aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/CodeGen/IfConversion.cpp
blob: 37be2eabf5fee496612905ca89e69d80051a5dcb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
//===- IfConversion.cpp - Machine code if conversion pass -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the machine instruction level if-conversion pass, which
// tries to convert conditional branches into predicated instructions.
//
//===----------------------------------------------------------------------===//

#include "BranchFolding.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MBFIWrapper.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <functional>
#include <iterator>
#include <memory>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "if-converter"

// Hidden options for help debugging.
static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
                                   cl::init(false), cl::Hidden);
static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
                                    cl::init(false), cl::Hidden);
static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
                                     cl::init(false), cl::Hidden);
static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
                                      cl::init(false), cl::Hidden);
static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
                                      cl::init(false), cl::Hidden);
static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
                                       cl::init(false), cl::Hidden);
static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
                                    cl::init(false), cl::Hidden);
static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
                                        cl::init(false), cl::Hidden);
static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
                                     cl::init(true), cl::Hidden);

STATISTIC(NumSimple,       "Number of simple if-conversions performed");
STATISTIC(NumSimpleFalse,  "Number of simple (F) if-conversions performed");
STATISTIC(NumTriangle,     "Number of triangle if-conversions performed");
STATISTIC(NumTriangleRev,  "Number of triangle (R) if-conversions performed");
STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
STATISTIC(NumDiamonds,     "Number of diamond if-conversions performed");
STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed");
STATISTIC(NumIfConvBBs,    "Number of if-converted blocks");
STATISTIC(NumDupBBs,       "Number of duplicated blocks");
STATISTIC(NumUnpred,       "Number of true blocks of diamonds unpredicated");

namespace {

  class IfConverter : public MachineFunctionPass {
    enum IfcvtKind {
      ICNotClassfied,  // BB data valid, but not classified.
      ICSimpleFalse,   // Same as ICSimple, but on the false path.
      ICSimple,        // BB is entry of an one split, no rejoin sub-CFG.
      ICTriangleFRev,  // Same as ICTriangleFalse, but false path rev condition.
      ICTriangleRev,   // Same as ICTriangle, but true path rev condition.
      ICTriangleFalse, // Same as ICTriangle, but on the false path.
      ICTriangle,      // BB is entry of a triangle sub-CFG.
      ICDiamond,       // BB is entry of a diamond sub-CFG.
      ICForkedDiamond  // BB is entry of an almost diamond sub-CFG, with a
                       // common tail that can be shared.
    };

    /// One per MachineBasicBlock, this is used to cache the result
    /// if-conversion feasibility analysis. This includes results from
    /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
    /// classification, and common tail block of its successors (if it's a
    /// diamond shape), its size, whether it's predicable, and whether any
    /// instruction can clobber the 'would-be' predicate.
    ///
    /// IsDone          - True if BB is not to be considered for ifcvt.
    /// IsBeingAnalyzed - True if BB is currently being analyzed.
    /// IsAnalyzed      - True if BB has been analyzed (info is still valid).
    /// IsEnqueued      - True if BB has been enqueued to be ifcvt'ed.
    /// IsBrAnalyzable  - True if analyzeBranch() returns false.
    /// HasFallThrough  - True if BB may fallthrough to the following BB.
    /// IsUnpredicable  - True if BB is known to be unpredicable.
    /// ClobbersPred    - True if BB could modify predicates (e.g. has
    ///                   cmp, call, etc.)
    /// NonPredSize     - Number of non-predicated instructions.
    /// ExtraCost       - Extra cost for multi-cycle instructions.
    /// ExtraCost2      - Some instructions are slower when predicated
    /// BB              - Corresponding MachineBasicBlock.
    /// TrueBB / FalseBB- See analyzeBranch().
    /// BrCond          - Conditions for end of block conditional branches.
    /// Predicate       - Predicate used in the BB.
    struct BBInfo {
      bool IsDone          : 1;
      bool IsBeingAnalyzed : 1;
      bool IsAnalyzed      : 1;
      bool IsEnqueued      : 1;
      bool IsBrAnalyzable  : 1;
      bool IsBrReversible  : 1;
      bool HasFallThrough  : 1;
      bool IsUnpredicable  : 1;
      bool CannotBeCopied  : 1;
      bool ClobbersPred    : 1;
      unsigned NonPredSize = 0;
      unsigned ExtraCost = 0;
      unsigned ExtraCost2 = 0;
      MachineBasicBlock *BB = nullptr;
      MachineBasicBlock *TrueBB = nullptr;
      MachineBasicBlock *FalseBB = nullptr;
      SmallVector<MachineOperand, 4> BrCond;
      SmallVector<MachineOperand, 4> Predicate;

      BBInfo() : IsDone(false), IsBeingAnalyzed(false),
                 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
                 IsBrReversible(false), HasFallThrough(false),
                 IsUnpredicable(false), CannotBeCopied(false),
                 ClobbersPred(false) {}
    };

    /// Record information about pending if-conversions to attempt:
    /// BBI             - Corresponding BBInfo.
    /// Kind            - Type of block. See IfcvtKind.
    /// NeedSubsumption - True if the to-be-predicated BB has already been
    ///                   predicated.
    /// NumDups      - Number of instructions that would be duplicated due
    ///                   to this if-conversion. (For diamonds, the number of
    ///                   identical instructions at the beginnings of both
    ///                   paths).
    /// NumDups2     - For diamonds, the number of identical instructions
    ///                   at the ends of both paths.
    struct IfcvtToken {
      BBInfo &BBI;
      IfcvtKind Kind;
      unsigned NumDups;
      unsigned NumDups2;
      bool NeedSubsumption : 1;
      bool TClobbersPred : 1;
      bool FClobbersPred : 1;

      IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0,
                 bool tc = false, bool fc = false)
        : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s),
          TClobbersPred(tc), FClobbersPred(fc) {}
    };

    /// Results of if-conversion feasibility analysis indexed by basic block
    /// number.
    std::vector<BBInfo> BBAnalysis;
    TargetSchedModel SchedModel;

    const TargetLoweringBase *TLI;
    const TargetInstrInfo *TII;
    const TargetRegisterInfo *TRI;
    const MachineBranchProbabilityInfo *MBPI;
    MachineRegisterInfo *MRI;

    LivePhysRegs Redefs;

    bool PreRegAlloc;
    bool MadeChange;
    int FnNum = -1;
    std::function<bool(const MachineFunction &)> PredicateFtor;

  public:
    static char ID;

    IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr)
        : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) {
      initializeIfConverterPass(*PassRegistry::getPassRegistry());
    }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<MachineBlockFrequencyInfo>();
      AU.addRequired<MachineBranchProbabilityInfo>();
      AU.addRequired<ProfileSummaryInfoWrapperPass>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    bool runOnMachineFunction(MachineFunction &MF) override;

    MachineFunctionProperties getRequiredProperties() const override {
      return MachineFunctionProperties().set(
          MachineFunctionProperties::Property::NoVRegs);
    }

  private:
    bool reverseBranchCondition(BBInfo &BBI) const;
    bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
                     BranchProbability Prediction) const;
    bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
                       bool FalseBranch, unsigned &Dups,
                       BranchProbability Prediction) const;
    bool CountDuplicatedInstructions(
        MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
        MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
        unsigned &Dups1, unsigned &Dups2,
        MachineBasicBlock &TBB, MachineBasicBlock &FBB,
        bool SkipUnconditionalBranches) const;
    bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
                      unsigned &Dups1, unsigned &Dups2,
                      BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
    bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
                            unsigned &Dups1, unsigned &Dups2,
                            BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
    void AnalyzeBranches(BBInfo &BBI);
    void ScanInstructions(BBInfo &BBI,
                          MachineBasicBlock::iterator &Begin,
                          MachineBasicBlock::iterator &End,
                          bool BranchUnpredicable = false) const;
    bool RescanInstructions(
        MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
        MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
        BBInfo &TrueBBI, BBInfo &FalseBBI) const;
    void AnalyzeBlock(MachineBasicBlock &MBB,
                      std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
    bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred,
                             bool isTriangle = false, bool RevBranch = false,
                             bool hasCommonTail = false);
    void AnalyzeBlocks(MachineFunction &MF,
                       std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
    void InvalidatePreds(MachineBasicBlock &MBB);
    bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
    bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
    bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
                                unsigned NumDups1, unsigned NumDups2,
                                bool TClobbersPred, bool FClobbersPred,
                                bool RemoveBranch, bool MergeAddEdges);
    bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
                          unsigned NumDups1, unsigned NumDups2,
                          bool TClobbers, bool FClobbers);
    bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind,
                              unsigned NumDups1, unsigned NumDups2,
                              bool TClobbers, bool FClobbers);
    void PredicateBlock(BBInfo &BBI,
                        MachineBasicBlock::iterator E,
                        SmallVectorImpl<MachineOperand> &Cond,
                        SmallSet<MCPhysReg, 4> *LaterRedefs = nullptr);
    void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
                               SmallVectorImpl<MachineOperand> &Cond,
                               bool IgnoreBr = false);
    void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);

    bool MeetIfcvtSizeLimit(MachineBasicBlock &BB,
                            unsigned Cycle, unsigned Extra,
                            BranchProbability Prediction) const {
      return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra,
                                                   Prediction);
    }

    bool MeetIfcvtSizeLimit(BBInfo &TBBInfo, BBInfo &FBBInfo,
                            MachineBasicBlock &CommBB, unsigned Dups,
                            BranchProbability Prediction, bool Forked) const {
      const MachineFunction &MF = *TBBInfo.BB->getParent();
      if (MF.getFunction().hasMinSize()) {
        MachineBasicBlock::iterator TIB = TBBInfo.BB->begin();
        MachineBasicBlock::iterator FIB = FBBInfo.BB->begin();
        MachineBasicBlock::iterator TIE = TBBInfo.BB->end();
        MachineBasicBlock::iterator FIE = FBBInfo.BB->end();

        unsigned Dups1, Dups2;
        if (!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
                                         *TBBInfo.BB, *FBBInfo.BB,
                                         /*SkipUnconditionalBranches*/ true))
          llvm_unreachable("should already have been checked by ValidDiamond");

        unsigned BranchBytes = 0;
        unsigned CommonBytes = 0;

        // Count common instructions at the start of the true and false blocks.
        for (auto &I : make_range(TBBInfo.BB->begin(), TIB)) {
          LLVM_DEBUG(dbgs() << "Common inst: " << I);
          CommonBytes += TII->getInstSizeInBytes(I);
        }
        for (auto &I : make_range(FBBInfo.BB->begin(), FIB)) {
          LLVM_DEBUG(dbgs() << "Common inst: " << I);
          CommonBytes += TII->getInstSizeInBytes(I);
        }

        // Count instructions at the end of the true and false blocks, after
        // the ones we plan to predicate. Analyzable branches will be removed
        // (unless this is a forked diamond), and all other instructions are
        // common between the two blocks.
        for (auto &I : make_range(TIE, TBBInfo.BB->end())) {
          if (I.isBranch() && TBBInfo.IsBrAnalyzable && !Forked) {
            LLVM_DEBUG(dbgs() << "Saving branch: " << I);
            BranchBytes += TII->predictBranchSizeForIfCvt(I);
          } else {
            LLVM_DEBUG(dbgs() << "Common inst: " << I);
            CommonBytes += TII->getInstSizeInBytes(I);
          }
        }
        for (auto &I : make_range(FIE, FBBInfo.BB->end())) {
          if (I.isBranch() && FBBInfo.IsBrAnalyzable && !Forked) {
            LLVM_DEBUG(dbgs() << "Saving branch: " << I);
            BranchBytes += TII->predictBranchSizeForIfCvt(I);
          } else {
            LLVM_DEBUG(dbgs() << "Common inst: " << I);
            CommonBytes += TII->getInstSizeInBytes(I);
          }
        }
        for (auto &I : CommBB.terminators()) {
          if (I.isBranch()) {
            LLVM_DEBUG(dbgs() << "Saving branch: " << I);
            BranchBytes += TII->predictBranchSizeForIfCvt(I);
          }
        }

        // The common instructions in one branch will be eliminated, halving
        // their code size.
        CommonBytes /= 2;

        // Count the instructions which we need to predicate.
        unsigned NumPredicatedInstructions = 0;
        for (auto &I : make_range(TIB, TIE)) {
          if (!I.isDebugInstr()) {
            LLVM_DEBUG(dbgs() << "Predicating: " << I);
            NumPredicatedInstructions++;
          }
        }
        for (auto &I : make_range(FIB, FIE)) {
          if (!I.isDebugInstr()) {
            LLVM_DEBUG(dbgs() << "Predicating: " << I);
            NumPredicatedInstructions++;
          }
        }

        // Even though we're optimising for size at the expense of performance,
        // avoid creating really long predicated blocks.
        if (NumPredicatedInstructions > 15)
          return false;

        // Some targets (e.g. Thumb2) need to insert extra instructions to
        // start predicated blocks.
        unsigned ExtraPredicateBytes = TII->extraSizeToPredicateInstructions(
            MF, NumPredicatedInstructions);

        LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(BranchBytes=" << BranchBytes
                          << ", CommonBytes=" << CommonBytes
                          << ", NumPredicatedInstructions="
                          << NumPredicatedInstructions
                          << ", ExtraPredicateBytes=" << ExtraPredicateBytes
                          << ")\n");
        return (BranchBytes + CommonBytes) > ExtraPredicateBytes;
      } else {
        unsigned TCycle = TBBInfo.NonPredSize + TBBInfo.ExtraCost - Dups;
        unsigned FCycle = FBBInfo.NonPredSize + FBBInfo.ExtraCost - Dups;
        bool Res = TCycle > 0 && FCycle > 0 &&
                   TII->isProfitableToIfCvt(
                       *TBBInfo.BB, TCycle, TBBInfo.ExtraCost2, *FBBInfo.BB,
                       FCycle, FBBInfo.ExtraCost2, Prediction);
        LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(TCycle=" << TCycle
                          << ", FCycle=" << FCycle
                          << ", TExtra=" << TBBInfo.ExtraCost2 << ", FExtra="
                          << FBBInfo.ExtraCost2 << ") = " << Res << "\n");
        return Res;
      }
    }

    /// Returns true if Block ends without a terminator.
    bool blockAlwaysFallThrough(BBInfo &BBI) const {
      return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
    }

    /// Used to sort if-conversion candidates.
    static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1,
                              const std::unique_ptr<IfcvtToken> &C2) {
      int Incr1 = (C1->Kind == ICDiamond)
        ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
      int Incr2 = (C2->Kind == ICDiamond)
        ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
      if (Incr1 > Incr2)
        return true;
      else if (Incr1 == Incr2) {
        // Favors subsumption.
        if (!C1->NeedSubsumption && C2->NeedSubsumption)
          return true;
        else if (C1->NeedSubsumption == C2->NeedSubsumption) {
          // Favors diamond over triangle, etc.
          if ((unsigned)C1->Kind < (unsigned)C2->Kind)
            return true;
          else if (C1->Kind == C2->Kind)
            return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
        }
      }
      return false;
    }
  };

} // end anonymous namespace

char IfConverter::ID = 0;

char &llvm::IfConverterID = IfConverter::ID;

INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false)

bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF)))
    return false;

  const TargetSubtargetInfo &ST = MF.getSubtarget();
  TLI = ST.getTargetLowering();
  TII = ST.getInstrInfo();
  TRI = ST.getRegisterInfo();
  MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>());
  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
  ProfileSummaryInfo *PSI =
      &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
  MRI = &MF.getRegInfo();
  SchedModel.init(&ST);

  if (!TII) return false;

  PreRegAlloc = MRI->isSSA();

  bool BFChange = false;
  if (!PreRegAlloc) {
    // Tail merge tend to expose more if-conversion opportunities.
    BranchFolder BF(true, false, MBFI, *MBPI, PSI);
    BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo());
  }

  LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'"
                    << MF.getName() << "\'");

  if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
    LLVM_DEBUG(dbgs() << " skipped\n");
    return false;
  }
  LLVM_DEBUG(dbgs() << "\n");

  MF.RenumberBlocks();
  BBAnalysis.resize(MF.getNumBlockIDs());

  std::vector<std::unique_ptr<IfcvtToken>> Tokens;
  MadeChange = false;
  unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
    NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
  while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
    // Do an initial analysis for each basic block and find all the potential
    // candidates to perform if-conversion.
    bool Change = false;
    AnalyzeBlocks(MF, Tokens);
    while (!Tokens.empty()) {
      std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back());
      Tokens.pop_back();
      BBInfo &BBI = Token->BBI;
      IfcvtKind Kind = Token->Kind;
      unsigned NumDups = Token->NumDups;
      unsigned NumDups2 = Token->NumDups2;

      // If the block has been evicted out of the queue or it has already been
      // marked dead (due to it being predicated), then skip it.
      if (BBI.IsDone)
        BBI.IsEnqueued = false;
      if (!BBI.IsEnqueued)
        continue;

      BBI.IsEnqueued = false;

      bool RetVal = false;
      switch (Kind) {
      default: llvm_unreachable("Unexpected!");
      case ICSimple:
      case ICSimpleFalse: {
        bool isFalse = Kind == ICSimpleFalse;
        if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
        LLVM_DEBUG(dbgs() << "Ifcvt (Simple"
                          << (Kind == ICSimpleFalse ? " false" : "")
                          << "): " << printMBBReference(*BBI.BB) << " ("
                          << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber()
                                                      : BBI.TrueBB->getNumber())
                          << ") ");
        RetVal = IfConvertSimple(BBI, Kind);
        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
        if (RetVal) {
          if (isFalse) ++NumSimpleFalse;
          else         ++NumSimple;
        }
       break;
      }
      case ICTriangle:
      case ICTriangleRev:
      case ICTriangleFalse:
      case ICTriangleFRev: {
        bool isFalse = Kind == ICTriangleFalse;
        bool isRev   = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
        if (DisableTriangle && !isFalse && !isRev) break;
        if (DisableTriangleR && !isFalse && isRev) break;
        if (DisableTriangleF && isFalse && !isRev) break;
        if (DisableTriangleFR && isFalse && isRev) break;
        LLVM_DEBUG(dbgs() << "Ifcvt (Triangle");
        if (isFalse)
          LLVM_DEBUG(dbgs() << " false");
        if (isRev)
          LLVM_DEBUG(dbgs() << " rev");
        LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB)
                          << " (T:" << BBI.TrueBB->getNumber()
                          << ",F:" << BBI.FalseBB->getNumber() << ") ");
        RetVal = IfConvertTriangle(BBI, Kind);
        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
        if (RetVal) {
          if (isFalse) {
            if (isRev) ++NumTriangleFRev;
            else       ++NumTriangleFalse;
          } else {
            if (isRev) ++NumTriangleRev;
            else       ++NumTriangle;
          }
        }
        break;
      }
      case ICDiamond:
        if (DisableDiamond) break;
        LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB)
                          << " (T:" << BBI.TrueBB->getNumber()
                          << ",F:" << BBI.FalseBB->getNumber() << ") ");
        RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2,
                                  Token->TClobbersPred,
                                  Token->FClobbersPred);
        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
        if (RetVal) ++NumDiamonds;
        break;
      case ICForkedDiamond:
        if (DisableForkedDiamond) break;
        LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): "
                          << printMBBReference(*BBI.BB)
                          << " (T:" << BBI.TrueBB->getNumber()
                          << ",F:" << BBI.FalseBB->getNumber() << ") ");
        RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2,
                                      Token->TClobbersPred,
                                      Token->FClobbersPred);
        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
        if (RetVal) ++NumForkedDiamonds;
        break;
      }

      if (RetVal && MRI->tracksLiveness())
        recomputeLivenessFlags(*BBI.BB);

      Change |= RetVal;

      NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
        NumTriangleFalse + NumTriangleFRev + NumDiamonds;
      if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
        break;
    }

    if (!Change)
      break;
    MadeChange |= Change;
  }

  Tokens.clear();
  BBAnalysis.clear();

  if (MadeChange && IfCvtBranchFold) {
    BranchFolder BF(false, false, MBFI, *MBPI, PSI);
    BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo());
  }

  MadeChange |= BFChange;
  return MadeChange;
}

/// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
                                         MachineBasicBlock *TrueBB) {
  for (MachineBasicBlock *SuccBB : BB->successors()) {
    if (SuccBB != TrueBB)
      return SuccBB;
  }
  return nullptr;
}

/// Reverse the condition of the end of the block branch. Swap block's 'true'
/// and 'false' successors.
bool IfConverter::reverseBranchCondition(BBInfo &BBI) const {
  DebugLoc dl;  // FIXME: this is nowhere
  if (!TII->reverseBranchCondition(BBI.BrCond)) {
    TII->removeBranch(*BBI.BB);
    TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
    std::swap(BBI.TrueBB, BBI.FalseBB);
    return true;
  }
  return false;
}

/// Returns the next block in the function blocks ordering. If it is the end,
/// returns NULL.
static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) {
  MachineFunction::iterator I = MBB.getIterator();
  MachineFunction::iterator E = MBB.getParent()->end();
  if (++I == E)
    return nullptr;
  return &*I;
}

/// Returns true if the 'true' block (along with its predecessor) forms a valid
/// simple shape for ifcvt. It also returns the number of instructions that the
/// ifcvt would need to duplicate if performed in Dups.
bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
                              BranchProbability Prediction) const {
  Dups = 0;
  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
    return false;

  if (TrueBBI.IsBrAnalyzable)
    return false;

  if (TrueBBI.BB->pred_size() > 1) {
    if (TrueBBI.CannotBeCopied ||
        !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize,
                                        Prediction))
      return false;
    Dups = TrueBBI.NonPredSize;
  }

  return true;
}

/// Returns true if the 'true' and 'false' blocks (along with their common
/// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
/// true, it checks if 'true' block's false branch branches to the 'false' block
/// rather than the other way around. It also returns the number of instructions
/// that the ifcvt would need to duplicate if performed in 'Dups'.
bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
                                bool FalseBranch, unsigned &Dups,
                                BranchProbability Prediction) const {
  Dups = 0;
  if (TrueBBI.BB == FalseBBI.BB)
    return false;

  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
    return false;

  if (TrueBBI.BB->pred_size() > 1) {
    if (TrueBBI.CannotBeCopied)
      return false;

    unsigned Size = TrueBBI.NonPredSize;
    if (TrueBBI.IsBrAnalyzable) {
      if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
        // Ends with an unconditional branch. It will be removed.
        --Size;
      else {
        MachineBasicBlock *FExit = FalseBranch
          ? TrueBBI.TrueBB : TrueBBI.FalseBB;
        if (FExit)
          // Require a conditional branch
          ++Size;
      }
    }
    if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction))
      return false;
    Dups = Size;
  }

  MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
  if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
    MachineFunction::iterator I = TrueBBI.BB->getIterator();
    if (++I == TrueBBI.BB->getParent()->end())
      return false;
    TExit = &*I;
  }
  return TExit && TExit == FalseBBI.BB;
}

/// Count duplicated instructions and move the iterators to show where they
/// are.
/// @param TIB True Iterator Begin
/// @param FIB False Iterator Begin
/// These two iterators initially point to the first instruction of the two
/// blocks, and finally point to the first non-shared instruction.
/// @param TIE True Iterator End
/// @param FIE False Iterator End
/// These two iterators initially point to End() for the two blocks() and
/// finally point to the first shared instruction in the tail.
/// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
/// two blocks.
/// @param Dups1 count of duplicated instructions at the beginning of the 2
/// blocks.
/// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
/// @param SkipUnconditionalBranches if true, Don't make sure that
/// unconditional branches at the end of the blocks are the same. True is
/// passed when the blocks are analyzable to allow for fallthrough to be
/// handled.
/// @return false if the shared portion prevents if conversion.
bool IfConverter::CountDuplicatedInstructions(
    MachineBasicBlock::iterator &TIB,
    MachineBasicBlock::iterator &FIB,
    MachineBasicBlock::iterator &TIE,
    MachineBasicBlock::iterator &FIE,
    unsigned &Dups1, unsigned &Dups2,
    MachineBasicBlock &TBB, MachineBasicBlock &FBB,
    bool SkipUnconditionalBranches) const {
  while (TIB != TIE && FIB != FIE) {
    // Skip dbg_value instructions. These do not count.
    TIB = skipDebugInstructionsForward(TIB, TIE);
    FIB = skipDebugInstructionsForward(FIB, FIE);
    if (TIB == TIE || FIB == FIE)
      break;
    if (!TIB->isIdenticalTo(*FIB))
      break;
    // A pred-clobbering instruction in the shared portion prevents
    // if-conversion.
    std::vector<MachineOperand> PredDefs;
    if (TII->ClobbersPredicate(*TIB, PredDefs, false))
      return false;
    // If we get all the way to the branch instructions, don't count them.
    if (!TIB->isBranch())
      ++Dups1;
    ++TIB;
    ++FIB;
  }

  // Check for already containing all of the block.
  if (TIB == TIE || FIB == FIE)
    return true;
  // Now, in preparation for counting duplicate instructions at the ends of the
  // blocks, switch to reverse_iterators. Note that getReverse() returns an
  // iterator that points to the same instruction, unlike std::reverse_iterator.
  // We have to do our own shifting so that we get the same range.
  MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse());
  MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse());
  const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse());
  const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse());

  if (!TBB.succ_empty() || !FBB.succ_empty()) {
    if (SkipUnconditionalBranches) {
      while (RTIE != RTIB && RTIE->isUnconditionalBranch())
        ++RTIE;
      while (RFIE != RFIB && RFIE->isUnconditionalBranch())
        ++RFIE;
    }
  }

  // Count duplicate instructions at the ends of the blocks.
  while (RTIE != RTIB && RFIE != RFIB) {
    // Skip dbg_value instructions. These do not count.
    // Note that these are reverse iterators going forward.
    RTIE = skipDebugInstructionsForward(RTIE, RTIB);
    RFIE = skipDebugInstructionsForward(RFIE, RFIB);
    if (RTIE == RTIB || RFIE == RFIB)
      break;
    if (!RTIE->isIdenticalTo(*RFIE))
      break;
    // We have to verify that any branch instructions are the same, and then we
    // don't count them toward the # of duplicate instructions.
    if (!RTIE->isBranch())
      ++Dups2;
    ++RTIE;
    ++RFIE;
  }
  TIE = std::next(RTIE.getReverse());
  FIE = std::next(RFIE.getReverse());
  return true;
}

/// RescanInstructions - Run ScanInstructions on a pair of blocks.
/// @param TIB - True Iterator Begin, points to first non-shared instruction
/// @param FIB - False Iterator Begin, points to first non-shared instruction
/// @param TIE - True Iterator End, points past last non-shared instruction
/// @param FIE - False Iterator End, points past last non-shared instruction
/// @param TrueBBI  - BBInfo to update for the true block.
/// @param FalseBBI - BBInfo to update for the false block.
/// @returns - false if either block cannot be predicated or if both blocks end
///   with a predicate-clobbering instruction.
bool IfConverter::RescanInstructions(
    MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
    MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
    BBInfo &TrueBBI, BBInfo &FalseBBI) const {
  bool BranchUnpredicable = true;
  TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false;
  ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable);
  if (TrueBBI.IsUnpredicable)
    return false;
  ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable);
  if (FalseBBI.IsUnpredicable)
    return false;
  if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)
    return false;
  return true;
}

#ifndef NDEBUG
static void verifySameBranchInstructions(
    MachineBasicBlock *MBB1,
    MachineBasicBlock *MBB2) {
  const MachineBasicBlock::reverse_iterator B1 = MBB1->rend();
  const MachineBasicBlock::reverse_iterator B2 = MBB2->rend();
  MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin();
  MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin();
  while (E1 != B1 && E2 != B2) {
    skipDebugInstructionsForward(E1, B1);
    skipDebugInstructionsForward(E2, B2);
    if (E1 == B1 && E2 == B2)
      break;

    if (E1 == B1) {
      assert(!E2->isBranch() && "Branch mis-match, one block is empty.");
      break;
    }
    if (E2 == B2) {
      assert(!E1->isBranch() && "Branch mis-match, one block is empty.");
      break;
    }

    if (E1->isBranch() || E2->isBranch())
      assert(E1->isIdenticalTo(*E2) &&
             "Branch mis-match, branch instructions don't match.");
    else
      break;
    ++E1;
    ++E2;
  }
}
#endif

/// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
/// with their common predecessor) form a diamond if a common tail block is
/// extracted.
/// While not strictly a diamond, this pattern would form a diamond if
/// tail-merging had merged the shared tails.
///           EBB
///         _/   \_
///         |     |
///        TBB   FBB
///        /  \ /   \
///  FalseBB TrueBB FalseBB
/// Currently only handles analyzable branches.
/// Specifically excludes actual diamonds to avoid overlap.
bool IfConverter::ValidForkedDiamond(
    BBInfo &TrueBBI, BBInfo &FalseBBI,
    unsigned &Dups1, unsigned &Dups2,
    BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
  Dups1 = Dups2 = 0;
  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
      FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
    return false;

  if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable)
    return false;
  // Don't IfConvert blocks that can't be folded into their predecessor.
  if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
    return false;

  // This function is specifically looking for conditional tails, as
  // unconditional tails are already handled by the standard diamond case.
  if (TrueBBI.BrCond.size() == 0 ||
      FalseBBI.BrCond.size() == 0)
    return false;

  MachineBasicBlock *TT = TrueBBI.TrueBB;
  MachineBasicBlock *TF = TrueBBI.FalseBB;
  MachineBasicBlock *FT = FalseBBI.TrueBB;
  MachineBasicBlock *FF = FalseBBI.FalseBB;

  if (!TT)
    TT = getNextBlock(*TrueBBI.BB);
  if (!TF)
    TF = getNextBlock(*TrueBBI.BB);
  if (!FT)
    FT = getNextBlock(*FalseBBI.BB);
  if (!FF)
    FF = getNextBlock(*FalseBBI.BB);

  if (!TT || !TF)
    return false;

  // Check successors. If they don't match, bail.
  if (!((TT == FT && TF == FF) || (TF == FT && TT == FF)))
    return false;

  bool FalseReversed = false;
  if (TF == FT && TT == FF) {
    // If the branches are opposing, but we can't reverse, don't do it.
    if (!FalseBBI.IsBrReversible)
      return false;
    FalseReversed = true;
    reverseBranchCondition(FalseBBI);
  }
  auto UnReverseOnExit = make_scope_exit([&]() {
    if (FalseReversed)
      reverseBranchCondition(FalseBBI);
  });

  // Count duplicate instructions at the beginning of the true and false blocks.
  MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
  MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
  MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
  MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
  if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
                                  *TrueBBI.BB, *FalseBBI.BB,
                                  /* SkipUnconditionalBranches */ true))
    return false;

  TrueBBICalc.BB = TrueBBI.BB;
  FalseBBICalc.BB = FalseBBI.BB;
  TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable;
  FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable;
  if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
    return false;

  // The size is used to decide whether to if-convert, and the shared portions
  // are subtracted off. Because of the subtraction, we just use the size that
  // was calculated by the original ScanInstructions, as it is correct.
  TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
  FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
  return true;
}

/// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
/// with their common predecessor) forms a valid diamond shape for ifcvt.
bool IfConverter::ValidDiamond(
    BBInfo &TrueBBI, BBInfo &FalseBBI,
    unsigned &Dups1, unsigned &Dups2,
    BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
  Dups1 = Dups2 = 0;
  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
      FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
    return false;

  // If the True and False BBs are equal we're dealing with a degenerate case
  // that we don't treat as a diamond.
  if (TrueBBI.BB == FalseBBI.BB)
    return false;

  MachineBasicBlock *TT = TrueBBI.TrueBB;
  MachineBasicBlock *FT = FalseBBI.TrueBB;

  if (!TT && blockAlwaysFallThrough(TrueBBI))
    TT = getNextBlock(*TrueBBI.BB);
  if (!FT && blockAlwaysFallThrough(FalseBBI))
    FT = getNextBlock(*FalseBBI.BB);
  if (TT != FT)
    return false;
  if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
    return false;
  if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
    return false;

  // FIXME: Allow true block to have an early exit?
  if (TrueBBI.FalseBB || FalseBBI.FalseBB)
    return false;

  // Count duplicate instructions at the beginning and end of the true and
  // false blocks.
  // Skip unconditional branches only if we are considering an analyzable
  // diamond. Otherwise the branches must be the same.
  bool SkipUnconditionalBranches =
      TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable;
  MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
  MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
  MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
  MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
  if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
                                  *TrueBBI.BB, *FalseBBI.BB,
                                  SkipUnconditionalBranches))
    return false;

  TrueBBICalc.BB = TrueBBI.BB;
  FalseBBICalc.BB = FalseBBI.BB;
  TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable;
  FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable;
  if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
    return false;
  // The size is used to decide whether to if-convert, and the shared portions
  // are subtracted off. Because of the subtraction, we just use the size that
  // was calculated by the original ScanInstructions, as it is correct.
  TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
  FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
  return true;
}

/// AnalyzeBranches - Look at the branches at the end of a block to determine if
/// the block is predicable.
void IfConverter::AnalyzeBranches(BBInfo &BBI) {
  if (BBI.IsDone)
    return;

  BBI.TrueBB = BBI.FalseBB = nullptr;
  BBI.BrCond.clear();
  BBI.IsBrAnalyzable =
      !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
  if (!BBI.IsBrAnalyzable) {
    BBI.TrueBB = nullptr;
    BBI.FalseBB = nullptr;
    BBI.BrCond.clear();
  }

  SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
  BBI.IsBrReversible = (RevCond.size() == 0) ||
      !TII->reverseBranchCondition(RevCond);
  BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;

  if (BBI.BrCond.size()) {
    // No false branch. This BB must end with a conditional branch and a
    // fallthrough.
    if (!BBI.FalseBB)
      BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
    if (!BBI.FalseBB) {
      // Malformed bcc? True and false blocks are the same?
      BBI.IsUnpredicable = true;
    }
  }
}

/// ScanInstructions - Scan all the instructions in the block to determine if
/// the block is predicable. In most cases, that means all the instructions
/// in the block are isPredicable(). Also checks if the block contains any
/// instruction which can clobber a predicate (e.g. condition code register).
/// If so, the block is not predicable unless it's the last instruction.
void IfConverter::ScanInstructions(BBInfo &BBI,
                                   MachineBasicBlock::iterator &Begin,
                                   MachineBasicBlock::iterator &End,
                                   bool BranchUnpredicable) const {
  if (BBI.IsDone || BBI.IsUnpredicable)
    return;

  bool AlreadyPredicated = !BBI.Predicate.empty();

  BBI.NonPredSize = 0;
  BBI.ExtraCost = 0;
  BBI.ExtraCost2 = 0;
  BBI.ClobbersPred = false;
  for (MachineInstr &MI : make_range(Begin, End)) {
    if (MI.isDebugInstr())
      continue;

    // It's unsafe to duplicate convergent instructions in this context, so set
    // BBI.CannotBeCopied to true if MI is convergent.  To see why, consider the
    // following CFG, which is subject to our "simple" transformation.
    //
    //    BB0     // if (c1) goto BB1; else goto BB2;
    //   /   \
    //  BB1   |
    //   |   BB2  // if (c2) goto TBB; else goto FBB;
    //   |   / |
    //   |  /  |
    //   TBB   |
    //    |    |
    //    |   FBB
    //    |
    //    exit
    //
    // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
    // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
    // TBB contains a convergent instruction.  This is safe iff doing so does
    // not add a control-flow dependency to the convergent instruction -- i.e.,
    // it's safe iff the set of control flows that leads us to the convergent
    // instruction does not get smaller after the transformation.
    //
    // Originally we executed TBB if c1 || c2.  After the transformation, there
    // are two copies of TBB's instructions.  We get to the first if c1, and we
    // get to the second if !c1 && c2.
    //
    // There are clearly fewer ways to satisfy the condition "c1" than
    // "c1 || c2".  Since we've shrunk the set of control flows which lead to
    // our convergent instruction, the transformation is unsafe.
    if (MI.isNotDuplicable() || MI.isConvergent())
      BBI.CannotBeCopied = true;

    bool isPredicated = TII->isPredicated(MI);
    bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch();

    if (BranchUnpredicable && MI.isBranch()) {
      BBI.IsUnpredicable = true;
      return;
    }

    // A conditional branch is not predicable, but it may be eliminated.
    if (isCondBr)
      continue;

    if (!isPredicated) {
      BBI.NonPredSize++;
      unsigned ExtraPredCost = TII->getPredicationCost(MI);
      unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false);
      if (NumCycles > 1)
        BBI.ExtraCost += NumCycles-1;
      BBI.ExtraCost2 += ExtraPredCost;
    } else if (!AlreadyPredicated) {
      // FIXME: This instruction is already predicated before the
      // if-conversion pass. It's probably something like a conditional move.
      // Mark this block unpredicable for now.
      BBI.IsUnpredicable = true;
      return;
    }

    if (BBI.ClobbersPred && !isPredicated) {
      // Predicate modification instruction should end the block (except for
      // already predicated instructions and end of block branches).
      // Predicate may have been modified, the subsequent (currently)
      // unpredicated instructions cannot be correctly predicated.
      BBI.IsUnpredicable = true;
      return;
    }

    // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
    // still potentially predicable.
    std::vector<MachineOperand> PredDefs;
    if (TII->ClobbersPredicate(MI, PredDefs, true))
      BBI.ClobbersPred = true;

    if (!TII->isPredicable(MI)) {
      BBI.IsUnpredicable = true;
      return;
    }
  }
}

/// Determine if the block is a suitable candidate to be predicated by the
/// specified predicate.
/// @param BBI BBInfo for the block to check
/// @param Pred Predicate array for the branch that leads to BBI
/// @param isTriangle true if the Analysis is for a triangle
/// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
///        case
/// @param hasCommonTail true if BBI shares a tail with a sibling block that
///        contains any instruction that would make the block unpredicable.
bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
                                      SmallVectorImpl<MachineOperand> &Pred,
                                      bool isTriangle, bool RevBranch,
                                      bool hasCommonTail) {
  // If the block is dead or unpredicable, then it cannot be predicated.
  // Two blocks may share a common unpredicable tail, but this doesn't prevent
  // them from being if-converted. The non-shared portion is assumed to have
  // been checked
  if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail))
    return false;

  // If it is already predicated but we couldn't analyze its terminator, the
  // latter might fallthrough, but we can't determine where to.
  // Conservatively avoid if-converting again.
  if (BBI.Predicate.size() && !BBI.IsBrAnalyzable)
    return false;

  // If it is already predicated, check if the new predicate subsumes
  // its predicate.
  if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
    return false;

  if (!hasCommonTail && BBI.BrCond.size()) {
    if (!isTriangle)
      return false;

    // Test predicate subsumption.
    SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
    SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
    if (RevBranch) {
      if (TII->reverseBranchCondition(Cond))
        return false;
    }
    if (TII->reverseBranchCondition(RevPred) ||
        !TII->SubsumesPredicate(Cond, RevPred))
      return false;
  }

  return true;
}

/// Analyze the structure of the sub-CFG starting from the specified block.
/// Record its successors and whether it looks like an if-conversion candidate.
void IfConverter::AnalyzeBlock(
    MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
  struct BBState {
    BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {}
    MachineBasicBlock *MBB;

    /// This flag is true if MBB's successors have been analyzed.
    bool SuccsAnalyzed;
  };

  // Push MBB to the stack.
  SmallVector<BBState, 16> BBStack(1, MBB);

  while (!BBStack.empty()) {
    BBState &State = BBStack.back();
    MachineBasicBlock *BB = State.MBB;
    BBInfo &BBI = BBAnalysis[BB->getNumber()];

    if (!State.SuccsAnalyzed) {
      if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) {
        BBStack.pop_back();
        continue;
      }

      BBI.BB = BB;
      BBI.IsBeingAnalyzed = true;

      AnalyzeBranches(BBI);
      MachineBasicBlock::iterator Begin = BBI.BB->begin();
      MachineBasicBlock::iterator End = BBI.BB->end();
      ScanInstructions(BBI, Begin, End);

      // Unanalyzable or ends with fallthrough or unconditional branch, or if is
      // not considered for ifcvt anymore.
      if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) {
        BBI.IsBeingAnalyzed = false;
        BBI.IsAnalyzed = true;
        BBStack.pop_back();
        continue;
      }

      // Do not ifcvt if either path is a back edge to the entry block.
      if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
        BBI.IsBeingAnalyzed = false;
        BBI.IsAnalyzed = true;
        BBStack.pop_back();
        continue;
      }

      // Do not ifcvt if true and false fallthrough blocks are the same.
      if (!BBI.FalseBB) {
        BBI.IsBeingAnalyzed = false;
        BBI.IsAnalyzed = true;
        BBStack.pop_back();
        continue;
      }

      // Push the False and True blocks to the stack.
      State.SuccsAnalyzed = true;
      BBStack.push_back(*BBI.FalseBB);
      BBStack.push_back(*BBI.TrueBB);
      continue;
    }

    BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
    BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];

    if (TrueBBI.IsDone && FalseBBI.IsDone) {
      BBI.IsBeingAnalyzed = false;
      BBI.IsAnalyzed = true;
      BBStack.pop_back();
      continue;
    }

    SmallVector<MachineOperand, 4>
        RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
    bool CanRevCond = !TII->reverseBranchCondition(RevCond);

    unsigned Dups = 0;
    unsigned Dups2 = 0;
    bool TNeedSub = !TrueBBI.Predicate.empty();
    bool FNeedSub = !FalseBBI.Predicate.empty();
    bool Enqueued = false;

    BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);

    if (CanRevCond) {
      BBInfo TrueBBICalc, FalseBBICalc;
      auto feasibleDiamond = [&](bool Forked) {
        bool MeetsSize = MeetIfcvtSizeLimit(TrueBBICalc, FalseBBICalc, *BB,
                                            Dups + Dups2, Prediction, Forked);
        bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond,
                                                /* IsTriangle */ false, /* RevCond */ false,
                                                /* hasCommonTail */ true);
        bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond,
                                                 /* IsTriangle */ false, /* RevCond */ false,
                                                 /* hasCommonTail */ true);
        return MeetsSize && TrueFeasible && FalseFeasible;
      };

      if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2,
                       TrueBBICalc, FalseBBICalc)) {
        if (feasibleDiamond(false)) {
          // Diamond:
          //   EBB
          //   / \_
          //  |   |
          // TBB FBB
          //   \ /
          //  TailBB
          // Note TailBB can be empty.
          Tokens.push_back(std::make_unique<IfcvtToken>(
              BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2,
              (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
          Enqueued = true;
        }
      } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2,
                                    TrueBBICalc, FalseBBICalc)) {
        if (feasibleDiamond(true)) {
          // ForkedDiamond:
          // if TBB and FBB have a common tail that includes their conditional
          // branch instructions, then we can If Convert this pattern.
          //          EBB
          //         _/ \_
          //         |   |
          //        TBB  FBB
          //        / \ /   \
          //  FalseBB TrueBB FalseBB
          //
          Tokens.push_back(std::make_unique<IfcvtToken>(
              BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2,
              (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
          Enqueued = true;
        }
      }
    }

    if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
        MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
                           TrueBBI.ExtraCost2, Prediction) &&
        FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
      // Triangle:
      //   EBB
      //   | \_
      //   |  |
      //   | TBB
      //   |  /
      //   FBB
      Tokens.push_back(
          std::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups));
      Enqueued = true;
    }

    if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) &&
        MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
                           TrueBBI.ExtraCost2, Prediction) &&
        FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
      Tokens.push_back(
          std::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups));
      Enqueued = true;
    }

    if (ValidSimple(TrueBBI, Dups, Prediction) &&
        MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
                           TrueBBI.ExtraCost2, Prediction) &&
        FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
      // Simple (split, no rejoin):
      //   EBB
      //   | \_
      //   |  |
      //   | TBB---> exit
      //   |
      //   FBB
      Tokens.push_back(
          std::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups));
      Enqueued = true;
    }

    if (CanRevCond) {
      // Try the other path...
      if (ValidTriangle(FalseBBI, TrueBBI, false, Dups,
                        Prediction.getCompl()) &&
          MeetIfcvtSizeLimit(*FalseBBI.BB,
                             FalseBBI.NonPredSize + FalseBBI.ExtraCost,
                             FalseBBI.ExtraCost2, Prediction.getCompl()) &&
          FeasibilityAnalysis(FalseBBI, RevCond, true)) {
        Tokens.push_back(std::make_unique<IfcvtToken>(BBI, ICTriangleFalse,
                                                       FNeedSub, Dups));
        Enqueued = true;
      }

      if (ValidTriangle(FalseBBI, TrueBBI, true, Dups,
                        Prediction.getCompl()) &&
          MeetIfcvtSizeLimit(*FalseBBI.BB,
                             FalseBBI.NonPredSize + FalseBBI.ExtraCost,
                           FalseBBI.ExtraCost2, Prediction.getCompl()) &&
        FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
        Tokens.push_back(
            std::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups));
        Enqueued = true;
      }

      if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) &&
          MeetIfcvtSizeLimit(*FalseBBI.BB,
                             FalseBBI.NonPredSize + FalseBBI.ExtraCost,
                             FalseBBI.ExtraCost2, Prediction.getCompl()) &&
          FeasibilityAnalysis(FalseBBI, RevCond)) {
        Tokens.push_back(
            std::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups));
        Enqueued = true;
      }
    }

    BBI.IsEnqueued = Enqueued;
    BBI.IsBeingAnalyzed = false;
    BBI.IsAnalyzed = true;
    BBStack.pop_back();
  }
}

/// Analyze all blocks and find entries for all if-conversion candidates.
void IfConverter::AnalyzeBlocks(
    MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
  for (MachineBasicBlock &MBB : MF)
    AnalyzeBlock(MBB, Tokens);

  // Sort to favor more complex ifcvt scheme.
  llvm::stable_sort(Tokens, IfcvtTokenCmp);
}

/// Returns true either if ToMBB is the next block after MBB or that all the
/// intervening blocks are empty (given MBB can fall through to its next block).
static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) {
  MachineFunction::iterator PI = MBB.getIterator();
  MachineFunction::iterator I = std::next(PI);
  MachineFunction::iterator TI = ToMBB.getIterator();
  MachineFunction::iterator E = MBB.getParent()->end();
  while (I != TI) {
    // Check isSuccessor to avoid case where the next block is empty, but
    // it's not a successor.
    if (I == E || !I->empty() || !PI->isSuccessor(&*I))
      return false;
    PI = I++;
  }
  // Finally see if the last I is indeed a successor to PI.
  return PI->isSuccessor(&*I);
}

/// Invalidate predecessor BB info so it would be re-analyzed to determine if it
/// can be if-converted. If predecessor is already enqueued, dequeue it!
void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) {
  for (const MachineBasicBlock *Predecessor : MBB.predecessors()) {
    BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
    if (PBBI.IsDone || PBBI.BB == &MBB)
      continue;
    PBBI.IsAnalyzed = false;
    PBBI.IsEnqueued = false;
  }
}

/// Inserts an unconditional branch from \p MBB to \p ToMBB.
static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB,
                               const TargetInstrInfo *TII) {
  DebugLoc dl;  // FIXME: this is nowhere
  SmallVector<MachineOperand, 0> NoCond;
  TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl);
}

/// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
/// values defined in MI which are also live/used by MI.
static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
  const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo();

  // Before stepping forward past MI, remember which regs were live
  // before MI. This is needed to set the Undef flag only when reg is
  // dead.
  SparseSet<MCPhysReg, identity<MCPhysReg>> LiveBeforeMI;
  LiveBeforeMI.setUniverse(TRI->getNumRegs());
  for (unsigned Reg : Redefs)
    LiveBeforeMI.insert(Reg);

  SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Clobbers;
  Redefs.stepForward(MI, Clobbers);

  // Now add the implicit uses for each of the clobbered values.
  for (auto Clobber : Clobbers) {
    // FIXME: Const cast here is nasty, but better than making StepForward
    // take a mutable instruction instead of const.
    unsigned Reg = Clobber.first;
    MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second);
    MachineInstr *OpMI = Op.getParent();
    MachineInstrBuilder MIB(*OpMI->getMF(), OpMI);
    if (Op.isRegMask()) {
      // First handle regmasks.  They clobber any entries in the mask which
      // means that we need a def for those registers.
      if (LiveBeforeMI.count(Reg))
        MIB.addReg(Reg, RegState::Implicit);

      // We also need to add an implicit def of this register for the later
      // use to read from.
      // For the register allocator to have allocated a register clobbered
      // by the call which is used later, it must be the case that
      // the call doesn't return.
      MIB.addReg(Reg, RegState::Implicit | RegState::Define);
      continue;
    }
    if (LiveBeforeMI.count(Reg))
      MIB.addReg(Reg, RegState::Implicit);
    else {
      bool HasLiveSubReg = false;
      for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) {
        if (!LiveBeforeMI.count(*S))
          continue;
        HasLiveSubReg = true;
        break;
      }
      if (HasLiveSubReg)
        MIB.addReg(Reg, RegState::Implicit);
    }
  }
}

/// If convert a simple (split, no rejoin) sub-CFG.
bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
  BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
  BBInfo *CvtBBI = &TrueBBI;
  BBInfo *NextBBI = &FalseBBI;

  SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
  if (Kind == ICSimpleFalse)
    std::swap(CvtBBI, NextBBI);

  MachineBasicBlock &CvtMBB = *CvtBBI->BB;
  MachineBasicBlock &NextMBB = *NextBBI->BB;
  if (CvtBBI->IsDone ||
      (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
    // Something has changed. It's no longer safe to predicate this block.
    BBI.IsAnalyzed = false;
    CvtBBI->IsAnalyzed = false;
    return false;
  }

  if (CvtMBB.hasAddressTaken())
    // Conservatively abort if-conversion if BB's address is taken.
    return false;

  if (Kind == ICSimpleFalse)
    if (TII->reverseBranchCondition(Cond))
      llvm_unreachable("Unable to reverse branch condition!");

  Redefs.init(*TRI);

  if (MRI->tracksLiveness()) {
    // Initialize liveins to the first BB. These are potentially redefined by
    // predicated instructions.
    Redefs.addLiveIns(CvtMBB);
    Redefs.addLiveIns(NextMBB);
  }

  // Remove the branches from the entry so we can add the contents of the true
  // block to it.
  BBI.NonPredSize -= TII->removeBranch(*BBI.BB);

  if (CvtMBB.pred_size() > 1) {
    // Copy instructions in the true block, predicate them, and add them to
    // the entry block.
    CopyAndPredicateBlock(BBI, *CvtBBI, Cond);

    // Keep the CFG updated.
    BBI.BB->removeSuccessor(&CvtMBB, true);
  } else {
    // Predicate the instructions in the true block.
    PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);

    // Merge converted block into entry block. The BB to Cvt edge is removed
    // by MergeBlocks.
    MergeBlocks(BBI, *CvtBBI);
  }

  bool IterIfcvt = true;
  if (!canFallThroughTo(*BBI.BB, NextMBB)) {
    InsertUncondBranch(*BBI.BB, NextMBB, TII);
    BBI.HasFallThrough = false;
    // Now ifcvt'd block will look like this:
    // BB:
    // ...
    // t, f = cmp
    // if t op
    // b BBf
    //
    // We cannot further ifcvt this block because the unconditional branch
    // will have to be predicated on the new condition, that will not be
    // available if cmp executes.
    IterIfcvt = false;
  }

  // Update block info. BB can be iteratively if-converted.
  if (!IterIfcvt)
    BBI.IsDone = true;
  InvalidatePreds(*BBI.BB);
  CvtBBI->IsDone = true;

  // FIXME: Must maintain LiveIns.
  return true;
}

/// If convert a triangle sub-CFG.
bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
  BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
  BBInfo *CvtBBI = &TrueBBI;
  BBInfo *NextBBI = &FalseBBI;
  DebugLoc dl;  // FIXME: this is nowhere

  SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
  if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
    std::swap(CvtBBI, NextBBI);

  MachineBasicBlock &CvtMBB = *CvtBBI->BB;
  MachineBasicBlock &NextMBB = *NextBBI->BB;
  if (CvtBBI->IsDone ||
      (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
    // Something has changed. It's no longer safe to predicate this block.
    BBI.IsAnalyzed = false;
    CvtBBI->IsAnalyzed = false;
    return false;
  }

  if (CvtMBB.hasAddressTaken())
    // Conservatively abort if-conversion if BB's address is taken.
    return false;

  if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
    if (TII->reverseBranchCondition(Cond))
      llvm_unreachable("Unable to reverse branch condition!");

  if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
    if (reverseBranchCondition(*CvtBBI)) {
      // BB has been changed, modify its predecessors (except for this
      // one) so they don't get ifcvt'ed based on bad intel.
      for (MachineBasicBlock *PBB : CvtMBB.predecessors()) {
        if (PBB == BBI.BB)
          continue;
        BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
        if (PBBI.IsEnqueued) {
          PBBI.IsAnalyzed = false;
          PBBI.IsEnqueued = false;
        }
      }
    }
  }

  // Initialize liveins to the first BB. These are potentially redefined by
  // predicated instructions.
  Redefs.init(*TRI);
  if (MRI->tracksLiveness()) {
    Redefs.addLiveIns(CvtMBB);
    Redefs.addLiveIns(NextMBB);
  }

  bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
  BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;

  if (HasEarlyExit) {
    // Get probabilities before modifying CvtMBB and BBI.BB.
    CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB);
    CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB);
    BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB);
    BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB);
  }

  // Remove the branches from the entry so we can add the contents of the true
  // block to it.
  BBI.NonPredSize -= TII->removeBranch(*BBI.BB);

  if (CvtMBB.pred_size() > 1) {
    // Copy instructions in the true block, predicate them, and add them to
    // the entry block.
    CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
  } else {
    // Predicate the 'true' block after removing its branch.
    CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB);
    PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);

    // Now merge the entry of the triangle with the true block.
    MergeBlocks(BBI, *CvtBBI, false);
  }

  // Keep the CFG updated.
  BBI.BB->removeSuccessor(&CvtMBB, true);

  // If 'true' block has a 'false' successor, add an exit branch to it.
  if (HasEarlyExit) {
    SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
                                           CvtBBI->BrCond.end());
    if (TII->reverseBranchCondition(RevCond))
      llvm_unreachable("Unable to reverse branch condition!");

    // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
    // NewNext = New_Prob(BBI.BB, NextMBB) =
    //   Prob(BBI.BB, NextMBB) +
    //   Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
    // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
    //   Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
    auto NewTrueBB = getNextBlock(*BBI.BB);
    auto NewNext = BBNext + BBCvt * CvtNext;
    auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB);
    if (NewTrueBBIter != BBI.BB->succ_end())
      BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);

    auto NewFalse = BBCvt * CvtFalse;
    TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
    BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
  }

  // Merge in the 'false' block if the 'false' block has no other
  // predecessors. Otherwise, add an unconditional branch to 'false'.
  bool FalseBBDead = false;
  bool IterIfcvt = true;
  bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB);
  if (!isFallThrough) {
    // Only merge them if the true block does not fallthrough to the false
    // block. By not merging them, we make it possible to iteratively
    // ifcvt the blocks.
    if (!HasEarlyExit &&
        NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough &&
        !NextMBB.hasAddressTaken()) {
      MergeBlocks(BBI, *NextBBI);
      FalseBBDead = true;
    } else {
      InsertUncondBranch(*BBI.BB, NextMBB, TII);
      BBI.HasFallThrough = false;
    }
    // Mixed predicated and unpredicated code. This cannot be iteratively
    // predicated.
    IterIfcvt = false;
  }

  // Update block info. BB can be iteratively if-converted.
  if (!IterIfcvt)
    BBI.IsDone = true;
  InvalidatePreds(*BBI.BB);
  CvtBBI->IsDone = true;
  if (FalseBBDead)
    NextBBI->IsDone = true;

  // FIXME: Must maintain LiveIns.
  return true;
}

/// Common code shared between diamond conversions.
/// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
/// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
///               and FalseBBI
/// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
///               and \p FalseBBI
/// \p RemoveBranch - Remove the common branch of the two blocks before
///                   predicating. Only false for unanalyzable fallthrough
///                   cases. The caller will replace the branch if necessary.
/// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
///                    unanalyzable fallthrough
bool IfConverter::IfConvertDiamondCommon(
    BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
    unsigned NumDups1, unsigned NumDups2,
    bool TClobbersPred, bool FClobbersPred,
    bool RemoveBranch, bool MergeAddEdges) {

  if (TrueBBI.IsDone || FalseBBI.IsDone ||
      TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) {
    // Something has changed. It's no longer safe to predicate these blocks.
    BBI.IsAnalyzed = false;
    TrueBBI.IsAnalyzed = false;
    FalseBBI.IsAnalyzed = false;
    return false;
  }

  if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken())
    // Conservatively abort if-conversion if either BB has its address taken.
    return false;

  // Put the predicated instructions from the 'true' block before the
  // instructions from the 'false' block, unless the true block would clobber
  // the predicate, in which case, do the opposite.
  BBInfo *BBI1 = &TrueBBI;
  BBInfo *BBI2 = &FalseBBI;
  SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
  if (TII->reverseBranchCondition(RevCond))
    llvm_unreachable("Unable to reverse branch condition!");
  SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
  SmallVector<MachineOperand, 4> *Cond2 = &RevCond;

  // Figure out the more profitable ordering.
  bool DoSwap = false;
  if (TClobbersPred && !FClobbersPred)
    DoSwap = true;
  else if (!TClobbersPred && !FClobbersPred) {
    if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
      DoSwap = true;
  } else if (TClobbersPred && FClobbersPred)
    llvm_unreachable("Predicate info cannot be clobbered by both sides.");
  if (DoSwap) {
    std::swap(BBI1, BBI2);
    std::swap(Cond1, Cond2);
  }

  // Remove the conditional branch from entry to the blocks.
  BBI.NonPredSize -= TII->removeBranch(*BBI.BB);

  MachineBasicBlock &MBB1 = *BBI1->BB;
  MachineBasicBlock &MBB2 = *BBI2->BB;

  // Initialize the Redefs:
  // - BB2 live-in regs need implicit uses before being redefined by BB1
  //   instructions.
  // - BB1 live-out regs need implicit uses before being redefined by BB2
  //   instructions. We start with BB1 live-ins so we have the live-out regs
  //   after tracking the BB1 instructions.
  Redefs.init(*TRI);
  if (MRI->tracksLiveness()) {
    Redefs.addLiveIns(MBB1);
    Redefs.addLiveIns(MBB2);
  }

  // Remove the duplicated instructions at the beginnings of both paths.
  // Skip dbg_value instructions.
  MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr();
  MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr();
  BBI1->NonPredSize -= NumDups1;
  BBI2->NonPredSize -= NumDups1;

  // Skip past the dups on each side separately since there may be
  // differing dbg_value entries. NumDups1 can include a "return"
  // instruction, if it's not marked as "branch".
  for (unsigned i = 0; i < NumDups1; ++DI1) {
    if (DI1 == MBB1.end())
      break;
    if (!DI1->isDebugInstr())
      ++i;
  }
  while (NumDups1 != 0) {
    // Since this instruction is going to be deleted, update call
    // site info state if the instruction is call instruction.
    if (DI2->shouldUpdateCallSiteInfo())
      MBB2.getParent()->eraseCallSiteInfo(&*DI2);

    ++DI2;
    if (DI2 == MBB2.end())
      break;
    if (!DI2->isDebugInstr())
      --NumDups1;
  }

  if (MRI->tracksLiveness()) {
    for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) {
      SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Dummy;
      Redefs.stepForward(MI, Dummy);
    }
  }

  BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1);
  MBB2.erase(MBB2.begin(), DI2);

  // The branches have been checked to match, so it is safe to remove the
  // branch in BB1 and rely on the copy in BB2. The complication is that
  // the blocks may end with a return instruction, which may or may not
  // be marked as "branch". If it's not, then it could be included in
  // "dups1", leaving the blocks potentially empty after moving the common
  // duplicates.
#ifndef NDEBUG
  // Unanalyzable branches must match exactly. Check that now.
  if (!BBI1->IsBrAnalyzable)
    verifySameBranchInstructions(&MBB1, &MBB2);
#endif
  // Remove duplicated instructions from the tail of MBB1: any branch
  // instructions, and the common instructions counted by NumDups2.
  DI1 = MBB1.end();
  while (DI1 != MBB1.begin()) {
    MachineBasicBlock::iterator Prev = std::prev(DI1);
    if (!Prev->isBranch() && !Prev->isDebugInstr())
      break;
    DI1 = Prev;
  }
  for (unsigned i = 0; i != NumDups2; ) {
    // NumDups2 only counted non-dbg_value instructions, so this won't
    // run off the head of the list.
    assert(DI1 != MBB1.begin());

    --DI1;

    // Since this instruction is going to be deleted, update call
    // site info state if the instruction is call instruction.
    if (DI1->shouldUpdateCallSiteInfo())
      MBB1.getParent()->eraseCallSiteInfo(&*DI1);

    // skip dbg_value instructions
    if (!DI1->isDebugInstr())
      ++i;
  }
  MBB1.erase(DI1, MBB1.end());

  DI2 = BBI2->BB->end();
  // The branches have been checked to match. Skip over the branch in the false
  // block so that we don't try to predicate it.
  if (RemoveBranch)
    BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB);
  else {
    // Make DI2 point to the end of the range where the common "tail"
    // instructions could be found.
    while (DI2 != MBB2.begin()) {
      MachineBasicBlock::iterator Prev = std::prev(DI2);
      if (!Prev->isBranch() && !Prev->isDebugInstr())
        break;
      DI2 = Prev;
    }
  }
  while (NumDups2 != 0) {
    // NumDups2 only counted non-dbg_value instructions, so this won't
    // run off the head of the list.
    assert(DI2 != MBB2.begin());
    --DI2;
    // skip dbg_value instructions
    if (!DI2->isDebugInstr())
      --NumDups2;
  }

  // Remember which registers would later be defined by the false block.
  // This allows us not to predicate instructions in the true block that would
  // later be re-defined. That is, rather than
  //   subeq  r0, r1, #1
  //   addne  r0, r1, #1
  // generate:
  //   sub    r0, r1, #1
  //   addne  r0, r1, #1
  SmallSet<MCPhysReg, 4> RedefsByFalse;
  SmallSet<MCPhysReg, 4> ExtUses;
  if (TII->isProfitableToUnpredicate(MBB1, MBB2)) {
    for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) {
      if (FI.isDebugInstr())
        continue;
      SmallVector<MCPhysReg, 4> Defs;
      for (const MachineOperand &MO : FI.operands()) {
        if (!MO.isReg())
          continue;
        Register Reg = MO.getReg();
        if (!Reg)
          continue;
        if (MO.isDef()) {
          Defs.push_back(Reg);
        } else if (!RedefsByFalse.count(Reg)) {
          // These are defined before ctrl flow reach the 'false' instructions.
          // They cannot be modified by the 'true' instructions.
          for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
               SubRegs.isValid(); ++SubRegs)
            ExtUses.insert(*SubRegs);
        }
      }

      for (MCPhysReg Reg : Defs) {
        if (!ExtUses.count(Reg)) {
          for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
               SubRegs.isValid(); ++SubRegs)
            RedefsByFalse.insert(*SubRegs);
        }
      }
    }
  }

  // Predicate the 'true' block.
  PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse);

  // After predicating BBI1, if there is a predicated terminator in BBI1 and
  // a non-predicated in BBI2, then we don't want to predicate the one from
  // BBI2. The reason is that if we merged these blocks, we would end up with
  // two predicated terminators in the same block.
  // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't
  // predicate them either. They were checked to be identical, and so the
  // same branch would happen regardless of which path was taken.
  if (!MBB2.empty() && (DI2 == MBB2.end())) {
    MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator();
    MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator();
    bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T);
    bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T);
    if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable))
      --DI2;
  }

  // Predicate the 'false' block.
  PredicateBlock(*BBI2, DI2, *Cond2);

  // Merge the true block into the entry of the diamond.
  MergeBlocks(BBI, *BBI1, MergeAddEdges);
  MergeBlocks(BBI, *BBI2, MergeAddEdges);
  return true;
}

/// If convert an almost-diamond sub-CFG where the true
/// and false blocks share a common tail.
bool IfConverter::IfConvertForkedDiamond(
    BBInfo &BBI, IfcvtKind Kind,
    unsigned NumDups1, unsigned NumDups2,
    bool TClobbersPred, bool FClobbersPred) {
  BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];

  // Save the debug location for later.
  DebugLoc dl;
  MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator();
  if (TIE != TrueBBI.BB->end())
    dl = TIE->getDebugLoc();
  // Removing branches from both blocks is safe, because we have already
  // determined that both blocks have the same branch instructions. The branch
  // will be added back at the end, unpredicated.
  if (!IfConvertDiamondCommon(
      BBI, TrueBBI, FalseBBI,
      NumDups1, NumDups2,
      TClobbersPred, FClobbersPred,
      /* RemoveBranch */ true, /* MergeAddEdges */ true))
    return false;

  // Add back the branch.
  // Debug location saved above when removing the branch from BBI2
  TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB,
                    TrueBBI.BrCond, dl);

  // Update block info.
  BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
  InvalidatePreds(*BBI.BB);

  // FIXME: Must maintain LiveIns.
  return true;
}

/// If convert a diamond sub-CFG.
bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
                                   unsigned NumDups1, unsigned NumDups2,
                                   bool TClobbersPred, bool FClobbersPred) {
  BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
  MachineBasicBlock *TailBB = TrueBBI.TrueBB;

  // True block must fall through or end with an unanalyzable terminator.
  if (!TailBB) {
    if (blockAlwaysFallThrough(TrueBBI))
      TailBB = FalseBBI.TrueBB;
    assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
  }

  if (!IfConvertDiamondCommon(
      BBI, TrueBBI, FalseBBI,
      NumDups1, NumDups2,
      TClobbersPred, FClobbersPred,
      /* RemoveBranch */ TrueBBI.IsBrAnalyzable,
      /* MergeAddEdges */ TailBB == nullptr))
    return false;

  // If the if-converted block falls through or unconditionally branches into
  // the tail block, and the tail block does not have other predecessors, then
  // fold the tail block in as well. Otherwise, unless it falls through to the
  // tail, add a unconditional branch to it.
  if (TailBB) {
    // We need to remove the edges to the true and false blocks manually since
    // we didn't let IfConvertDiamondCommon update the CFG.
    BBI.BB->removeSuccessor(TrueBBI.BB);
    BBI.BB->removeSuccessor(FalseBBI.BB, true);

    BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()];
    bool CanMergeTail = !TailBBI.HasFallThrough &&
      !TailBBI.BB->hasAddressTaken();
    // The if-converted block can still have a predicated terminator
    // (e.g. a predicated return). If that is the case, we cannot merge
    // it with the tail block.
    MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator();
    if (TI != BBI.BB->end() && TII->isPredicated(*TI))
      CanMergeTail = false;
    // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
    // check if there are any other predecessors besides those.
    unsigned NumPreds = TailBB->pred_size();
    if (NumPreds > 1)
      CanMergeTail = false;
    else if (NumPreds == 1 && CanMergeTail) {
      MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
      if (*PI != TrueBBI.BB && *PI != FalseBBI.BB)
        CanMergeTail = false;
    }
    if (CanMergeTail) {
      MergeBlocks(BBI, TailBBI);
      TailBBI.IsDone = true;
    } else {
      BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
      InsertUncondBranch(*BBI.BB, *TailBB, TII);
      BBI.HasFallThrough = false;
    }
  }

  // Update block info.
  BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
  InvalidatePreds(*BBI.BB);

  // FIXME: Must maintain LiveIns.
  return true;
}

static bool MaySpeculate(const MachineInstr &MI,
                         SmallSet<MCPhysReg, 4> &LaterRedefs) {
  bool SawStore = true;
  if (!MI.isSafeToMove(nullptr, SawStore))
    return false;

  for (const MachineOperand &MO : MI.operands()) {
    if (!MO.isReg())
      continue;
    Register Reg = MO.getReg();
    if (!Reg)
      continue;
    if (MO.isDef() && !LaterRedefs.count(Reg))
      return false;
  }

  return true;
}

/// Predicate instructions from the start of the block to the specified end with
/// the specified condition.
void IfConverter::PredicateBlock(BBInfo &BBI,
                                 MachineBasicBlock::iterator E,
                                 SmallVectorImpl<MachineOperand> &Cond,
                                 SmallSet<MCPhysReg, 4> *LaterRedefs) {
  bool AnyUnpred = false;
  bool MaySpec = LaterRedefs != nullptr;
  for (MachineInstr &I : make_range(BBI.BB->begin(), E)) {
    if (I.isDebugInstr() || TII->isPredicated(I))
      continue;
    // It may be possible not to predicate an instruction if it's the 'true'
    // side of a diamond and the 'false' side may re-define the instruction's
    // defs.
    if (MaySpec && MaySpeculate(I, *LaterRedefs)) {
      AnyUnpred = true;
      continue;
    }
    // If any instruction is predicated, then every instruction after it must
    // be predicated.
    MaySpec = false;
    if (!TII->PredicateInstruction(I, Cond)) {
#ifndef NDEBUG
      dbgs() << "Unable to predicate " << I << "!\n";
#endif
      llvm_unreachable(nullptr);
    }

    // If the predicated instruction now redefines a register as the result of
    // if-conversion, add an implicit kill.
    UpdatePredRedefs(I, Redefs);
  }

  BBI.Predicate.append(Cond.begin(), Cond.end());

  BBI.IsAnalyzed = false;
  BBI.NonPredSize = 0;

  ++NumIfConvBBs;
  if (AnyUnpred)
    ++NumUnpred;
}

/// Copy and predicate instructions from source BB to the destination block.
/// Skip end of block branches if IgnoreBr is true.
void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
                                        SmallVectorImpl<MachineOperand> &Cond,
                                        bool IgnoreBr) {
  MachineFunction &MF = *ToBBI.BB->getParent();

  MachineBasicBlock &FromMBB = *FromBBI.BB;
  for (MachineInstr &I : FromMBB) {
    // Do not copy the end of the block branches.
    if (IgnoreBr && I.isBranch())
      break;

    MachineInstr *MI = MF.CloneMachineInstr(&I);
    // Make a copy of the call site info.
    if (I.isCandidateForCallSiteEntry())
      MF.copyCallSiteInfo(&I, MI);

    ToBBI.BB->insert(ToBBI.BB->end(), MI);
    ToBBI.NonPredSize++;
    unsigned ExtraPredCost = TII->getPredicationCost(I);
    unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
    if (NumCycles > 1)
      ToBBI.ExtraCost += NumCycles-1;
    ToBBI.ExtraCost2 += ExtraPredCost;

    if (!TII->isPredicated(I) && !MI->isDebugInstr()) {
      if (!TII->PredicateInstruction(*MI, Cond)) {
#ifndef NDEBUG
        dbgs() << "Unable to predicate " << I << "!\n";
#endif
        llvm_unreachable(nullptr);
      }
    }

    // If the predicated instruction now redefines a register as the result of
    // if-conversion, add an implicit kill.
    UpdatePredRedefs(*MI, Redefs);
  }

  if (!IgnoreBr) {
    std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(),
                                           FromMBB.succ_end());
    MachineBasicBlock *NBB = getNextBlock(FromMBB);
    MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;

    for (MachineBasicBlock *Succ : Succs) {
      // Fallthrough edge can't be transferred.
      if (Succ == FallThrough)
        continue;
      ToBBI.BB->addSuccessor(Succ);
    }
  }

  ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
  ToBBI.Predicate.append(Cond.begin(), Cond.end());

  ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
  ToBBI.IsAnalyzed = false;

  ++NumDupBBs;
}

/// Move all instructions from FromBB to the end of ToBB.  This will leave
/// FromBB as an empty block, so remove all of its successor edges and move it
/// to the end of the function.  If AddEdges is true, i.e., when FromBBI's
/// branch is being moved, add those successor edges to ToBBI and remove the old
/// edge from ToBBI to FromBBI.
void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
  MachineBasicBlock &FromMBB = *FromBBI.BB;
  assert(!FromMBB.hasAddressTaken() &&
         "Removing a BB whose address is taken!");

  // In case FromMBB contains terminators (e.g. return instruction),
  // first move the non-terminator instructions, then the terminators.
  MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator();
  MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator();
  ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI);

  // If FromBB has non-predicated terminator we should copy it at the end.
  if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI))
    ToTI = ToBBI.BB->end();
  ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end());

  // Force normalizing the successors' probabilities of ToBBI.BB to convert all
  // unknown probabilities into known ones.
  // FIXME: This usage is too tricky and in the future we would like to
  // eliminate all unknown probabilities in MBB.
  if (ToBBI.IsBrAnalyzable)
    ToBBI.BB->normalizeSuccProbs();

  SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.successors());
  MachineBasicBlock *NBB = getNextBlock(FromMBB);
  MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
  // The edge probability from ToBBI.BB to FromMBB, which is only needed when
  // AddEdges is true and FromMBB is a successor of ToBBI.BB.
  auto To2FromProb = BranchProbability::getZero();
  if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) {
    // Remove the old edge but remember the edge probability so we can calculate
    // the correct weights on the new edges being added further down.
    To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB);
    ToBBI.BB->removeSuccessor(&FromMBB);
  }

  for (MachineBasicBlock *Succ : FromSuccs) {
    // Fallthrough edge can't be transferred.
    if (Succ == FallThrough) {
      FromMBB.removeSuccessor(Succ);
      continue;
    }

    auto NewProb = BranchProbability::getZero();
    if (AddEdges) {
      // Calculate the edge probability for the edge from ToBBI.BB to Succ,
      // which is a portion of the edge probability from FromMBB to Succ. The
      // portion ratio is the edge probability from ToBBI.BB to FromMBB (if
      // FromBBI is a successor of ToBBI.BB. See comment below for exception).
      NewProb = MBPI->getEdgeProbability(&FromMBB, Succ);

      // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
      // only happens when if-converting a diamond CFG and FromMBB is the
      // tail BB.  In this case FromMBB post-dominates ToBBI.BB and hence we
      // could just use the probabilities on FromMBB's out-edges when adding
      // new successors.
      if (!To2FromProb.isZero())
        NewProb *= To2FromProb;
    }

    FromMBB.removeSuccessor(Succ);

    if (AddEdges) {
      // If the edge from ToBBI.BB to Succ already exists, update the
      // probability of this edge by adding NewProb to it. An example is shown
      // below, in which A is ToBBI.BB and B is FromMBB. In this case we
      // don't have to set C as A's successor as it already is. We only need to
      // update the edge probability on A->C. Note that B will not be
      // immediately removed from A's successors. It is possible that B->D is
      // not removed either if D is a fallthrough of B. Later the edge A->D
      // (generated here) and B->D will be combined into one edge. To maintain
      // correct edge probability of this combined edge, we need to set the edge
      // probability of A->B to zero, which is already done above. The edge
      // probability on A->D is calculated by scaling the original probability
      // on A->B by the probability of B->D.
      //
      // Before ifcvt:      After ifcvt (assume B->D is kept):
      //
      //       A                A
      //      /|               /|\
      //     / B              / B|
      //    | /|             |  ||
      //    |/ |             |  |/
      //    C  D             C  D
      //
      if (ToBBI.BB->isSuccessor(Succ))
        ToBBI.BB->setSuccProbability(
            find(ToBBI.BB->successors(), Succ),
            MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
      else
        ToBBI.BB->addSuccessor(Succ, NewProb);
    }
  }

  // Move the now empty FromMBB out of the way to the end of the function so
  // it doesn't interfere with fallthrough checks done by canFallThroughTo().
  MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin();
  if (Last != &FromMBB)
    FromMBB.moveAfter(Last);

  // Normalize the probabilities of ToBBI.BB's successors with all adjustment
  // we've done above.
  if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable)
    ToBBI.BB->normalizeSuccProbs();

  ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
  FromBBI.Predicate.clear();

  ToBBI.NonPredSize += FromBBI.NonPredSize;
  ToBBI.ExtraCost += FromBBI.ExtraCost;
  ToBBI.ExtraCost2 += FromBBI.ExtraCost2;
  FromBBI.NonPredSize = 0;
  FromBBI.ExtraCost = 0;
  FromBBI.ExtraCost2 = 0;

  ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
  ToBBI.HasFallThrough = FromBBI.HasFallThrough;
  ToBBI.IsAnalyzed = false;
  FromBBI.IsAnalyzed = false;
}

FunctionPass *
llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) {
  return new IfConverter(std::move(Ftor));
}