aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/CodeGen/InterleavedAccessPass.cpp
blob: feb71e2221aa273059373f870bdbbe46a9a36a76 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
//===- InterleavedAccessPass.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Interleaved Access pass, which identifies
// interleaved memory accesses and transforms them into target specific
// intrinsics.
//
// An interleaved load reads data from memory into several vectors, with
// DE-interleaving the data on a factor. An interleaved store writes several
// vectors to memory with RE-interleaving the data on a factor.
//
// As interleaved accesses are difficult to identified in CodeGen (mainly
// because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
// IR), we identify and transform them to intrinsics in this pass so the
// intrinsics can be easily matched into target specific instructions later in
// CodeGen.
//
// E.g. An interleaved load (Factor = 2):
//        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
//        %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6> 
//        %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7> 
//
// It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
// intrinsic in ARM backend.
//
// In X86, this can be further optimized into a set of target
// specific loads followed by an optimized sequence of shuffles.
//
// E.g. An interleaved store (Factor = 3):
//        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
//                                    <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
//        store <12 x i32> %i.vec, <12 x i32>* %ptr
//
// It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
// intrinsic in ARM backend.
//
// Similarly, a set of interleaved stores can be transformed into an optimized
// sequence of shuffles followed by a set of target specific stores for X86.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/Local.h" 
#include <cassert>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "interleaved-access"

static cl::opt<bool> LowerInterleavedAccesses(
    "lower-interleaved-accesses",
    cl::desc("Enable lowering interleaved accesses to intrinsics"),
    cl::init(true), cl::Hidden);

namespace {

class InterleavedAccess : public FunctionPass {
public:
  static char ID;

  InterleavedAccess() : FunctionPass(ID) {
    initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
  }

  StringRef getPassName() const override { return "Interleaved Access Pass"; }

  bool runOnFunction(Function &F) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
  }

private:
  DominatorTree *DT = nullptr;
  const TargetLowering *TLI = nullptr;

  /// The maximum supported interleave factor.
  unsigned MaxFactor;

  /// Transform an interleaved load into target specific intrinsics.
  bool lowerInterleavedLoad(LoadInst *LI,
                            SmallVector<Instruction *, 32> &DeadInsts);

  /// Transform an interleaved store into target specific intrinsics.
  bool lowerInterleavedStore(StoreInst *SI,
                             SmallVector<Instruction *, 32> &DeadInsts);

  /// Returns true if the uses of an interleaved load by the
  /// extractelement instructions in \p Extracts can be replaced by uses of the
  /// shufflevector instructions in \p Shuffles instead. If so, the necessary
  /// replacements are also performed.
  bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts,
                          ArrayRef<ShuffleVectorInst *> Shuffles);
 
  /// Given a number of shuffles of the form shuffle(binop(x,y)), convert them 
  /// to binop(shuffle(x), shuffle(y)) to allow the formation of an 
  /// interleaving load. Any newly created shuffles that operate on \p LI will 
  /// be added to \p Shuffles. Returns true, if any changes to the IR have been 
  /// made. 
  bool replaceBinOpShuffles(ArrayRef<ShuffleVectorInst *> BinOpShuffles, 
                            SmallVectorImpl<ShuffleVectorInst *> &Shuffles, 
                            LoadInst *LI); 
};

} // end anonymous namespace.

char InterleavedAccess::ID = 0;

INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE,
    "Lower interleaved memory accesses to target specific intrinsics", false,
    false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE,
    "Lower interleaved memory accesses to target specific intrinsics", false,
    false)

FunctionPass *llvm::createInterleavedAccessPass() {
  return new InterleavedAccess();
}

/// Check if the mask is a DE-interleave mask of the given factor
/// \p Factor like:
///     <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
                                       unsigned &Index) {
  // Check all potential start indices from 0 to (Factor - 1).
  for (Index = 0; Index < Factor; Index++) {
    unsigned i = 0;

    // Check that elements are in ascending order by Factor. Ignore undef
    // elements.
    for (; i < Mask.size(); i++)
      if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor)
        break;

    if (i == Mask.size())
      return true;
  }

  return false;
}

/// Check if the mask is a DE-interleave mask for an interleaved load.
///
/// E.g. DE-interleave masks (Factor = 2) could be:
///     <0, 2, 4, 6>    (mask of index 0 to extract even elements)
///     <1, 3, 5, 7>    (mask of index 1 to extract odd elements)
static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
                               unsigned &Index, unsigned MaxFactor,
                               unsigned NumLoadElements) {
  if (Mask.size() < 2)
    return false;

  // Check potential Factors.
  for (Factor = 2; Factor <= MaxFactor; Factor++) {
    // Make sure we don't produce a load wider than the input load.
    if (Mask.size() * Factor > NumLoadElements)
      return false;
    if (isDeInterleaveMaskOfFactor(Mask, Factor, Index))
      return true;
  }

  return false;
}

/// Check if the mask can be used in an interleaved store.
//
/// It checks for a more general pattern than the RE-interleave mask.
/// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
/// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
/// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
/// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
///
/// The particular case of an RE-interleave mask is:
/// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
/// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
                               unsigned MaxFactor, unsigned OpNumElts) {
  unsigned NumElts = Mask.size();
  if (NumElts < 4)
    return false;

  // Check potential Factors.
  for (Factor = 2; Factor <= MaxFactor; Factor++) {
    if (NumElts % Factor)
      continue;

    unsigned LaneLen = NumElts / Factor;
    if (!isPowerOf2_32(LaneLen))
      continue;

    // Check whether each element matches the general interleaved rule.
    // Ignore undef elements, as long as the defined elements match the rule.
    // Outer loop processes all factors (x, y, z in the above example)
    unsigned I = 0, J;
    for (; I < Factor; I++) {
      unsigned SavedLaneValue;
      unsigned SavedNoUndefs = 0;

      // Inner loop processes consecutive accesses (x, x+1... in the example)
      for (J = 0; J < LaneLen - 1; J++) {
        // Lane computes x's position in the Mask
        unsigned Lane = J * Factor + I;
        unsigned NextLane = Lane + Factor;
        int LaneValue = Mask[Lane];
        int NextLaneValue = Mask[NextLane];

        // If both are defined, values must be sequential
        if (LaneValue >= 0 && NextLaneValue >= 0 &&
            LaneValue + 1 != NextLaneValue)
          break;

        // If the next value is undef, save the current one as reference
        if (LaneValue >= 0 && NextLaneValue < 0) {
          SavedLaneValue = LaneValue;
          SavedNoUndefs = 1;
        }

        // Undefs are allowed, but defined elements must still be consecutive:
        // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
        // Verify this by storing the last non-undef followed by an undef
        // Check that following non-undef masks are incremented with the
        // corresponding distance.
        if (SavedNoUndefs > 0 && LaneValue < 0) {
          SavedNoUndefs++;
          if (NextLaneValue >= 0 &&
              SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue)
            break;
        }
      }

      if (J < LaneLen - 1)
        break;

      int StartMask = 0;
      if (Mask[I] >= 0) {
        // Check that the start of the I range (J=0) is greater than 0
        StartMask = Mask[I];
      } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) {
        // StartMask defined by the last value in lane
        StartMask = Mask[(LaneLen - 1) * Factor + I] - J;
      } else if (SavedNoUndefs > 0) {
        // StartMask defined by some non-zero value in the j loop
        StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
      }
      // else StartMask remains set to 0, i.e. all elements are undefs

      if (StartMask < 0)
        break;
      // We must stay within the vectors; This case can happen with undefs.
      if (StartMask + LaneLen > OpNumElts*2)
        break;
    }

    // Found an interleaved mask of current factor.
    if (I == Factor)
      return true;
  }

  return false;
}

bool InterleavedAccess::lowerInterleavedLoad(
    LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
  if (!LI->isSimple() || isa<ScalableVectorType>(LI->getType()))
    return false;

  // Check if all users of this load are shufflevectors. If we encounter any 
  // users that are extractelement instructions or binary operators, we save 
  // them to later check if they can be modified to extract from one of the 
  // shufflevectors instead of the load. 
 
  SmallVector<ShuffleVectorInst *, 4> Shuffles;
  SmallVector<ExtractElementInst *, 4> Extracts;
  // BinOpShuffles need to be handled a single time in case both operands of the 
  // binop are the same load. 
  SmallSetVector<ShuffleVectorInst *, 4> BinOpShuffles; 

  for (auto *User : LI->users()) { 
    auto *Extract = dyn_cast<ExtractElementInst>(User); 
    if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) {
      Extracts.push_back(Extract);
      continue;
    }
    auto *BI = dyn_cast<BinaryOperator>(User); 
    if (BI && BI->hasOneUse()) { 
      if (auto *SVI = dyn_cast<ShuffleVectorInst>(*BI->user_begin())) { 
        BinOpShuffles.insert(SVI); 
        continue; 
      } 
    } 
    auto *SVI = dyn_cast<ShuffleVectorInst>(User); 
    if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
      return false;

    Shuffles.push_back(SVI);
  }

  if (Shuffles.empty() && BinOpShuffles.empty()) 
    return false;

  unsigned Factor, Index;

  unsigned NumLoadElements =
      cast<FixedVectorType>(LI->getType())->getNumElements();
  auto *FirstSVI = Shuffles.size() > 0 ? Shuffles[0] : BinOpShuffles[0]; 
  // Check if the first shufflevector is DE-interleave shuffle.
  if (!isDeInterleaveMask(FirstSVI->getShuffleMask(), Factor, Index, MaxFactor, 
                          NumLoadElements)) 
    return false;

  // Holds the corresponding index for each DE-interleave shuffle.
  SmallVector<unsigned, 4> Indices;

  Type *VecTy = FirstSVI->getType(); 

  // Check if other shufflevectors are also DE-interleaved of the same type
  // and factor as the first shufflevector.
  for (auto *Shuffle : Shuffles) { 
    if (Shuffle->getType() != VecTy) 
      return false;
    if (!isDeInterleaveMaskOfFactor(Shuffle->getShuffleMask(), Factor, 
                                    Index))
      return false;

    assert(Shuffle->getShuffleMask().size() <= NumLoadElements); 
    Indices.push_back(Index);
  }
  for (auto *Shuffle : BinOpShuffles) { 
    if (Shuffle->getType() != VecTy) 
      return false; 
    if (!isDeInterleaveMaskOfFactor(Shuffle->getShuffleMask(), Factor, 
                                    Index)) 
      return false; 

    assert(Shuffle->getShuffleMask().size() <= NumLoadElements); 
 
    if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(0) == LI) 
      Indices.push_back(Index); 
    if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(1) == LI) 
      Indices.push_back(Index); 
  } 
 
  // Try and modify users of the load that are extractelement instructions to
  // use the shufflevector instructions instead of the load.
  if (!tryReplaceExtracts(Extracts, Shuffles))
    return false;

  bool BinOpShuffleChanged = 
      replaceBinOpShuffles(BinOpShuffles.getArrayRef(), Shuffles, LI); 
 
  LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");

  // Try to create target specific intrinsics to replace the load and shuffles.
  if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) { 
    // If Extracts is not empty, tryReplaceExtracts made changes earlier. 
    return !Extracts.empty() || BinOpShuffleChanged; 
  } 

  for (auto SVI : Shuffles)
    DeadInsts.push_back(SVI);

  DeadInsts.push_back(LI);
  return true;
}

bool InterleavedAccess::replaceBinOpShuffles( 
    ArrayRef<ShuffleVectorInst *> BinOpShuffles, 
    SmallVectorImpl<ShuffleVectorInst *> &Shuffles, LoadInst *LI) { 
  for (auto *SVI : BinOpShuffles) { 
    BinaryOperator *BI = cast<BinaryOperator>(SVI->getOperand(0)); 
    Type *BIOp0Ty = BI->getOperand(0)->getType(); 
    ArrayRef<int> Mask = SVI->getShuffleMask(); 
    assert(all_of(Mask, [&](int Idx) { 
      return Idx < (int)cast<FixedVectorType>(BIOp0Ty)->getNumElements(); 
    })); 
 
    auto *NewSVI1 = 
        new ShuffleVectorInst(BI->getOperand(0), PoisonValue::get(BIOp0Ty), 
                              Mask, SVI->getName(), SVI); 
    auto *NewSVI2 = new ShuffleVectorInst( 
        BI->getOperand(1), PoisonValue::get(BI->getOperand(1)->getType()), Mask, 
        SVI->getName(), SVI); 
    Value *NewBI = BinaryOperator::Create(BI->getOpcode(), NewSVI1, NewSVI2, 
                                          BI->getName(), SVI); 
    SVI->replaceAllUsesWith(NewBI); 
    LLVM_DEBUG(dbgs() << "  Replaced: " << *BI << "\n    And   : " << *SVI 
                      << "\n  With    : " << *NewSVI1 << "\n    And   : " 
                      << *NewSVI2 << "\n    And   : " << *NewBI << "\n"); 
    RecursivelyDeleteTriviallyDeadInstructions(SVI); 
    if (NewSVI1->getOperand(0) == LI) 
      Shuffles.push_back(NewSVI1); 
    if (NewSVI2->getOperand(0) == LI) 
      Shuffles.push_back(NewSVI2); 
  } 
 
  return !BinOpShuffles.empty(); 
} 
 
bool InterleavedAccess::tryReplaceExtracts(
    ArrayRef<ExtractElementInst *> Extracts,
    ArrayRef<ShuffleVectorInst *> Shuffles) {
  // If there aren't any extractelement instructions to modify, there's nothing
  // to do.
  if (Extracts.empty())
    return true;

  // Maps extractelement instructions to vector-index pairs. The extractlement
  // instructions will be modified to use the new vector and index operands.
  DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap;

  for (auto *Extract : Extracts) {
    // The vector index that is extracted.
    auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand());
    auto Index = IndexOperand->getSExtValue();

    // Look for a suitable shufflevector instruction. The goal is to modify the
    // extractelement instruction (which uses an interleaved load) to use one
    // of the shufflevector instructions instead of the load.
    for (auto *Shuffle : Shuffles) {
      // If the shufflevector instruction doesn't dominate the extract, we
      // can't create a use of it.
      if (!DT->dominates(Shuffle, Extract))
        continue;

      // Inspect the indices of the shufflevector instruction. If the shuffle
      // selects the same index that is extracted, we can modify the
      // extractelement instruction.
      SmallVector<int, 4> Indices;
      Shuffle->getShuffleMask(Indices);
      for (unsigned I = 0; I < Indices.size(); ++I)
        if (Indices[I] == Index) {
          assert(Extract->getOperand(0) == Shuffle->getOperand(0) &&
                 "Vector operations do not match");
          ReplacementMap[Extract] = std::make_pair(Shuffle, I);
          break;
        }

      // If we found a suitable shufflevector instruction, stop looking.
      if (ReplacementMap.count(Extract))
        break;
    }

    // If we did not find a suitable shufflevector instruction, the
    // extractelement instruction cannot be modified, so we must give up.
    if (!ReplacementMap.count(Extract))
      return false;
  }

  // Finally, perform the replacements.
  IRBuilder<> Builder(Extracts[0]->getContext());
  for (auto &Replacement : ReplacementMap) {
    auto *Extract = Replacement.first;
    auto *Vector = Replacement.second.first;
    auto Index = Replacement.second.second;
    Builder.SetInsertPoint(Extract);
    Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index));
    Extract->eraseFromParent();
  }

  return true;
}

bool InterleavedAccess::lowerInterleavedStore(
    StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) {
  if (!SI->isSimple())
    return false;

  auto *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand()); 
  if (!SVI || !SVI->hasOneUse() || isa<ScalableVectorType>(SVI->getType()))
    return false;

  // Check if the shufflevector is RE-interleave shuffle.
  unsigned Factor;
  unsigned OpNumElts =
      cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
  if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts))
    return false;

  LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");

  // Try to create target specific intrinsics to replace the store and shuffle.
  if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
    return false;

  // Already have a new target specific interleaved store. Erase the old store.
  DeadInsts.push_back(SI);
  DeadInsts.push_back(SVI);
  return true;
}

bool InterleavedAccess::runOnFunction(Function &F) {
  auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
  if (!TPC || !LowerInterleavedAccesses)
    return false;

  LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");

  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  auto &TM = TPC->getTM<TargetMachine>();
  TLI = TM.getSubtargetImpl(F)->getTargetLowering();
  MaxFactor = TLI->getMaxSupportedInterleaveFactor();

  // Holds dead instructions that will be erased later.
  SmallVector<Instruction *, 32> DeadInsts;
  bool Changed = false;

  for (auto &I : instructions(F)) {
    if (auto *LI = dyn_cast<LoadInst>(&I)) 
      Changed |= lowerInterleavedLoad(LI, DeadInsts);

    if (auto *SI = dyn_cast<StoreInst>(&I)) 
      Changed |= lowerInterleavedStore(SI, DeadInsts);
  }

  for (auto I : DeadInsts)
    I->eraseFromParent();

  return Changed;
}