BlockFrequency Gain = A - B;
  return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
}

/// Check the edge frequencies to see if tail duplication will increase
/// fallthroughs. It only makes sense to call this function when
/// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
/// always locally profitable if we would have picked \p Succ without
/// considering duplication.
bool MachineBlockPlacement::isProfitableToTailDup(
    const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
    BranchProbability QProb,
    const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
  // We need to do a probability calculation to make sure this is profitable.
  // First: does succ have a successor that post-dominates? This affects the
  // calculation. The 2 relevant cases are:
  //    BB         BB
  //    | \Qout    | \Qout
  //   P|  C       |P C
  //    =   C'     =   C'
  //    |  /Qin    |  /Qin
  //    | /        | /
  //    Succ       Succ
  //    / \        | \  V
  //  U/   =V      |U \
  //  /     \      =   D
  //  D      E     |  /
  //               | /
  //               |/
  //               PDom
  //  '=' : Branch taken for that CFG edge
  // In the second case, Placing Succ while duplicating it into C prevents the
  // fallthrough of Succ into either D or PDom, because they now have C as an
  // unplaced predecessor

  // Start by figuring out which case we fall into
  MachineBasicBlock *PDom = nullptr;
  SmallVector<MachineBasicBlock *, 4> SuccSuccs;
  // Only scan the relevant successors
  auto AdjustedSuccSumProb =
      collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
  BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
  auto BBFreq = MBFI->getBlockFreq(BB);
  auto SuccFreq = MBFI->getBlockFreq(Succ);
  BlockFrequency P = BBFreq * PProb;
  BlockFrequency Qout = BBFreq * QProb;
  uint64_t EntryFreq = MBFI->getEntryFreq();
  // If there are no more successors, it is profitable to copy, as it strictly
  // increases fallthrough.
  if (SuccSuccs.size() == 0)
    return greaterWithBias(P, Qout, EntryFreq);

  auto BestSuccSucc = BranchProbability::getZero();
  // Find the PDom or the best Succ if no PDom exists.
  for (MachineBasicBlock *SuccSucc : SuccSuccs) {
    auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
    if (Prob > BestSuccSucc)
      BestSuccSucc = Prob;
    if (PDom == nullptr)
      if (MPDT->dominates(SuccSucc, Succ)) {
        PDom = SuccSucc;
        break;
      }
  }
  // For the comparisons, we need to know Succ's best incoming edge that isn't
  // from BB.
  auto SuccBestPred = BlockFrequency(0);
  for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
    if (SuccPred == Succ || SuccPred == BB
        || BlockToChain[SuccPred] == &Chain
        || (BlockFilter && !BlockFilter->count(SuccPred)))
      continue;
    auto Freq = MBFI->getBlockFreq(SuccPred)
        * MBPI->getEdgeProbability(SuccPred, Succ);
    if (Freq > SuccBestPred)
      SuccBestPred = Freq;
  }
  // Qin is Succ's best unplaced incoming edge that isn't BB
  BlockFrequency Qin = SuccBestPred;
  // If it doesn't have a post-dominating successor, here is the calculation:
  //    BB        BB
  //    | \Qout   |  \
  //   P|  C      |   =
  //    =   C'    |    C
  //    |  /Qin   |     |
  //    | /       |     C' (+Succ)
  //    Succ      Succ /|
  //    / \       |  \/ |
  //  U/   =V     |  == |
  //  /     \     | /  \|
  //  D      E    D     E
  //  '=' : Branch taken for that CFG edge
  //  Cost in the first case is: P + V
  //  For this calculation, we always assume P > Qout. If Qout > P
  //  The result of this function will be ignored at the caller.
  //  Let F = SuccFreq - Qin
  //  Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V

  if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
    BranchProbability UProb = BestSuccSucc;
    BranchProbability VProb = AdjustedSuccSumProb - UProb;
    BlockFrequency F = SuccFreq - Qin;
    BlockFrequency V = SuccFreq * VProb;
    BlockFrequency QinU = std::min(Qin, F) * UProb;
    BlockFrequency BaseCost = P + V;
    BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
    return greaterWithBias(BaseCost, DupCost, EntryFreq);
  }
  BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
  BranchProbability VProb = AdjustedSuccSumProb - UProb;
  BlockFrequency U = SuccFreq * UProb;
  BlockFrequency V = SuccFreq * VProb;
  BlockFrequency F = SuccFreq - Qin;
  // If there is a post-dominating successor, here is the calculation:
  // BB         BB                 BB          BB
  // | \Qout    |   \               | \Qout     |  \
  // |P C       |    =              |P C        |   =
  // =   C'     |P    C             =   C'      |P   C
  // |  /Qin    |      |            |  /Qin     |     |
  // | /        |      C' (+Succ)   | /         |     C' (+Succ)
  // Succ       Succ  /|            Succ        Succ /|
  // | \  V     |   \/ |            | \  V      |  \/ |
  // |U \       |U  /\ =?           |U =        |U /\ |
  // =   D      = =  =?|            |   D       | =  =|
  // |  /       |/     D            |  /        |/    D
  // | /        |     /             | =         |    /
  // |/         |    /              |/          |   =
  // Dom         Dom                Dom         Dom
  //  '=' : Branch taken for that CFG edge
  // The cost for taken branches in the first case is P + U
  // Let F = SuccFreq - Qin
  // The cost in the second case (assuming independence), given the layout:
  // BB, Succ, (C+Succ), D, Dom or the layout:
  // BB, Succ, D, Dom, (C+Succ)
  // is Qout + max(F, Qin) * U + min(F, Qin)
  // compare P + U vs Qout + P * U + Qin.
  //
  // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
  //
  // For the 3rd case, the cost is P + 2 * V
  // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
  // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
  if (UProb > AdjustedSuccSumProb / 2 &&
      !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
                                  Chain, BlockFilter))
    // Cases 3 & 4
    return greaterWithBias(
        (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
        EntryFreq);
  // Cases 1 & 2
  return greaterWithBias((P + U),
                         (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
                          std::max(Qin, F) * UProb),
                         EntryFreq);
}

/// Check for a trellis layout. \p BB is the upper part of a trellis if its
/// successors form the lower part of a trellis. A successor set S forms the
/// lower part of a trellis if all of the predecessors of S are either in S or
/// have all of S as successors. We ignore trellises where BB doesn't have 2
/// successors because for fewer than 2, it's trivial, and for 3 or greater they
/// are very uncommon and complex to compute optimally. Allowing edges within S
/// is not strictly a trellis, but the same algorithm works, so we allow it.
bool MachineBlockPlacement::isTrellis(
    const MachineBasicBlock *BB,
    const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
    const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
  // Technically BB could form a trellis with branching factor higher than 2.
  // But that's extremely uncommon.
  if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
    return false;

  SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
                                                       BB->succ_end());
  // To avoid reviewing the same predecessors twice.
  SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;

  for (MachineBasicBlock *Succ : ViableSuccs) {
    int PredCount = 0;
    for (auto SuccPred : Succ->predecessors()) {
      // Allow triangle successors, but don't count them.
      if (Successors.count(SuccPred)) {
        // Make sure that it is actually a triangle.
        for (MachineBasicBlock *CheckSucc : SuccPred->successors())
          if (!Successors.count(CheckSucc))
            return false;
        continue;
      }
      const BlockChain *PredChain = BlockToChain[SuccPred];
      if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
          PredChain == &Chain || PredChain == BlockToChain[Succ])
        continue;
      ++PredCount;
      // Perform the successor check only once.
      if (!SeenPreds.insert(SuccPred).second)
        continue;
      if (!hasSameSuccessors(*SuccPred, Successors))
        return false;
    }
    // If one of the successors has only BB as a predecessor, it is not a
    // trellis.
    if (PredCount < 1)
      return false;
  }
  return true;
}

/// Pick the highest total weight pair of edges that can both be laid out.
/// The edges in \p Edges[0] are assumed to have a different destination than
/// the edges in \p Edges[1]. Simple counting shows that the best pair is either
/// the individual highest weight edges to the 2 different destinations, or in
/// case of a conflict, one of them should be replaced with a 2nd best edge.
std::pair<MachineBlockPlacement::WeightedEdge,
          MachineBlockPlacement::WeightedEdge>
MachineBlockPlacement::getBestNonConflictingEdges(
    const MachineBasicBlock *BB,
    MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
        Edges) {
  // Sort the edges, and then for each successor, find the best incoming
  // predecessor. If the best incoming predecessors aren't the same,
  // then that is clearly the best layout. If there is a conflict, one of the
  // successors will have to fallthrough from the second best predecessor. We
  // compare which combination is better overall.

  // Sort for highest frequency.
  auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };

  llvm::stable_sort(Edges[0], Cmp);
  llvm::stable_sort(Edges[1], Cmp);
  auto BestA = Edges[0].begin();
  auto BestB = Edges[1].begin();
  // Arrange for the correct answer to be in BestA and BestB
  // If the 2 best edges don't conflict, the answer is already there.
  if (BestA->Src == BestB->Src) {
    // Compare the total fallthrough of (Best + Second Best) for both pairs
    auto SecondBestA = std::next(BestA);
    auto SecondBestB = std::next(BestB);
    BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
    BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
    if (BestAScore < BestBScore)
      BestA = SecondBestA;
    else
      BestB = SecondBestB;
  }
  // Arrange for the BB edge to be in BestA if it exists.
  if (BestB->Src == BB)
    std::swap(BestA, BestB);
  return std::make_pair(*BestA, *BestB);
}

/// Get the best successor from \p BB based on \p BB being part of a trellis.
/// We only handle trellises with 2 successors, so the algorithm is
/// straightforward: Find the best pair of edges that don't conflict. We find
/// the best incoming edge for each successor in the trellis. If those conflict,
/// we consider which of them should be replaced with the second best.
/// Upon return the two best edges will be in \p BestEdges. If one of the edges
/// comes from \p BB, it will be in \p BestEdges[0]
MachineBlockPlacement::BlockAndTailDupResult
MachineBlockPlacement::getBestTrellisSuccessor(
    const MachineBasicBlock *BB,
    const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
    BranchProbability AdjustedSumProb, const BlockChain &Chain,
    const BlockFilterSet *BlockFilter) {

  BlockAndTailDupResult Result = {nullptr, false};
  SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
                                                       BB->succ_end());

  // We assume size 2 because it's common. For general n, we would have to do
  // the Hungarian algorithm, but it's not worth the complexity because more
  // than 2 successors is fairly uncommon, and a trellis even more so.
  if (Successors.size() != 2 || ViableSuccs.size() != 2)
    return Result;

  // Collect the edge frequencies of all edges that form the trellis.
  SmallVector<WeightedEdge, 8> Edges[2];
  int SuccIndex = 0;
  for (auto Succ : ViableSuccs) {
    for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
      // Skip any placed predecessors that are not BB
      if (SuccPred != BB)
        if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
            BlockToChain[SuccPred] == &Chain ||
            BlockToChain[SuccPred] == BlockToChain[Succ])
          continue;
      BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
                                MBPI->getEdgeProbability(SuccPred, Succ);
      Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
    }
    ++SuccIndex;
  }

  // Pick the best combination of 2 edges from all the edges in the trellis.
  WeightedEdge BestA, BestB;
  std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);

  if (BestA.Src != BB) {
    // If we have a trellis, and BB doesn't have the best fallthrough edges,
    // we shouldn't choose any successor. We've already looked and there's a
    // better fallthrough edge for all the successors.
    LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
    return Result;
  }

  // Did we pick the triangle edge? If tail-duplication is profitable, do
  // that instead. Otherwise merge the triangle edge now while we know it is
  // optimal.
  if (BestA.Dest == BestB.Src) {
    // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
    // would be better.
    MachineBasicBlock *Succ1 = BestA.Dest;
    MachineBasicBlock *Succ2 = BestB.Dest;
    // Check to see if tail-duplication would be profitable.
    if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) &&
        canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
        isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
                              Chain, BlockFilter)) {
      LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
                     MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
                 dbgs() << "    Selected: " << getBlockName(Succ2)
                        << ", probability: " << Succ2Prob
                        << " (Tail Duplicate)\n");
      Result.BB = Succ2;
      Result.ShouldTailDup = true;
      return Result;
    }
  }
  // We have already computed the optimal edge for the other side of the
  // trellis.
  ComputedEdges[BestB.Src] = { BestB.Dest, false };

  auto TrellisSucc = BestA.Dest;
  LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability(
                 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
             dbgs() << "    Selected: " << getBlockName(TrellisSucc)
                    << ", probability: " << SuccProb << " (Trellis)\n");
  Result.BB = TrellisSucc;
  return Result;
}

/// When the option allowTailDupPlacement() is on, this method checks if the
/// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
/// into all of its unplaced, unfiltered predecessors, that are not BB.
bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
    const MachineBasicBlock *BB, MachineBasicBlock *Succ,
    const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
  if (!shouldTailDuplicate(Succ))
    return false;

  // The result of canTailDuplicate.
  bool Duplicate = true;
  // Number of possible duplication.
  unsigned int NumDup = 0;

  // For CFG checking.
  SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
                                                       BB->succ_end());
  for (MachineBasicBlock *Pred : Succ->predecessors()) {
    // Make sure all unplaced and unfiltered predecessors can be
    // tail-duplicated into.
    // Skip any blocks that are already placed or not in this loop.
    if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
        || BlockToChain[Pred] == &Chain)
      continue;
    if (!TailDup.canTailDuplicate(Succ, Pred)) {
      if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
        // This will result in a trellis after tail duplication, so we don't
        // need to copy Succ into this predecessor. In the presence
        // of a trellis tail duplication can continue to be profitable.
        // For example:
        // A            A
        // |\           |\
        // | \          | \
        // |  C         |  C+BB
        // | /          |  |
        // |/           |  |
        // BB    =>     BB |
        // |\           |\/|
        // | \          |/\|
        // |  D         |  D
        // | /          | /
        // |/           |/
        // Succ         Succ
        //
        // After BB was duplicated into C, the layout looks like the one on the
        // right. BB and C now have the same successors. When considering
        // whether Succ can be duplicated into all its unplaced predecessors, we
        // ignore C.
        // We can do this because C already has a profitable fallthrough, namely
        // D. TODO(iteratee): ignore sufficiently cold predecessors for
        // duplication and for this test.
        //
        // This allows trellises to be laid out in 2 separate chains
        // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
        // because it allows the creation of 2 fallthrough paths with links
        // between them, and we correctly identify the best layout for these
        // CFGs. We want to extend trellises that the user created in addition
        // to trellises created by tail-duplication, so we just look for the
        // CFG.
        continue;
      Duplicate = false;
      continue;
    }
    NumDup++;
  }

  // No possible duplication in current filter set.
  if (NumDup == 0)
    return false;

  // If profile information is available, findDuplicateCandidates can do more
  // precise benefit analysis.
  if (F->getFunction().hasProfileData())
    return true;

  // This is mainly for function exit BB.
  // The integrated tail duplication is really designed for increasing
  // fallthrough from predecessors from Succ to its successors. We may need
  // other machanism to handle different cases.
  if (Succ->succ_size() == 0)
    return true;

  // Plus the already placed predecessor.
  NumDup++;

  // If the duplication candidate has more unplaced predecessors than
  // successors, the extra duplication can't bring more fallthrough.
  //
  //     Pred1 Pred2 Pred3
  //         \   |   /
  //          \  |  /
  //           \ | /
  //            Dup
  //            / \
  //           /   \
  //       Succ1  Succ2
  //
  // In this example Dup has 2 successors and 3 predecessors, duplication of Dup
  // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2,
  // but the duplication into Pred3 can't increase fallthrough.
  //
  // A small number of extra duplication may not hurt too much. We need a better
  // heuristic to handle it.
  if ((NumDup > Succ->succ_size()) || !Duplicate)
    return false;

  return true;
}

/// Find chains of triangles where we believe it would be profitable to
/// tail-duplicate them all, but a local analysis would not find them.
/// There are 3 ways this can be profitable:
/// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
///    longer chains)
/// 2) The chains are statically correlated. Branch probabilities have a very
///    U-shaped distribution.
///    [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
///    If the branches in a chain are likely to be from the same side of the
///    distribution as their predecessor, but are independent at runtime, this
///    transformation is profitable. (Because the cost of being wrong is a small
///    fixed cost, unlike the standard triangle layout where the cost of being
///    wrong scales with the # of triangles.)
/// 3) The chains are dynamically correlated. If the probability that a previous
///    branch was taken positively influences whether the next branch will be
///    taken
/// We believe that 2 and 3 are common enough to justify the small margin in 1.
void MachineBlockPlacement::precomputeTriangleChains() {
  struct TriangleChain {
    std::vector<MachineBasicBlock *> Edges;

    TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
        : Edges({src, dst}) {}

    void append(MachineBasicBlock *dst) {
      assert(getKey()->isSuccessor(dst) &&
             "Attempting to append a block that is not a successor.");
      Edges.push_back(dst);
    }

    unsigned count() const { return Edges.size() - 1; }

    MachineBasicBlock *getKey() const {
      return Edges.back();
    }
  };

  if (TriangleChainCount == 0)
    return;

  LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
  // Map from last block to the chain that contains it. This allows us to extend
  // chains as we find new triangles.
  DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
  for (MachineBasicBlock &BB : *F) {
    // If BB doesn't have 2 successors, it doesn't start a triangle.
    if (BB.succ_size() != 2)
      continue;
    MachineBasicBlock *PDom = nullptr;
    for (MachineBasicBlock *Succ : BB.successors()) {
      if (!MPDT->dominates(Succ, &BB))
        continue;
      PDom = Succ;
      break;
    }
    // If BB doesn't have a post-dominating successor, it doesn't form a
    // triangle.
    if (PDom == nullptr)
      continue;
    // If PDom has a hint that it is low probability, skip this triangle.
    if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
      continue;
    // If PDom isn't eligible for duplication, this isn't the kind of triangle
    // we're looking for.
    if (!shouldTailDuplicate(PDom))
      continue;
    bool CanTailDuplicate = true;
    // If PDom can't tail-duplicate into it's non-BB predecessors, then this
    // isn't the kind of triangle we're looking for.
    for (MachineBasicBlock* Pred : PDom->predecessors()) {
      if (Pred == &BB)
        continue;
      if (!TailDup.canTailDuplicate(PDom, Pred)) {
        CanTailDuplicate = false;
        break;
      }
    }
    // If we can't tail-duplicate PDom to its predecessors, then skip this
    // triangle.
    if (!CanTailDuplicate)
      continue;

    // Now we have an interesting triangle. Insert it if it's not part of an
    // existing chain.
    // Note: This cannot be replaced with a call insert() or emplace() because
    // the find key is BB, but the insert/emplace key is PDom.
    auto Found = TriangleChainMap.find(&BB);
    // If it is, remove the chain from the map, grow it, and put it back in the
    // map with the end as the new key.
    if (Found != TriangleChainMap.end()) {
      TriangleChain Chain = std::move(Found->second);
      TriangleChainMap.erase(Found);
      Chain.append(PDom);
      TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
    } else {
      auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
      assert(InsertResult.second && "Block seen twice.");
      (void)InsertResult;
    }
  }

  // Iterating over a DenseMap is safe here, because the only thing in the body
  // of the loop is inserting into another DenseMap (ComputedEdges).
  // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
  for (auto &ChainPair : TriangleChainMap) {
    TriangleChain &Chain = ChainPair.second;
    // Benchmarking has shown that due to branch correlation duplicating 2 or
    // more triangles is profitable, despite the calculations assuming
    // independence.
    if (Chain.count() < TriangleChainCount)
      continue;
    MachineBasicBlock *dst = Chain.Edges.back();
    Chain.Edges.pop_back();
    for (MachineBasicBlock *src : reverse(Chain.Edges)) {
      LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->"
                        << getBlockName(dst)
                        << " as pre-computed based on triangles.\n");

      auto InsertResult = ComputedEdges.insert({src, {dst, true}});
      assert(InsertResult.second && "Block seen twice.");
      (void)InsertResult;

      dst = src;
    }
  }
}

// When profile is not present, return the StaticLikelyProb.
// When profile is available, we need to handle the triangle-shape CFG.
static BranchProbability getLayoutSuccessorProbThreshold(
      const MachineBasicBlock *BB) {
  if (!BB->getParent()->getFunction().hasProfileData())
    return BranchProbability(StaticLikelyProb, 100);
  if (BB->succ_size() == 2) {
    const MachineBasicBlock *Succ1 = *BB->succ_begin();
    const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
    if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
      /* See case 1 below for the cost analysis. For BB->Succ to
       * be taken with smaller cost, the following needs to hold:
       *   Prob(BB->Succ) > 2 * Prob(BB->Pred)
       *   So the threshold T in the calculation below
       *   (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
       *   So T / (1 - T) = 2, Yielding T = 2/3
       * Also adding user specified branch bias, we have
       *   T = (2/3)*(ProfileLikelyProb/50)
       *     = (2*ProfileLikelyProb)/150)
       */
      return BranchProbability(2 * ProfileLikelyProb, 150);
    }
  }
  return BranchProbability(ProfileLikelyProb, 100);
}

/// Checks to see if the layout candidate block \p Succ has a better layout
/// predecessor than \c BB. If yes, returns true.
/// \p SuccProb: The probability adjusted for only remaining blocks.
///   Only used for logging
/// \p RealSuccProb: The un-adjusted probability.
/// \p Chain: The chain that BB belongs to and Succ is being considered for.
/// \p BlockFilter: if non-null, the set of blocks that make up the loop being
///    considered
bool MachineBlockPlacement::hasBetterLayoutPredecessor(
    const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
    const BlockChain &SuccChain, BranchProbability SuccProb,
    BranchProbability RealSuccProb, const BlockChain &Chain,
    const BlockFilterSet *BlockFilter) {

  // There isn't a better layout when there are no unscheduled predecessors.
  if (SuccChain.UnscheduledPredecessors == 0)
    return false;

  // There are two basic scenarios here:
  // -------------------------------------
  // Case 1: triangular shape CFG (if-then):
  //     BB
  //     | \
  //     |  \
  //     |   Pred
  //     |   /
  //     Succ
  // In this case, we are evaluating whether to select edge -> Succ, e.g.
  // set Succ as the layout successor of BB. Picking Succ as BB's
  // successor breaks the CFG constraints (FIXME: define these constraints).
  // With this layout, Pred BB
  // is forced to be outlined, so the overall cost will be cost of the
  // branch taken from BB to Pred, plus the cost of back taken branch
  // from Pred to Succ, as well as the additional cost associated
  // with the needed unconditional jump instruction from Pred To Succ.

  // The cost of the topological order layout is the taken branch cost
  // from BB to Succ, so to make BB->Succ a viable candidate, the following
  // must hold:
  //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
  //      < freq(BB->Succ) *  taken_branch_cost.
  // Ignoring unconditional jump cost, we get
  //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
  //    prob(BB->Succ) > 2 * prob(BB->Pred)
  //
  // When real profile data is available, we can precisely compute the
  // probability threshold that is needed for edge BB->Succ to be considered.
  // Without profile data, the heuristic requires the branch bias to be
  // a lot larger to make sure the signal is very strong (e.g. 80% default).
  // -----------------------------------------------------------------
  // Case 2: diamond like CFG (if-then-else):
  //     S
  //    / \
  //   |   \
  //  BB    Pred
  //   \    /
  //    Succ
  //    ..
  //
  // The current block is BB and edge BB->Succ is now being evaluated.
  // Note that edge S->BB was previously already selected because
  // prob(S->BB) > prob(S->Pred).
  // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
  // choose Pred, we will have a topological ordering as shown on the left
  // in the picture below. If we choose Succ, we have the solution as shown
  // on the right:
  //
  //   topo-order:
  //
  //       S-----                             ---S
  //       |    |                             |  |
  //    ---BB   |                             |  BB
  //    |       |                             |  |
  //    |  Pred--                             |  Succ--
  //    |  |                                  |       |
  //    ---Succ                               ---Pred--
  //
  // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred)
  //      = freq(S->Pred) + freq(S->BB)
  //
  // If we have profile data (i.e, branch probabilities can be trusted), the
  // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
  // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
  // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
  // means the cost of topological order is greater.
  // When profile data is not available, however, we need to be more
  // conservative. If the branch prediction is wrong, breaking the topo-order
  // will actually yield a layout with large cost. For this reason, we need
  // strong biased branch at block S with Prob(S->BB) in order to select
  // BB->Succ. This is equivalent to looking the CFG backward with backward
  // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
  // profile data).
  // --------------------------------------------------------------------------
  // Case 3: forked diamond
  //       S
  //      / \
  //     /   \
  //   BB    Pred
  //   | \   / |
  //   |  \ /  |
  //   |   X   |
  //   |  / \  |
  //   | /   \ |
  //   S1     S2
  //
  // The current block is BB and edge BB->S1 is now being evaluated.
  // As above S->BB was already selected because
  // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
  //
  // topo-order:
  //
  //     S-------|                     ---S
  //     |       |                     |  |
  //  ---BB      |                     |  BB
  //  |          |                     |  |
  //  |  Pred----|                     |  S1----
  //  |  |                             |       |
  //  --(S1 or S2)                     ---Pred--
  //                                        |
  //                                       S2
  //
  // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
  //    + min(freq(Pred->S1), freq(Pred->S2))
  // Non-topo-order cost:
  // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
  // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
  // is 0. Then the non topo layout is better when
  // freq(S->Pred) < freq(BB->S1).
  // This is exactly what is checked below.
  // Note there are other shapes that apply (Pred may not be a single block,
  // but they all fit this general pattern.)
  BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);

  // Make sure that a hot successor doesn't have a globally more
  // important predecessor.
  BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
  bool BadCFGConflict = false;

  for (MachineBasicBlock *Pred : Succ->predecessors()) {
    BlockChain *PredChain = BlockToChain[Pred];
    if (Pred == Succ || PredChain == &SuccChain ||
        (BlockFilter && !BlockFilter->count(Pred)) ||
        PredChain == &Chain || Pred != *std::prev(PredChain->end()) ||
        // This check is redundant except for look ahead. This function is
        // called for lookahead by isProfitableToTailDup when BB hasn't been
        // placed yet.
        (Pred == BB))
      continue;
    // Do backward checking.
    // For all cases above, we need a backward checking to filter out edges that
    // are not 'strongly' biased.
    // BB  Pred
    //  \ /
    //  Succ
    // We select edge BB->Succ if
    //      freq(BB->Succ) > freq(Succ) * HotProb
    //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
    //      HotProb
    //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
    // Case 1 is covered too, because the first equation reduces to:
    // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
    BlockFrequency PredEdgeFreq =
        MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
    if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
      BadCFGConflict = true;
      break;
    }
  }

  if (BadCFGConflict) {
    LLVM_DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> "
                      << SuccProb << " (prob) (non-cold CFG conflict)\n");
    return true;
  }

  return false;
}

/// Select the best successor for a block.
///
/// This looks across all successors of a particular block and attempts to
/// select the "best" one to be the layout successor. It only considers direct
/// successors which also pass the block filter. It will attempt to avoid
/// breaking CFG structure, but cave and break such structures in the case of
/// very hot successor edges.
///
/// \returns The best successor block found, or null if none are viable, along
/// with a boolean indicating if tail duplication is necessary.
MachineBlockPlacement::BlockAndTailDupResult
MachineBlockPlacement::selectBestSuccessor(
    const MachineBasicBlock *BB, const BlockChain &Chain,
    const BlockFilterSet *BlockFilter) {
  const BranchProbability HotProb(StaticLikelyProb, 100);

  BlockAndTailDupResult BestSucc = { nullptr, false };
  auto BestProb = BranchProbability::getZero();

  SmallVector<MachineBasicBlock *, 4> Successors;
  auto AdjustedSumProb =
      collectViableSuccessors(BB, Chain, BlockFilter, Successors);

  LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB)
                    << "\n");

  // if we already precomputed the best successor for BB, return that if still
  // applicable.
  auto FoundEdge = ComputedEdges.find(BB);
  if (FoundEdge != ComputedEdges.end()) {
    MachineBasicBlock *Succ = FoundEdge->second.BB;
    ComputedEdges.erase(FoundEdge);
    BlockChain *SuccChain = BlockToChain[Succ];
    if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
        SuccChain != &Chain && Succ == *SuccChain->begin())
      return FoundEdge->second;
  }

  // if BB is part of a trellis, Use the trellis to determine the optimal
  // fallthrough edges
  if (isTrellis(BB, Successors, Chain, BlockFilter))
    return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
                                   BlockFilter);

  // For blocks with CFG violations, we may be able to lay them out anyway with
  // tail-duplication. We keep this vector so we can perform the probability
  // calculations the minimum number of times.
  SmallVector<std::pair<BranchProbability, MachineBasicBlock *>, 4>
      DupCandidates;
  for (MachineBasicBlock *Succ : Successors) {
    auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
    BranchProbability SuccProb =
        getAdjustedProbability(RealSuccProb, AdjustedSumProb);

    BlockChain &SuccChain = *BlockToChain[Succ];
    // Skip the edge \c BB->Succ if block \c Succ has a better layout
    // predecessor that yields lower global cost.
    if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
                                   Chain, BlockFilter)) {
      // If tail duplication would make Succ profitable, place it.
      if (allowTailDupPlacement() && shouldTailDuplicate(Succ))
        DupCandidates.emplace_back(SuccProb, Succ);
      continue;
    }

    LLVM_DEBUG(
        dbgs() << "    Candidate: " << getBlockName(Succ)
               << ", probability: " << SuccProb
               << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
               << "\n");

    if (BestSucc.BB && BestProb >= SuccProb) {
      LLVM_DEBUG(dbgs() << "    Not the best candidate, continuing\n");
      continue;
    }

    LLVM_DEBUG(dbgs() << "    Setting it as best candidate\n");
    BestSucc.BB = Succ;
    BestProb = SuccProb;
  }
  // Handle the tail duplication candidates in order of decreasing probability.
  // Stop at the first one that is profitable. Also stop if they are less
  // profitable than BestSucc. Position is important because we preserve it and
  // prefer first best match. Here we aren't comparing in order, so we capture
  // the position instead.
  llvm::stable_sort(DupCandidates,
                    [](std::tuple<BranchProbability, MachineBasicBlock *> L,
                       std::tuple<BranchProbability, MachineBasicBlock *> R) {
                      return std::get<0>(L) > std::get<0>(R);
                    });
  for (auto &Tup : DupCandidates) {
    BranchProbability DupProb;
    MachineBasicBlock *Succ;
    std::tie(DupProb, Succ) = Tup;
    if (DupProb < BestProb)
      break;
    if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
        && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
      LLVM_DEBUG(dbgs() << "    Candidate: " << getBlockName(Succ)
                        << ", probability: " << DupProb
                        << " (Tail Duplicate)\n");
      BestSucc.BB = Succ;
      BestSucc.ShouldTailDup = true;
      break;
    }
  }

  if (BestSucc.BB)
    LLVM_DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc.BB) << "\n");

  return BestSucc;
}

/// Select the best block from a worklist.
///
/// This looks through the provided worklist as a list of candidate basic
/// blocks and select the most profitable one to place. The definition of
/// profitable only really makes sense in the context of a loop. This returns
/// the most frequently visited block in the worklist, which in the case of
/// a loop, is the one most desirable to be physically close to the rest of the
/// loop body in order to improve i-cache behavior.
///
/// \returns The best block found, or null if none are viable.
MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
    const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
  // Once we need to walk the worklist looking for a candidate, cleanup the
  // worklist of already placed entries.
  // FIXME: If this shows up on profiles, it could be folded (at the cost of
  // some code complexity) into the loop below.
  llvm::erase_if(WorkList, [&](MachineBasicBlock *BB) {
    return BlockToChain.lookup(BB) == &Chain;
  });

  if (WorkList.empty())
    return nullptr;

  bool IsEHPad = WorkList[0]->isEHPad();

  MachineBasicBlock *BestBlock = nullptr;
  BlockFrequency BestFreq;
  for (MachineBasicBlock *MBB : WorkList) {
    assert(MBB->isEHPad() == IsEHPad &&
           "EHPad mismatch between block and work list.");

    BlockChain &SuccChain = *BlockToChain[MBB];
    if (&SuccChain == &Chain)
      continue;

    assert(SuccChain.UnscheduledPredecessors == 0 &&
           "Found CFG-violating block");

    BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
    LLVM_DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
               MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");

    // For ehpad, we layout the least probable first as to avoid jumping back
    // from least probable landingpads to more probable ones.
    //
    // FIXME: Using probability is probably (!) not the best way to achieve
    // this. We should probably have a more principled approach to layout
    // cleanup code.
    //
    // The goal is to get:
    //
    //                 +--------------------------+
    //                 |                          V
    // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
    //
    // Rather than:
    //
    //                 +-------------------------------------+
    //                 V                                     |
    // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
    if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
      continue;

    BestBlock = MBB;
    BestFreq = CandidateFreq;
  }

  return BestBlock;
}

/// Retrieve the first unplaced basic block.
///
/// This routine is called when we are unable to use the CFG to walk through
/// all of the basic blocks and form a chain due to unnatural loops in the CFG.
/// We walk through the function's blocks in order, starting from the
/// LastUnplacedBlockIt. We update this iterator on each call to avoid
/// re-scanning the entire sequence on repeated calls to this routine.
MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
    const BlockChain &PlacedChain,
    MachineFunction::iterator &PrevUnplacedBlockIt,
    const BlockFilterSet *BlockFilter) {
  for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
       ++I) {
    if (BlockFilter && !BlockFilter->count(&*I))
      continue;
    if (BlockToChain[&*I] != &PlacedChain) {
      PrevUnplacedBlockIt = I;
      // Now select the head of the chain to which the unplaced block belongs
      // as the block to place. This will force the entire chain to be placed,
      // and satisfies the requirements of merging chains.
      return *BlockToChain[&*I]->begin();
    }
  }
  return nullptr;
}

void MachineBlockPlacement::fillWorkLists(
    const MachineBasicBlock *MBB,
    SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
    const BlockFilterSet *BlockFilter = nullptr) {
  BlockChain &Chain = *BlockToChain[MBB];
  if (!UpdatedPreds.insert(&Chain).second)
    return;

  assert(
      Chain.UnscheduledPredecessors == 0 &&
      "Attempting to place block with unscheduled predecessors in worklist.");
  for (MachineBasicBlock *ChainBB : Chain) {
    assert(BlockToChain[ChainBB] == &Chain &&
           "Block in chain doesn't match BlockToChain map.");
    for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
      if (BlockFilter && !BlockFilter->count(Pred))
        continue;
      if (BlockToChain[Pred] == &Chain)
        continue;
      ++Chain.UnscheduledPredecessors;
    }
  }

  if (Chain.UnscheduledPredecessors != 0)
    return;

  MachineBasicBlock *BB = *Chain.begin();
  if (BB->isEHPad())
    EHPadWorkList.push_back(BB);
  else
    BlockWorkList.push_back(BB);
}

void MachineBlockPlacement::buildChain(
    const MachineBasicBlock *HeadBB, BlockChain &Chain,
    BlockFilterSet *BlockFilter) {
  assert(HeadBB && "BB must not be null.\n");
  assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
  MachineFunction::iterator PrevUnplacedBlockIt = F->begin();

  const MachineBasicBlock *LoopHeaderBB = HeadBB;
  markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
  MachineBasicBlock *BB = *std::prev(Chain.end());
  while (true) {
    assert(BB && "null block found at end of chain in loop.");
    assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
    assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");


    // Look for the best viable successor if there is one to place immediately
    // after this block.
    auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
    MachineBasicBlock* BestSucc = Result.BB;
    bool ShouldTailDup = Result.ShouldTailDup;
    if (allowTailDupPlacement())
      ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(BB, BestSucc,
                                                                  Chain,
                                                                  BlockFilter));

    // If an immediate successor isn't available, look for the best viable
    // block among those we've identified as not violating the loop's CFG at
    // this point. This won't be a fallthrough, but it will increase locality.
    if (!BestSucc)
      BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
    if (!BestSucc)
      BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);

    if (!BestSucc) {
      BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
      if (!BestSucc)
        break;

      LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
                           "layout successor until the CFG reduces\n");
    }

    // Placement may have changed tail duplication opportunities.
    // Check for that now.
    if (allowTailDupPlacement() && BestSucc && ShouldTailDup) {
      repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
                                       BlockFilter, PrevUnplacedBlockIt);
      // If the chosen successor was duplicated into BB, don't bother laying
      // it out, just go round the loop again with BB as the chain end.
      if (!BB->isSuccessor(BestSucc))
        continue;
    }

    // Place this block, updating the datastructures to reflect its placement.
    BlockChain &SuccChain = *BlockToChain[BestSucc];
    // Zero out UnscheduledPredecessors for the successor we're about to merge in case
    // we selected a successor that didn't fit naturally into the CFG.
    SuccChain.UnscheduledPredecessors = 0;
    LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
                      << getBlockName(BestSucc) << "\n");
    markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
    Chain.merge(BestSucc, &SuccChain);
    BB = *std::prev(Chain.end());
  }

  LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
                    << getBlockName(*Chain.begin()) << "\n");
}

// If bottom of block BB has only one successor OldTop, in most cases it is
// profitable to move it before OldTop, except the following case:
//
//     -->OldTop<-
//     |    .    |
//     |    .    |
//     |    .    |
//     ---Pred   |
//          |    |
//         BB-----
//
// If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
// layout the other successor below it, so it can't reduce taken branch.
// In this case we keep its original layout.
bool
MachineBlockPlacement::canMoveBottomBlockToTop(
    const MachineBasicBlock *BottomBlock,
    const MachineBasicBlock *OldTop) {
  if (BottomBlock->pred_size() != 1)
    return true;
  MachineBasicBlock *Pred = *BottomBlock->pred_begin();
  if (Pred->succ_size() != 2)
    return true;

  MachineBasicBlock *OtherBB = *Pred->succ_begin();
  if (OtherBB == BottomBlock)
    OtherBB = *Pred->succ_rbegin();
  if (OtherBB == OldTop)
    return false;

  return true;
}

// Find out the possible fall through frequence to the top of a loop.
BlockFrequency
MachineBlockPlacement::TopFallThroughFreq(
    const MachineBasicBlock *Top,
    const BlockFilterSet &LoopBlockSet) {
  BlockFrequency MaxFreq = 0;
  for (MachineBasicBlock *Pred : Top->predecessors()) {
    BlockChain *PredChain = BlockToChain[Pred];
    if (!LoopBlockSet.count(Pred) &&
        (!PredChain || Pred == *std::prev(PredChain->end()))) {
      // Found a Pred block can be placed before Top.
      // Check if Top is the best successor of Pred.
      auto TopProb = MBPI->getEdgeProbability(Pred, Top);
      bool TopOK = true;
      for (MachineBasicBlock *Succ : Pred->successors()) {
        auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
        BlockChain *SuccChain = BlockToChain[Succ];
        // Check if Succ can be placed after Pred.
        // Succ should not be in any chain, or it is the head of some chain.
        if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) &&
            (!SuccChain || Succ == *SuccChain->begin())) {
          TopOK = false;
          break;
        }
      }
      if (TopOK) {
        BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
                                  MBPI->getEdgeProbability(Pred, Top);
        if (EdgeFreq > MaxFreq)
          MaxFreq = EdgeFreq;
      }
    }
  }
  return MaxFreq;
}

// Compute the fall through gains when move NewTop before OldTop.
//
// In following diagram, edges marked as "-" are reduced fallthrough, edges
// marked as "+" are increased fallthrough, this function computes
//
//      SUM(increased fallthrough) - SUM(decreased fallthrough)
//
//              |
//              | -
//              V
//        --->OldTop
//        |     .
//        |     .
//       +|     .    +
//        |   Pred --->
//        |     |-
//        |     V
//        --- NewTop <---
//              |-
//              V
//
BlockFrequency
MachineBlockPlacement::FallThroughGains(
    const MachineBasicBlock *NewTop,
    const MachineBasicBlock *OldTop,
    const MachineBasicBlock *ExitBB,
    const BlockFilterSet &LoopBlockSet) {
  BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet);
  BlockFrequency FallThrough2Exit = 0;
  if (ExitBB)
    FallThrough2Exit = MBFI->getBlockFreq(NewTop) *
        MBPI->getEdgeProbability(NewTop, ExitBB);
  BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) *
      MBPI->getEdgeProbability(NewTop, OldTop);

  // Find the best Pred of NewTop.
   MachineBasicBlock *BestPred = nullptr;
   BlockFrequency FallThroughFromPred = 0;
   for (MachineBasicBlock *Pred : NewTop->predecessors()) {
     if (!LoopBlockSet.count(Pred))
       continue;
     BlockChain *PredChain = BlockToChain[Pred];
     if (!PredChain || Pred == *std::prev(PredChain->end())) {
       BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
           MBPI->getEdgeProbability(Pred, NewTop);
       if (EdgeFreq > FallThroughFromPred) {
         FallThroughFromPred = EdgeFreq;
         BestPred = Pred;
       }
     }
   }

   // If NewTop is not placed after Pred, another successor can be placed
   // after Pred.
   BlockFrequency NewFreq = 0;
   if (BestPred) {
     for (MachineBasicBlock *Succ : BestPred->successors()) {
       if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ))
         continue;
       if (ComputedEdges.find(Succ) != ComputedEdges.end())
         continue;
       BlockChain *SuccChain = BlockToChain[Succ];
       if ((SuccChain && (Succ != *SuccChain->begin())) ||
           (SuccChain == BlockToChain[BestPred]))
         continue;
       BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) *
           MBPI->getEdgeProbability(BestPred, Succ);
       if (EdgeFreq > NewFreq)
         NewFreq = EdgeFreq;
     }
     BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) *
         MBPI->getEdgeProbability(BestPred, NewTop);
     if (NewFreq > OrigEdgeFreq) {
       // If NewTop is not the best successor of Pred, then Pred doesn't
       // fallthrough to NewTop. So there is no FallThroughFromPred and
       // NewFreq.
       NewFreq = 0;
       FallThroughFromPred = 0;
     }
   }

   BlockFrequency Result = 0;
   BlockFrequency Gains = BackEdgeFreq + NewFreq;
   BlockFrequency Lost = FallThrough2Top + FallThrough2Exit +
       FallThroughFromPred;
   if (Gains > Lost)
     Result = Gains - Lost;
   return Result;
}

/// Helper function of findBestLoopTop. Find the best loop top block
/// from predecessors of old top.
///
/// Look for a block which is strictly better than the old top for laying
/// out before the old top of the loop. This looks for only two patterns:
///
///     1. a block has only one successor, the old loop top
///
///        Because such a block will always result in an unconditional jump,
///        rotating it in front of the old top is always profitable.
///
///     2. a block has two successors, one is old top, another is exit
///        and it has more than one predecessors
///
///        If it is below one of its predecessors P, only P can fall through to
///        it, all other predecessors need a jump to it, and another conditional
///        jump to loop header. If it is moved before loop header, all its
///        predecessors jump to it, then fall through to loop header. So all its
///        predecessors except P can reduce one taken branch.
///        At the same time, move it before old top increases the taken branch
///        to loop exit block, so the reduced taken branch will be compared with
///        the increased taken branch to the loop exit block.
MachineBasicBlock *
MachineBlockPlacement::findBestLoopTopHelper(
    MachineBasicBlock *OldTop,
    const MachineLoop &L,
    const BlockFilterSet &LoopBlockSet) {
  // Check that the header hasn't been fused with a preheader block due to
  // crazy branches. If it has, we need to start with the header at the top to
  // prevent pulling the preheader into the loop body.
  BlockChain &HeaderChain = *BlockToChain[OldTop];
  if (!LoopBlockSet.count(*HeaderChain.begin()))
    return OldTop;

  LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop)
                    << "\n");

  BlockFrequency BestGains = 0;
  MachineBasicBlock *BestPred = nullptr;
  for (MachineBasicBlock *Pred : OldTop->predecessors()) {
    if (!LoopBlockSet.count(Pred))
      continue;
    if (Pred == L.getHeader())
      continue;
    LLVM_DEBUG(dbgs() << "   old top pred: " << getBlockName(Pred) << ", has "
                      << Pred->succ_size() << " successors, ";
               MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
    if (Pred->succ_size() > 2)
      continue;

    MachineBasicBlock *OtherBB = nullptr;
    if (Pred->succ_size() == 2) {
      OtherBB = *Pred->succ_begin();
      if (OtherBB == OldTop)
        OtherBB = *Pred->succ_rbegin();
    }

    if (!canMoveBottomBlockToTop(Pred, OldTop))
      continue;

    BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB,
                                            LoopBlockSet);
    if ((Gains > 0) && (Gains > BestGains ||
        ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) {
      BestPred = Pred;
      BestGains = Gains;
    }
  }

  // If no direct predecessor is fine, just use the loop header.
  if (!BestPred) {
    LLVM_DEBUG(dbgs() << "    final top unchanged\n");
    return OldTop;
  }

  // Walk backwards through any straight line of predecessors.
  while (BestPred->pred_size() == 1 &&
         (*BestPred->pred_begin())->succ_size() == 1 &&
         *BestPred->pred_begin() != L.getHeader())
    BestPred = *BestPred->pred_begin();

  LLVM_DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
  return BestPred;
}

/// Find the best loop top block for layout.
///
/// This function iteratively calls findBestLoopTopHelper, until no new better
/// BB can be found.
MachineBasicBlock *
MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
                                       const BlockFilterSet &LoopBlockSet) {
  // Placing the latch block before the header may introduce an extra branch
  // that skips this block the first time the loop is executed, which we want
  // to avoid when optimising for size.
  // FIXME: in theory there is a case that does not introduce a new branch,
  // i.e. when the layout predecessor does not fallthrough to the loop header.
  // In practice this never happens though: there always seems to be a preheader
  // that can fallthrough and that is also placed before the header.
  bool OptForSize = F->getFunction().hasOptSize() ||
                    llvm::shouldOptimizeForSize(L.getHeader(), PSI, MBFI.get());
  if (OptForSize)
    return L.getHeader();

  MachineBasicBlock *OldTop = nullptr;
  MachineBasicBlock *NewTop = L.getHeader();
  while (NewTop != OldTop) {
    OldTop = NewTop;
    NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet);
    if (NewTop != OldTop)
      ComputedEdges[NewTop] = { OldTop, false };
  }
  return NewTop;
}

/// Find the best loop exiting block for layout.
///
/// This routine implements the logic to analyze the loop looking for the best
/// block to layout at the top of the loop. Typically this is done to maximize
/// fallthrough opportunities.
MachineBasicBlock *
MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
                                        const BlockFilterSet &LoopBlockSet,
                                        BlockFrequency &ExitFreq) {
  // We don't want to layout the loop linearly in all cases. If the loop header
  // is just a normal basic block in the loop, we want to look for what block
  // within the loop is the best one to layout at the top. However, if the loop
  // header has be pre-merged into a chain due to predecessors not having
  // analyzable branches, *and* the predecessor it is merged with is *not* part
  // of the loop, rotating the header into the middle of the loop will create
  // a non-contiguous range of blocks which is Very Bad. So start with the
  // header and only rotate if safe.
  BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
  if (!LoopBlockSet.count(*HeaderChain.begin()))
    return nullptr;

  BlockFrequency BestExitEdgeFreq;
  unsigned BestExitLoopDepth = 0;
  MachineBasicBlock *ExitingBB = nullptr;
  // If there are exits to outer loops, loop rotation can severely limit
  // fallthrough opportunities unless it selects such an exit. Keep a set of
  // blocks where rotating to exit with that block will reach an outer loop.
  SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;

  LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
                    << getBlockName(L.getHeader()) << "\n");
  for (MachineBasicBlock *MBB : L.getBlocks()) {
    BlockChain &Chain = *BlockToChain[MBB];
    // Ensure that this block is at the end of a chain; otherwise it could be
    // mid-way through an inner loop or a successor of an unanalyzable branch.
    if (MBB != *std::prev(Chain.end()))
      continue;

    // Now walk the successors. We need to establish whether this has a viable
    // exiting successor and whether it has a viable non-exiting successor.
    // We store the old exiting state and restore it if a viable looping
    // successor isn't found.
    MachineBasicBlock *OldExitingBB = ExitingBB;
    BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
    bool HasLoopingSucc = false;
    for (MachineBasicBlock *Succ : MBB->successors()) {
      if (Succ->isEHPad())
        continue;
      if (Succ == MBB)
        continue;
      BlockChain &SuccChain = *BlockToChain[Succ];
      // Don't split chains, either this chain or the successor's chain.
      if (&Chain == &SuccChain) {
        LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
                          << getBlockName(Succ) << " (chain conflict)\n");
        continue;
      }

      auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
      if (LoopBlockSet.count(Succ)) {
        LLVM_DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
                          << getBlockName(Succ) << " (" << SuccProb << ")\n");
        HasLoopingSucc = true;
        continue;
      }

      unsigned SuccLoopDepth = 0;
      if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
        SuccLoopDepth = ExitLoop->getLoopDepth();
        if (ExitLoop->contains(&L))
          BlocksExitingToOuterLoop.insert(MBB);
      }

      BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
      LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
                        << getBlockName(Succ) << " [L:" << SuccLoopDepth
                        << "] (";
                 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
      // Note that we bias this toward an existing layout successor to retain
      // incoming order in the absence of better information. The exit must have
      // a frequency higher than the current exit before we consider breaking
      // the layout.
      BranchProbability Bias(100 - ExitBlockBias, 100);
      if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
          ExitEdgeFreq > BestExitEdgeFreq ||
          (MBB->isLayoutSuccessor(Succ) &&
           !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
        BestExitEdgeFreq = ExitEdgeFreq;
        ExitingBB = MBB;
      }
    }

    if (!HasLoopingSucc) {
      // Restore the old exiting state, no viable looping successor was found.
      ExitingBB = OldExitingBB;
      BestExitEdgeFreq = OldBestExitEdgeFreq;
    }
  }
  // Without a candidate exiting block or with only a single block in the
  // loop, just use the loop header to layout the loop.
  if (!ExitingBB) {
    LLVM_DEBUG(
        dbgs() << "    No other candidate exit blocks, using loop header\n");
    return nullptr;
  }
  if (L.getNumBlocks() == 1) {
    LLVM_DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n");
    return nullptr;
  }

  // Also, if we have exit blocks which lead to outer loops but didn't select
  // one of them as the exiting block we are rotating toward, disable loop
  // rotation altogether.
  if (!BlocksExitingToOuterLoop.empty() &&
      !BlocksExitingToOuterLoop.count(ExitingBB))
    return nullptr;

  LLVM_DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB)
                    << "\n");
  ExitFreq = BestExitEdgeFreq;
  return ExitingBB;
}

/// Check if there is a fallthrough to loop header Top.
///
///   1. Look for a Pred that can be layout before Top.
///   2. Check if Top is the most possible successor of Pred.
bool
MachineBlockPlacement::hasViableTopFallthrough(
    const MachineBasicBlock *Top,
    const BlockFilterSet &LoopBlockSet) {
  for (MachineBasicBlock *Pred : Top->predecessors()) {
    BlockChain *PredChain = BlockToChain[Pred];
    if (!LoopBlockSet.count(Pred) &&
        (!PredChain || Pred == *std::prev(PredChain->end()))) {
      // Found a Pred block can be placed before Top.
      // Check if Top is the best successor of Pred.
      auto TopProb = MBPI->getEdgeProbability(Pred, Top);
      bool TopOK = true;
      for (MachineBasicBlock *Succ : Pred->successors()) {
        auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
        BlockChain *SuccChain = BlockToChain[Succ];
        // Check if Succ can be placed after Pred.
        // Succ should not be in any chain, or it is the head of some chain.
        if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) {
          TopOK = false;
          break;
        }
      }
      if (TopOK)
        return true;
    }
  }
  return false;
}

/// Attempt to rotate an exiting block to the bottom of the loop.
///
/// Once we have built a chain, try to rotate it to line up the hot exit block
/// with fallthrough out of the loop if doing so doesn't introduce unnecessary
/// branches. For example, if the loop has fallthrough into its header and out
/// of its bottom already, don't rotate it.
void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
                                       const MachineBasicBlock *ExitingBB,
                                       BlockFrequency ExitFreq,
                                       const BlockFilterSet &LoopBlockSet) {
  if (!ExitingBB)
    return;

  MachineBasicBlock *Top = *LoopChain.begin();
  MachineBasicBlock *Bottom = *std::prev(LoopChain.end());

  // If ExitingBB is already the last one in a chain then nothing to do.
  if (Bottom == ExitingBB)
    return;

  // The entry block should always be the first BB in a function.
  if (Top->isEntryBlock())
    return;

  bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet);

  // If the header has viable fallthrough, check whether the current loop
  // bottom is a viable exiting block. If so, bail out as rotating will
  // introduce an unnecessary branch.
  if (ViableTopFallthrough) {
    for (MachineBasicBlock *Succ : Bottom->successors()) {
      BlockChain *SuccChain = BlockToChain[Succ];
      if (!LoopBlockSet.count(Succ) &&
          (!SuccChain || Succ == *SuccChain->begin()))
        return;
    }

    // Rotate will destroy the top fallthrough, we need to ensure the new exit
    // frequency is larger than top fallthrough.
    BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet);
    if (FallThrough2Top >= ExitFreq)
      return;
  }

  BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB);
  if (ExitIt == LoopChain.end())
    return;

  // Rotating a loop exit to the bottom when there is a fallthrough to top
  // trades the entry fallthrough for an exit fallthrough.
  // If there is no bottom->top edge, but the chosen exit block does have
  // a fallthrough, we break that fallthrough for nothing in return.

  // Let's consider an example. We have a built chain of basic blocks
  // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
  // By doing a rotation we get
  // Bk+1, ..., Bn, B1, ..., Bk
  // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
  // If we had a fallthrough Bk -> Bk+1 it is broken now.
  // It might be compensated by fallthrough Bn -> B1.
  // So we have a condition to avoid creation of extra branch by loop rotation.
  // All below must be true to avoid loop rotation:
  //   If there is a fallthrough to top (B1)
  //   There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
  //   There is no fallthrough from bottom (Bn) to top (B1).
  // Please note that there is no exit fallthrough from Bn because we checked it
  // above.
  if (ViableTopFallthrough) {
    assert(std::next(ExitIt) != LoopChain.end() &&
           "Exit should not be last BB");
    MachineBasicBlock *NextBlockInChain = *std::next(ExitIt);
    if (ExitingBB->isSuccessor(NextBlockInChain))
      if (!Bottom->isSuccessor(Top))
        return;
  }

  LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
                    << " at bottom\n");
  std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
}

/// Attempt to rotate a loop based on profile data to reduce branch cost.
///
/// With profile data, we can determine the cost in terms of missed fall through
/// opportunities when rotating a loop chain and select the best rotation.
/// Basically, there are three kinds of cost to consider for each rotation:
///    1. The possibly missed fall through edge (if it exists) from BB out of
///    the loop to the loop header.
///    2. The possibly missed fall through edges (if they exist) from the loop
///    exits to BB out of the loop.
///    3. The missed fall through edge (if it exists) from the last BB to the
///    first BB in the loop chain.
///  Therefore, the cost for a given rotation is the sum of costs listed above.
///  We select the best rotation with the smallest cost.
void MachineBlockPlacement::rotateLoopWithProfile(
    BlockChain &LoopChain, const MachineLoop &L,
    const BlockFilterSet &LoopBlockSet) {
  auto RotationPos = LoopChain.end();
  MachineBasicBlock *ChainHeaderBB = *LoopChain.begin();

  // The entry block should always be the first BB in a function.
  if (ChainHeaderBB->isEntryBlock())
    return;

  BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();

  // A utility lambda that scales up a block frequency by dividing it by a
  // branch probability which is the reciprocal of the scale.
  auto ScaleBlockFrequency = [](BlockFrequency Freq,
                                unsigned Scale) -> BlockFrequency {
    if (Scale == 0)
      return 0;
    // Use operator / between BlockFrequency and BranchProbability to implement
    // saturating multiplication.
    return Freq / BranchProbability(1, Scale);
  };

  // Compute the cost of the missed fall-through edge to the loop header if the
  // chain head is not the loop header. As we only consider natural loops with
  // single header, this computation can be done only once.
  BlockFrequency HeaderFallThroughCost(0);
  for (auto *Pred : ChainHeaderBB->predecessors()) {
    BlockChain *PredChain = BlockToChain[Pred];
    if (!LoopBlockSet.count(Pred) &&
        (!PredChain || Pred == *std::prev(PredChain->end()))) {
      auto EdgeFreq = MBFI->getBlockFreq(Pred) *
          MBPI->getEdgeProbability(Pred, ChainHeaderBB);
      auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
      // If the predecessor has only an unconditional jump to the header, we
      // need to consider the cost of this jump.
      if (Pred->succ_size() == 1)
        FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
      HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
    }
  }

  // Here we collect all exit blocks in the loop, and for each exit we find out
  // its hottest exit edge. For each loop rotation, we define the loop exit cost
  // as the sum of frequencies of exit edges we collect here, excluding the exit
  // edge from the tail of the loop chain.
  SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
  for (auto BB : LoopChain) {
    auto LargestExitEdgeProb = BranchProbability::getZero();
    for (auto *Succ : BB->successors()) {
      BlockChain *SuccChain = BlockToChain[Succ];
      if (!LoopBlockSet.count(Succ) &&
          (!SuccChain || Succ == *SuccChain->begin())) {
        auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
        LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
      }
    }
    if (LargestExitEdgeProb > BranchProbability::getZero()) {
      auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
      ExitsWithFreq.emplace_back(BB, ExitFreq);
    }
  }

  // In this loop we iterate every block in the loop chain and calculate the
  // cost assuming the block is the head of the loop chain. When the loop ends,
  // we should have found the best candidate as the loop chain's head.
  for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
            EndIter = LoopChain.end();
       Iter != EndIter; Iter++, TailIter++) {
    // TailIter is used to track the tail of the loop chain if the block we are
    // checking (pointed by Iter) is the head of the chain.
    if (TailIter == LoopChain.end())
      TailIter = LoopChain.begin();

    auto TailBB = *TailIter;

    // Calculate the cost by putting this BB to the top.
    BlockFrequency Cost = 0;

    // If the current BB is the loop header, we need to take into account the
    // cost of the missed fall through edge from outside of the loop to the
    // header.
    if (Iter != LoopChain.begin())
      Cost += HeaderFallThroughCost;

    // Collect the loop exit cost by summing up frequencies of all exit edges
    // except the one from the chain tail.
    for (auto &ExitWithFreq : ExitsWithFreq)
      if (TailBB != ExitWithFreq.first)
        Cost += ExitWithFreq.second;

    // The cost of breaking the once fall-through edge from the tail to the top
    // of the loop chain. Here we need to consider three cases:
    // 1. If the tail node has only one successor, then we will get an
    //    additional jmp instruction. So the cost here is (MisfetchCost +
    //    JumpInstCost) * tail node frequency.
    // 2. If the tail node has two successors, then we may still get an
    //    additional jmp instruction if the layout successor after the loop
    //    chain is not its CFG successor. Note that the more frequently executed
    //    jmp instruction will be put ahead of the other one. Assume the
    //    frequency of those two branches are x and y, where x is the frequency
    //    of the edge to the chain head, then the cost will be
    //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
    // 3. If the tail node has more than two successors (this rarely happens),
    //    we won't consider any additional cost.
    if (TailBB->isSuccessor(*Iter)) {
      auto TailBBFreq = MBFI->getBlockFreq(TailBB);
      if (TailBB->succ_size() == 1)
        Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
                                    MisfetchCost + JumpInstCost);
      else if (TailBB->succ_size() == 2) {
        auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
        auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
        auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
                                  ? TailBBFreq * TailToHeadProb.getCompl()
                                  : TailToHeadFreq;
        Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
                ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
      }
    }

    LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
                      << getBlockName(*Iter)
                      << " to the top: " << Cost.getFrequency() << "\n");

    if (Cost < SmallestRotationCost) {
      SmallestRotationCost = Cost;
      RotationPos = Iter;
    }
  }

  if (RotationPos != LoopChain.end()) {
    LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
                      << " to the top\n");
    std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
  }
}

/// Collect blocks in the given loop that are to be placed.
///
/// When profile data is available, exclude cold blocks from the returned set;
/// otherwise, collect all blocks in the loop.
MachineBlockPlacement::BlockFilterSet
MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
  BlockFilterSet LoopBlockSet;

  // Filter cold blocks off from LoopBlockSet when profile data is available.
  // Collect the sum of frequencies of incoming edges to the loop header from
  // outside. If we treat the loop as a super block, this is the frequency of
  // the loop. Then for each block in the loop, we calculate the ratio between
  // its frequency and the frequency of the loop block. When it is too small,
  // don't add it to the loop chain. If there are outer loops, then this block
  // will be merged into the first outer loop chain for which this block is not
  // cold anymore. This needs precise profile data and we only do this when
  // profile data is available.
  if (F->getFunction().hasProfileData() || ForceLoopColdBlock) {
    BlockFrequency LoopFreq(0);
    for (auto LoopPred : L.getHeader()->predecessors())
      if (!L.contains(LoopPred))
        LoopFreq += MBFI->getBlockFreq(LoopPred) *
                    MBPI->getEdgeProbability(LoopPred, L.getHeader());

    for (MachineBasicBlock *LoopBB : L.getBlocks()) {
      if (LoopBlockSet.count(LoopBB))
        continue;
      auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
      if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
        continue;
      BlockChain *Chain = BlockToChain[LoopBB];
      for (MachineBasicBlock *ChainBB : *Chain)
        LoopBlockSet.insert(ChainBB);
    }
  } else
    LoopBlockSet.insert(L.block_begin(), L.block_end());

  return LoopBlockSet;
}

/// Forms basic block chains from the natural loop structures.
///
/// These chains are designed to preserve the existing *structure* of the code
/// as much as possible. We can then stitch the chains together in a way which
/// both preserves the topological structure and minimizes taken conditional
/// branches.
void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
  // First recurse through any nested loops, building chains for those inner
  // loops.
  for (const MachineLoop *InnerLoop : L)
    buildLoopChains(*InnerLoop);

  assert(BlockWorkList.empty() &&
         "BlockWorkList not empty when starting to build loop chains.");
  assert(EHPadWorkList.empty() &&
         "EHPadWorkList not empty when starting to build loop chains.");
  BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);

  // Check if we have profile data for this function. If yes, we will rotate
  // this loop by modeling costs more precisely which requires the profile data
  // for better layout.
  bool RotateLoopWithProfile =
      ForcePreciseRotationCost ||
      (PreciseRotationCost && F->getFunction().hasProfileData());

  // First check to see if there is an obviously preferable top block for the
  // loop. This will default to the header, but may end up as one of the
  // predecessors to the header if there is one which will result in strictly
  // fewer branches in the loop body.
  MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);

  // If we selected just the header for the loop top, look for a potentially
  // profitable exit block in the event that rotating the loop can eliminate
  // branches by placing an exit edge at the bottom.
  //
  // Loops are processed innermost to uttermost, make sure we clear
  // PreferredLoopExit before processing a new loop.
  PreferredLoopExit = nullptr;
  BlockFrequency ExitFreq;
  if (!RotateLoopWithProfile && LoopTop == L.getHeader())
    PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq);

  BlockChain &LoopChain = *BlockToChain[LoopTop];

  // FIXME: This is a really lame way of walking the chains in the loop: we
  // walk the blocks, and use a set to prevent visiting a particular chain
  // twice.
  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
  assert(LoopChain.UnscheduledPredecessors == 0 &&
         "LoopChain should not have unscheduled predecessors.");
  UpdatedPreds.insert(&LoopChain);

  for (const MachineBasicBlock *LoopBB : LoopBlockSet)
    fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);

  buildChain(LoopTop, LoopChain, &LoopBlockSet);

  if (RotateLoopWithProfile)
    rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
  else
    rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet);

  LLVM_DEBUG({
    // Crash at the end so we get all of the debugging output first.
    bool BadLoop = false;
    if (LoopChain.UnscheduledPredecessors) {
      BadLoop = true;
      dbgs() << "Loop chain contains a block without its preds placed!\n"
             << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
             << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
    }
    for (MachineBasicBlock *ChainBB : LoopChain) {
      dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
      if (!LoopBlockSet.remove(ChainBB)) {
        // We don't mark the loop as bad here because there are real situations
        // where this can occur. For example, with an unanalyzable fallthrough
        // from a loop block to a non-loop block or vice versa.
        dbgs() << "Loop chain contains a block not contained by the loop!\n"
               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
               << "  Bad block:    " << getBlockName(ChainBB) << "\n";
      }
    }

    if (!LoopBlockSet.empty()) {
      BadLoop = true;
      for (const MachineBasicBlock *LoopBB : LoopBlockSet)
        dbgs() << "Loop contains blocks never placed into a chain!\n"
               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
               << "  Bad block:    " << getBlockName(LoopBB) << "\n";
    }
    assert(!BadLoop && "Detected problems with the placement of this loop.");
  });

  BlockWorkList.clear();
  EHPadWorkList.clear();
}

void MachineBlockPlacement::buildCFGChains() {
  // Ensure that every BB in the function has an associated chain to simplify
  // the assumptions of the remaining algorithm.
  SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
  for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
       ++FI) {
    MachineBasicBlock *BB = &*FI;
    BlockChain *Chain =
        new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
    // Also, merge any blocks which we cannot reason about and must preserve
    // the exact fallthrough behavior for.
    while (true) {
      Cond.clear();
      MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
      if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
        break;

      MachineFunction::iterator NextFI = std::next(FI);
      MachineBasicBlock *NextBB = &*NextFI;
      // Ensure that the layout successor is a viable block, as we know that
      // fallthrough is a possibility.
      assert(NextFI != FE && "Can't fallthrough past the last block.");
      LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
                        << getBlockName(BB) << " -> " << getBlockName(NextBB)
                        << "\n");
      Chain->merge(NextBB, nullptr);
#ifndef NDEBUG
      BlocksWithUnanalyzableExits.insert(&*BB);
#endif
      FI = NextFI;
      BB = NextBB;
    }
  }

  // Build any loop-based chains.
  PreferredLoopExit = nullptr;
  for (MachineLoop *L : *MLI)
    buildLoopChains(*L);

  assert(BlockWorkList.empty() &&
         "BlockWorkList should be empty before building final chain.");
  assert(EHPadWorkList.empty() &&
         "EHPadWorkList should be empty before building final chain.");

  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
  for (MachineBasicBlock &MBB : *F)
    fillWorkLists(&MBB, UpdatedPreds);

  BlockChain &FunctionChain = *BlockToChain[&F->front()];
  buildChain(&F->front(), FunctionChain);

#ifndef NDEBUG
  using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>;
#endif
  LLVM_DEBUG({
    // Crash at the end so we get all of the debugging output first.
    bool BadFunc = false;
    FunctionBlockSetType FunctionBlockSet;
    for (MachineBasicBlock &MBB : *F)
      FunctionBlockSet.insert(&MBB);

    for (MachineBasicBlock *ChainBB : FunctionChain)
      if (!FunctionBlockSet.erase(ChainBB)) {
        BadFunc = true;
        dbgs() << "Function chain contains a block not in the function!\n"
               << "  Bad block:    " << getBlockName(ChainBB) << "\n";
      }

    if (!FunctionBlockSet.empty()) {
      BadFunc = true;
      for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
        dbgs() << "Function contains blocks never placed into a chain!\n"
               << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
    }
    assert(!BadFunc && "Detected problems with the block placement.");
  });

  // Remember original layout ordering, so we can update terminators after
  // reordering to point to the original layout successor.
  SmallVector<MachineBasicBlock *, 4> OriginalLayoutSuccessors(
      F->getNumBlockIDs());
  {
    MachineBasicBlock *LastMBB = nullptr;
    for (auto &MBB : *F) {
      if (LastMBB != nullptr)
        OriginalLayoutSuccessors[LastMBB->getNumber()] = &MBB;
      LastMBB = &MBB;
    }
    OriginalLayoutSuccessors[F->back().getNumber()] = nullptr;
  }

  // Splice the blocks into place.
  MachineFunction::iterator InsertPos = F->begin();
  LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n");
  for (MachineBasicBlock *ChainBB : FunctionChain) {
    LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
                                                            : "          ... ")
                      << getBlockName(ChainBB) << "\n");
    if (InsertPos != MachineFunction::iterator(ChainBB))
      F->splice(InsertPos, ChainBB);
    else
      ++InsertPos;

    // Update the terminator of the previous block.
    if (ChainBB == *FunctionChain.begin())
      continue;
    MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));

    // FIXME: It would be awesome of updateTerminator would just return rather
    // than assert when the branch cannot be analyzed in order to remove this
    // boiler plate.
    Cond.clear();
    MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.

#ifndef NDEBUG
    if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
      // Given the exact block placement we chose, we may actually not _need_ to
      // be able to edit PrevBB's terminator sequence, but not being _able_ to
      // do that at this point is a bug.
      assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
              !PrevBB->canFallThrough()) &&
             "Unexpected block with un-analyzable fallthrough!");
      Cond.clear();
      TBB = FBB = nullptr;
    }
#endif

    // The "PrevBB" is not yet updated to reflect current code layout, so,
    //   o. it may fall-through to a block without explicit "goto" instruction
    //      before layout, and no longer fall-through it after layout; or
    //   o. just opposite.
    //
    // analyzeBranch() may return erroneous value for FBB when these two
    // situations take place. For the first scenario FBB is mistakenly set NULL;
    // for the 2nd scenario, the FBB, which is expected to be NULL, is
    // mistakenly pointing to "*BI".
    // Thus, if the future change needs to use FBB before the layout is set, it
    // has to correct FBB first by using the code similar to the following:
    //
    // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
    //   PrevBB->updateTerminator();
    //   Cond.clear();
    //   TBB = FBB = nullptr;
    //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
    //     // FIXME: This should never take place.
    //     TBB = FBB = nullptr;
    //   }
    // }
    if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
      PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
    }
  }

  // Fixup the last block.
  Cond.clear();
  MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
  if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) {
    MachineBasicBlock *PrevBB = &F->back();
    PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
  }

  BlockWorkList.clear();
  EHPadWorkList.clear();
}

void MachineBlockPlacement::optimizeBranches() {
  BlockChain &FunctionChain = *BlockToChain[&F->front()];
  SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.

  // Now that all the basic blocks in the chain have the proper layout,
  // make a final call to analyzeBranch with AllowModify set.
  // Indeed, the target may be able to optimize the branches in a way we
  // cannot because all branches may not be analyzable.
  // E.g., the target may be able to remove an unconditional branch to
  // a fallthrough when it occurs after predicated terminators.
  for (MachineBasicBlock *ChainBB : FunctionChain) {
    Cond.clear();
    MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
    if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
      // If PrevBB has a two-way branch, try to re-order the branches
      // such that we branch to the successor with higher probability first.
      if (TBB && !Cond.empty() && FBB &&
          MBPI->getEdgeProbability(ChainBB, FBB) >
              MBPI->getEdgeProbability(ChainBB, TBB) &&
          !TII->reverseBranchCondition(Cond)) {
        LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
                          << getBlockName(ChainBB) << "\n");
        LLVM_DEBUG(dbgs() << "    Edge probability: "
                          << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
                          << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
        DebugLoc dl; // FIXME: this is nowhere
        TII->removeBranch(*ChainBB);
        TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
      }
    }
  }
}

void MachineBlockPlacement::alignBlocks() {
  // Walk through the backedges of the function now that we have fully laid out
  // the basic blocks and align the destination of each backedge. We don't rely
  // exclusively on the loop info here so that we can align backedges in
  // unnatural CFGs and backedges that were introduced purely because of the
  // loop rotations done during this layout pass.
  if (F->getFunction().hasMinSize() ||
      (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize()))
    return;
  BlockChain &FunctionChain = *BlockToChain[&F->front()];
  if (FunctionChain.begin() == FunctionChain.end())
    return; // Empty chain.

  const BranchProbability ColdProb(1, 5); // 20%
  BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
  BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
  for (MachineBasicBlock *ChainBB : FunctionChain) {
    if (ChainBB == *FunctionChain.begin())
      continue;

    // Don't align non-looping basic blocks. These are unlikely to execute
    // enough times to matter in practice. Note that we'll still handle
    // unnatural CFGs inside of a natural outer loop (the common case) and
    // rotated loops.
    MachineLoop *L = MLI->getLoopFor(ChainBB);
    if (!L)
      continue;

    const Align Align = TLI->getPrefLoopAlignment(L);
    if (Align == 1)
      continue; // Don't care about loop alignment.

    // If the block is cold relative to the function entry don't waste space
    // aligning it.
    BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
    if (Freq < WeightedEntryFreq)
      continue;

    // If the block is cold relative to its loop header, don't align it
    // regardless of what edges into the block exist.
    MachineBasicBlock *LoopHeader = L->getHeader();
    BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
    if (Freq < (LoopHeaderFreq * ColdProb))
      continue;

    // If the global profiles indicates so, don't align it.
    if (llvm::shouldOptimizeForSize(ChainBB, PSI, MBFI.get()) &&
        !TLI->alignLoopsWithOptSize())
      continue;

    // Check for the existence of a non-layout predecessor which would benefit
    // from aligning this block.
    MachineBasicBlock *LayoutPred =
        &*std::prev(MachineFunction::iterator(ChainBB));

    // Force alignment if all the predecessors are jumps. We already checked
    // that the block isn't cold above.
    if (!LayoutPred->isSuccessor(ChainBB)) {
      ChainBB->setAlignment(Align);
      continue;
    }

    // Align this block if the layout predecessor's edge into this block is
    // cold relative to the block. When this is true, other predecessors make up
    // all of the hot entries into the block and thus alignment is likely to be
    // important.
    BranchProbability LayoutProb =
        MBPI->getEdgeProbability(LayoutPred, ChainBB);
    BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
    if (LayoutEdgeFreq <= (Freq * ColdProb))
      ChainBB->setAlignment(Align);
  }
}

/// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
/// it was duplicated into its chain predecessor and removed.
/// \p BB    - Basic block that may be duplicated.
///
/// \p LPred - Chosen layout predecessor of \p BB.
///            Updated to be the chain end if LPred is removed.
/// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
/// \p BlockFilter - Set of blocks that belong to the loop being laid out.
///                  Used to identify which blocks to update predecessor
///                  counts.
/// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
///                          chosen in the given order due to unnatural CFG
///                          only needed if \p BB is removed and
///                          \p PrevUnplacedBlockIt pointed to \p BB.
/// @return true if \p BB was removed.
bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
    MachineBasicBlock *BB, MachineBasicBlock *&LPred,
    const MachineBasicBlock *LoopHeaderBB,
    BlockChain &Chain, BlockFilterSet *BlockFilter,
    MachineFunction::iterator &PrevUnplacedBlockIt) {
  bool Removed, DuplicatedToLPred;
  bool DuplicatedToOriginalLPred;
  Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
                                    PrevUnplacedBlockIt,
                                    DuplicatedToLPred);
  if (!Removed)
    return false;
  DuplicatedToOriginalLPred = DuplicatedToLPred;
  // Iteratively try to duplicate again. It can happen that a block that is
  // duplicated into is still small enough to be duplicated again.
  // No need to call markBlockSuccessors in this case, as the blocks being
  // duplicated from here on are already scheduled.
  while (DuplicatedToLPred && Removed) {
    MachineBasicBlock *DupBB, *DupPred;
    // The removal callback causes Chain.end() to be updated when a block is
    // removed. On the first pass through the loop, the chain end should be the
    // same as it was on function entry. On subsequent passes, because we are
    // duplicating the block at the end of the chain, if it is removed the
    // chain will have shrunk by one block.
    BlockChain::iterator ChainEnd = Chain.end();
    DupBB = *(--ChainEnd);
    // Now try to duplicate again.
    if (ChainEnd == Chain.begin())
      break;
    DupPred = *std::prev(ChainEnd);
    Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
                                      PrevUnplacedBlockIt,
                                      DuplicatedToLPred);
  }
  // If BB was duplicated into LPred, it is now scheduled. But because it was
  // removed, markChainSuccessors won't be called for its chain. Instead we
  // call markBlockSuccessors for LPred to achieve the same effect. This must go
  // at the end because repeating the tail duplication can increase the number
  // of unscheduled predecessors.
  LPred = *std::prev(Chain.end());
  if (DuplicatedToOriginalLPred)
    markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
  return true;
}

/// Tail duplicate \p BB into (some) predecessors if profitable.
/// \p BB    - Basic block that may be duplicated
/// \p LPred - Chosen layout predecessor of \p BB
/// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
/// \p BlockFilter - Set of blocks that belong to the loop being laid out.
///                  Used to identify which blocks to update predecessor
///                  counts.
/// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
///                          chosen in the given order due to unnatural CFG
///                          only needed if \p BB is removed and
///                          \p PrevUnplacedBlockIt pointed to \p BB.
/// \p DuplicatedToLPred - True if the block was duplicated into LPred.
/// \return  - True if the block was duplicated into all preds and removed.
bool MachineBlockPlacement::maybeTailDuplicateBlock(
    MachineBasicBlock *BB, MachineBasicBlock *LPred,
    BlockChain &Chain, BlockFilterSet *BlockFilter,
    MachineFunction::iterator &PrevUnplacedBlockIt,
    bool &DuplicatedToLPred) {
  DuplicatedToLPred = false;
  if (!shouldTailDuplicate(BB))
    return false;

  LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber()
                    << "\n");

  // This has to be a callback because none of it can be done after
  // BB is deleted.
  bool Removed = false;
  auto RemovalCallback =
      [&](MachineBasicBlock *RemBB) {
        // Signal to outer function
        Removed = true;

        // Conservative default.
        bool InWorkList = true;
        // Remove from the Chain and Chain Map
        if (BlockToChain.count(RemBB)) {
          BlockChain *Chain = BlockToChain[RemBB];
          InWorkList = Chain->UnscheduledPredecessors == 0;
          Chain->remove(RemBB);
          BlockToChain.erase(RemBB);
        }

        // Handle the unplaced block iterator
        if (&(*PrevUnplacedBlockIt) == RemBB) {
          PrevUnplacedBlockIt++;
        }

        // Handle the Work Lists
        if (InWorkList) {
          SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
          if (RemBB->isEHPad())
            RemoveList = EHPadWorkList;
          llvm::erase_value(RemoveList, RemBB);
        }

        // Handle the filter set
        if (BlockFilter) {
          BlockFilter->remove(RemBB);
        }

        // Remove the block from loop info.
        MLI->removeBlock(RemBB);
        if (RemBB == PreferredLoopExit)
          PreferredLoopExit = nullptr;

        LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
                          << getBlockName(RemBB) << "\n");
      };
  auto RemovalCallbackRef =
      function_ref<void(MachineBasicBlock*)>(RemovalCallback);

  SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
  bool IsSimple = TailDup.isSimpleBB(BB);
  SmallVector<MachineBasicBlock *, 8> CandidatePreds;
  SmallVectorImpl<MachineBasicBlock *> *CandidatePtr = nullptr;
  if (F->getFunction().hasProfileData()) {
    // We can do partial duplication with precise profile information.
    findDuplicateCandidates(CandidatePreds, BB, BlockFilter);
    if (CandidatePreds.size() == 0)
      return false;
    if (CandidatePreds.size() < BB->pred_size())
      CandidatePtr = &CandidatePreds;
  }
  TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, &DuplicatedPreds,
                                 &RemovalCallbackRef, CandidatePtr);

  // Update UnscheduledPredecessors to reflect tail-duplication.
  DuplicatedToLPred = false;
  for (MachineBasicBlock *Pred : DuplicatedPreds) {
    // We're only looking for unscheduled predecessors that match the filter.
    BlockChain* PredChain = BlockToChain[Pred];
    if (Pred == LPred)
      DuplicatedToLPred = true;
    if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
        || PredChain == &Chain)
      continue;
    for (MachineBasicBlock *NewSucc : Pred->successors()) {
      if (BlockFilter && !BlockFilter->count(NewSucc))
        continue;
      BlockChain *NewChain = BlockToChain[NewSucc];
      if (NewChain != &Chain && NewChain != PredChain)
        NewChain->UnscheduledPredecessors++;
    }
  }
  return Removed;
}

// Count the number of actual machine instructions.
static uint64_t countMBBInstruction(MachineBasicBlock *MBB) {
  uint64_t InstrCount = 0;
  for (MachineInstr &MI : *MBB) {
    if (!MI.isPHI() && !MI.isMetaInstruction())
      InstrCount += 1;
  }
  return InstrCount;
}

// The size cost of duplication is the instruction size of the duplicated block.
// So we should scale the threshold accordingly. But the instruction size is not
// available on all targets, so we use the number of instructions instead.
BlockFrequency MachineBlockPlacement::scaleThreshold(MachineBasicBlock *BB) {
  return DupThreshold.getFrequency() * countMBBInstruction(BB);
}

// Returns true if BB is Pred's best successor.
bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock *BB,
                                            MachineBasicBlock *Pred,
                                            BlockFilterSet *BlockFilter) {
  if (BB == Pred)
    return false;
  if (BlockFilter && !BlockFilter->count(Pred))
    return false;
  BlockChain *PredChain = BlockToChain[Pred];
  if (PredChain && (Pred != *std::prev(PredChain->end())))
    return false;

  // Find the successor with largest probability excluding BB.
  BranchProbability BestProb = BranchProbability::getZero();
  for (MachineBasicBlock *Succ : Pred->successors())
    if (Succ != BB) {
      if (BlockFilter && !BlockFilter->count(Succ))
        continue;
      BlockChain *SuccChain = BlockToChain[Succ];
      if (SuccChain && (Succ != *SuccChain->begin()))
        continue;
      BranchProbability SuccProb = MBPI->getEdgeProbability(Pred, Succ);
      if (SuccProb > BestProb)
        BestProb = SuccProb;
    }

  BranchProbability BBProb = MBPI->getEdgeProbability(Pred, BB);
  if (BBProb <= BestProb)
    return false;

  // Compute the number of reduced taken branches if Pred falls through to BB
  // instead of another successor. Then compare it with threshold.
  BlockFrequency PredFreq = getBlockCountOrFrequency(Pred);
  BlockFrequency Gain = PredFreq * (BBProb - BestProb);
  return Gain > scaleThreshold(BB);
}

// Find out the predecessors of BB and BB can be beneficially duplicated into
// them.
void MachineBlockPlacement::findDuplicateCandidates(
    SmallVectorImpl<MachineBasicBlock *> &Candidates,
    MachineBasicBlock *BB,
    BlockFilterSet *BlockFilter) {
  MachineBasicBlock *Fallthrough = nullptr;
  BranchProbability DefaultBranchProb = BranchProbability::getZero();
  BlockFrequency BBDupThreshold(scaleThreshold(BB));
  SmallVector<MachineBasicBlock *, 8> Preds(BB->predecessors());
  SmallVector<MachineBasicBlock *, 8> Succs(BB->successors());

  // Sort for highest frequency.
  auto CmpSucc = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
    return MBPI->getEdgeProbability(BB, A) > MBPI->getEdgeProbability(BB, B);
  };
  auto CmpPred = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
    return MBFI->getBlockFreq(A) > MBFI->getBlockFreq(B);
  };
  llvm::stable_sort(Succs, CmpSucc);
  llvm::stable_sort(Preds, CmpPred);

  auto SuccIt = Succs.begin();
  if (SuccIt != Succs.end()) {
    DefaultBranchProb = MBPI->getEdgeProbability(BB, *SuccIt).getCompl();
  }

  // For each predecessors of BB, compute the benefit of duplicating BB,
  // if it is larger than the threshold, add it into Candidates.
  //
  // If we have following control flow.
  //
  //     PB1 PB2 PB3 PB4
  //      \   |  /    /\
  //       \  | /    /  \
  //        \ |/    /    \
  //         BB----/     OB
  //         /\
  //        /  \
  //      SB1 SB2
  //
  // And it can be partially duplicated as
  //
  //   PB2+BB
  //      |  PB1 PB3 PB4
  //      |   |  /    /\
  //      |   | /    /  \
  //      |   |/    /    \
  //      |  BB----/     OB
  //      |\ /|
  //      | X |
  //      |/ \|
  //     SB2 SB1
  //
  // The benefit of duplicating into a predecessor is defined as
  //         Orig_taken_branch - Duplicated_taken_branch
  //
  // The Orig_taken_branch is computed with the assumption that predecessor
  // jumps to BB and the most possible successor is laid out after BB.
  //
  // The Duplicated_taken_branch is computed with the assumption that BB is
  // duplicated into PB, and one successor is layout after it (SB1 for PB1 and
  // SB2 for PB2 in our case). If there is no available successor, the combined
  // block jumps to all BB's successor, like PB3 in this example.
  //
  // If a predecessor has multiple successors, so BB can't be duplicated into
  // it. But it can beneficially fall through to BB, and duplicate BB into other
  // predecessors.
  for (MachineBasicBlock *Pred : Preds) {
    BlockFrequency PredFreq = getBlockCountOrFrequency(Pred);

    if (!TailDup.canTailDuplicate(BB, Pred)) {
      // BB can't be duplicated into Pred, but it is possible to be layout
      // below Pred.
      if (!Fallthrough && isBestSuccessor(BB, Pred, BlockFilter)) {
        Fallthrough = Pred;
        if (SuccIt != Succs.end())
          SuccIt++;
      }
      continue;
    }

    BlockFrequency OrigCost = PredFreq + PredFreq * DefaultBranchProb;
    BlockFrequency DupCost;
    if (SuccIt == Succs.end()) {
      // Jump to all successors;
      if (Succs.size() > 0)
        DupCost += PredFreq;
    } else {
      // Fallthrough to *SuccIt, jump to all other successors;
      DupCost += PredFreq;
      DupCost -= PredFreq * MBPI->getEdgeProbability(BB, *SuccIt);
    }

    assert(OrigCost >= DupCost);
    OrigCost -= DupCost;
    if (OrigCost > BBDupThreshold) {
      Candidates.push_back(Pred);
      if (SuccIt != Succs.end())
        SuccIt++;
    }
  }

  // No predecessors can optimally fallthrough to BB.
  // So we can change one duplication into fallthrough.
  if (!Fallthrough) {
    if ((Candidates.size() < Preds.size()) && (Candidates.size() > 0)) {
      Candidates[0] = Candidates.back();
      Candidates.pop_back();
    }
  }
}

void MachineBlockPlacement::initDupThreshold() {
  DupThreshold = 0;
  if (!F->getFunction().hasProfileData())
    return;

  // We prefer to use prifile count.
  uint64_t HotThreshold = PSI->getOrCompHotCountThreshold();
  if (HotThreshold != UINT64_MAX) {
    UseProfileCount = true;
    DupThreshold = HotThreshold * TailDupProfilePercentThreshold / 100;
    return;
  }

  // Profile count is not available, we can use block frequency instead.
  BlockFrequency MaxFreq = 0;
  for (MachineBasicBlock &MBB : *F) {
    BlockFrequency Freq = MBFI->getBlockFreq(&MBB);
    if (Freq > MaxFreq)
      MaxFreq = Freq;
  }

  BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
  DupThreshold = MaxFreq * ThresholdProb;
  UseProfileCount = false;
}

bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;

  // Check for single-block functions and skip them.
  if (std::next(MF.begin()) == MF.end())
    return false;

  F = &MF;
  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
  MBFI = std::make_unique<MBFIWrapper>(
      getAnalysis<MachineBlockFrequencyInfo>());
  MLI = &getAnalysis<MachineLoopInfo>();
  TII = MF.getSubtarget().getInstrInfo();
  TLI = MF.getSubtarget().getTargetLowering();
  MPDT = nullptr;
  PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();

  initDupThreshold();

  // Initialize PreferredLoopExit to nullptr here since it may never be set if
  // there are no MachineLoops.
  PreferredLoopExit = nullptr;

  assert(BlockToChain.empty() &&
         "BlockToChain map should be empty before starting placement.");
  assert(ComputedEdges.empty() &&
         "Computed Edge map should be empty before starting placement.");

  unsigned TailDupSize = TailDupPlacementThreshold;
  // If only the aggressive threshold is explicitly set, use it.
  if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
      TailDupPlacementThreshold.getNumOccurrences() == 0)
    TailDupSize = TailDupPlacementAggressiveThreshold;

  TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
  // For aggressive optimization, we can adjust some thresholds to be less
  // conservative.
  if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) {
    // At O3 we should be more willing to copy blocks for tail duplication. This
    // increases size pressure, so we only do it at O3
    // Do this unless only the regular threshold is explicitly set.
    if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
        TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
      TailDupSize = TailDupPlacementAggressiveThreshold;
  }

  if (allowTailDupPlacement()) {
    MPDT = &getAnalysis<MachinePostDominatorTree>();
    bool OptForSize = MF.getFunction().hasOptSize() ||
                      llvm::shouldOptimizeForSize(&MF, PSI, &MBFI->getMBFI());
    if (OptForSize)
      TailDupSize = 1;
    bool PreRegAlloc = false;
    TailDup.initMF(MF, PreRegAlloc, MBPI, MBFI.get(), PSI,
                   /* LayoutMode */ true, TailDupSize);
    precomputeTriangleChains();
  }

  buildCFGChains();

  // Changing the layout can create new tail merging opportunities.
  // TailMerge can create jump into if branches that make CFG irreducible for
  // HW that requires structured CFG.
  bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
                         PassConfig->getEnableTailMerge() &&
                         BranchFoldPlacement;
  // No tail merging opportunities if the block number is less than four.
  if (MF.size() > 3 && EnableTailMerge) {
    unsigned TailMergeSize = TailDupSize + 1;
    BranchFolder BF(/*DefaultEnableTailMerge=*/true, /*CommonHoist=*/false,
                    *MBFI, *MBPI, PSI, TailMergeSize);

    if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), MLI,
                            /*AfterPlacement=*/true)) {
      // Redo the layout if tail merging creates/removes/moves blocks.
      BlockToChain.clear();
      ComputedEdges.clear();
      // Must redo the post-dominator tree if blocks were changed.
      if (MPDT)
        MPDT->runOnMachineFunction(MF);
      ChainAllocator.DestroyAll();
      buildCFGChains();
    }
  }

  optimizeBranches();
  alignBlocks();

  BlockToChain.clear();
  ComputedEdges.clear();
  ChainAllocator.DestroyAll();

  if (AlignAllBlock)
    // Align all of the blocks in the function to a specific alignment.
    for (MachineBasicBlock &MBB : MF)
      MBB.setAlignment(Align(1ULL << AlignAllBlock));
  else if (AlignAllNonFallThruBlocks) {
    // Align all of the blocks that have no fall-through predecessors to a
    // specific alignment.
    for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
      auto LayoutPred = std::prev(MBI);
      if (!LayoutPred->isSuccessor(&*MBI))
        MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks));
    }
  }
  if (ViewBlockLayoutWithBFI != GVDT_None &&
      (ViewBlockFreqFuncName.empty() ||
       F->getFunction().getName().equals(ViewBlockFreqFuncName))) {
    MBFI->view("MBP." + MF.getName(), false);
  }


  // We always return true as we have no way to track whether the final order
  // differs from the original order.
  return true;
}

namespace {

/// A pass to compute block placement statistics.
///
/// A separate pass to compute interesting statistics for evaluating block
/// placement. This is separate from the actual placement pass so that they can
/// be computed in the absence of any placement transformations or when using
/// alternative placement strategies.
class MachineBlockPlacementStats : public MachineFunctionPass {
  /// A handle to the branch probability pass.
  const MachineBranchProbabilityInfo *MBPI;

  /// A handle to the function-wide block frequency pass.
  const MachineBlockFrequencyInfo *MBFI;

public:
  static char ID; // Pass identification, replacement for typeid

  MachineBlockPlacementStats() : MachineFunctionPass(ID) {
    initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
  }

  bool runOnMachineFunction(MachineFunction &F) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<MachineBranchProbabilityInfo>();
    AU.addRequired<MachineBlockFrequencyInfo>();
    AU.setPreservesAll();
    MachineFunctionPass::getAnalysisUsage(AU);
  }
};

} // end anonymous namespace

char MachineBlockPlacementStats::ID = 0;

char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;

INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
                      "Basic Block Placement Stats", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
                    "Basic Block Placement Stats", false, false)

bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
  // Check for single-block functions and skip them.
  if (std::next(F.begin()) == F.end())
    return false;

  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();

  for (MachineBasicBlock &MBB : F) {
    BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
    Statistic &NumBranches =
        (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
    Statistic &BranchTakenFreq =
        (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
    for (MachineBasicBlock *Succ : MBB.successors()) {
      // Skip if this successor is a fallthrough.
      if (MBB.isLayoutSuccessor(Succ))
        continue;

      BlockFrequency EdgeFreq =
          BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
      ++NumBranches;
      BranchTakenFreq += EdgeFreq.getFrequency();
    }
  }

  return false;
}