aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/CodeGen/GlobalISel/Utils.cpp
blob: 2adc30eaccb78e6f8030f4529be110198f2a9664 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
//===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file This file implements the utility functions used by the GlobalISel
/// pipeline.
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h" 
#include "llvm/ADT/Optional.h" 
#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/StackProtector.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h" 
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/Target/TargetMachine.h" 

#define DEBUG_TYPE "globalisel-utils"

using namespace llvm;
using namespace MIPatternMatch; 

Register llvm::constrainRegToClass(MachineRegisterInfo &MRI,
                                   const TargetInstrInfo &TII,
                                   const RegisterBankInfo &RBI, Register Reg,
                                   const TargetRegisterClass &RegClass) {
  if (!RBI.constrainGenericRegister(Reg, RegClass, MRI))
    return MRI.createVirtualRegister(&RegClass);

  return Reg;
}

Register llvm::constrainOperandRegClass(
    const MachineFunction &MF, const TargetRegisterInfo &TRI,
    MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
    const RegisterBankInfo &RBI, MachineInstr &InsertPt,
    const TargetRegisterClass &RegClass, MachineOperand &RegMO) { 
  Register Reg = RegMO.getReg();
  // Assume physical registers are properly constrained.
  assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented");

  Register ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass);
  // If we created a new virtual register because the class is not compatible
  // then create a copy between the new and the old register.
  if (ConstrainedReg != Reg) {
    MachineBasicBlock::iterator InsertIt(&InsertPt);
    MachineBasicBlock &MBB = *InsertPt.getParent();
    if (RegMO.isUse()) {
      BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(),
              TII.get(TargetOpcode::COPY), ConstrainedReg)
          .addReg(Reg);
    } else {
      assert(RegMO.isDef() && "Must be a definition");
      BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(),
              TII.get(TargetOpcode::COPY), Reg)
          .addReg(ConstrainedReg);
    }
    if (GISelChangeObserver *Observer = MF.getObserver()) { 
      Observer->changingInstr(*RegMO.getParent()); 
    } 
    RegMO.setReg(ConstrainedReg); 
    if (GISelChangeObserver *Observer = MF.getObserver()) { 
      Observer->changedInstr(*RegMO.getParent()); 
    } 
  } else {
    if (GISelChangeObserver *Observer = MF.getObserver()) {
      if (!RegMO.isDef()) {
        MachineInstr *RegDef = MRI.getVRegDef(Reg);
        Observer->changedInstr(*RegDef);
      }
      Observer->changingAllUsesOfReg(MRI, Reg);
      Observer->finishedChangingAllUsesOfReg();
    }
  }
  return ConstrainedReg;
}

Register llvm::constrainOperandRegClass(
    const MachineFunction &MF, const TargetRegisterInfo &TRI,
    MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
    const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II,
    MachineOperand &RegMO, unsigned OpIdx) { 
  Register Reg = RegMO.getReg();
  // Assume physical registers are properly constrained.
  assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented");

  const TargetRegisterClass *RegClass = TII.getRegClass(II, OpIdx, &TRI, MF);
  // Some of the target independent instructions, like COPY, may not impose any
  // register class constraints on some of their operands: If it's a use, we can
  // skip constraining as the instruction defining the register would constrain
  // it.

  // We can't constrain unallocatable register classes, because we can't create
  // virtual registers for these classes, so we need to let targets handled this
  // case.
  if (RegClass && !RegClass->isAllocatable())
    RegClass = TRI.getConstrainedRegClassForOperand(RegMO, MRI);

  if (!RegClass) {
    assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) &&
           "Register class constraint is required unless either the "
           "instruction is target independent or the operand is a use");
    // FIXME: Just bailing out like this here could be not enough, unless we
    // expect the users of this function to do the right thing for PHIs and
    // COPY:
    //   v1 = COPY v0
    //   v2 = COPY v1
    // v1 here may end up not being constrained at all. Please notice that to
    // reproduce the issue we likely need a destination pattern of a selection
    // rule producing such extra copies, not just an input GMIR with them as
    // every existing target using selectImpl handles copies before calling it
    // and they never reach this function.
    return Reg;
  }
  return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *RegClass,
                                  RegMO);
}

bool llvm::constrainSelectedInstRegOperands(MachineInstr &I,
                                            const TargetInstrInfo &TII,
                                            const TargetRegisterInfo &TRI,
                                            const RegisterBankInfo &RBI) {
  assert(!isPreISelGenericOpcode(I.getOpcode()) &&
         "A selected instruction is expected");
  MachineBasicBlock &MBB = *I.getParent();
  MachineFunction &MF = *MBB.getParent();
  MachineRegisterInfo &MRI = MF.getRegInfo();

  for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) {
    MachineOperand &MO = I.getOperand(OpI);

    // There's nothing to be done on non-register operands.
    if (!MO.isReg())
      continue;

    LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n');
    assert(MO.isReg() && "Unsupported non-reg operand");

    Register Reg = MO.getReg();
    // Physical registers don't need to be constrained.
    if (Register::isPhysicalRegister(Reg))
      continue;

    // Register operands with a value of 0 (e.g. predicate operands) don't need
    // to be constrained.
    if (Reg == 0)
      continue;

    // If the operand is a vreg, we should constrain its regclass, and only
    // insert COPYs if that's impossible.
    // constrainOperandRegClass does that for us.
    constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(), MO, OpI); 

    // Tie uses to defs as indicated in MCInstrDesc if this hasn't already been
    // done.
    if (MO.isUse()) {
      int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO);
      if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx))
        I.tieOperands(DefIdx, OpI);
    }
  }
  return true;
}

bool llvm::canReplaceReg(Register DstReg, Register SrcReg,
                         MachineRegisterInfo &MRI) {
  // Give up if either DstReg or SrcReg  is a physical register.
  if (DstReg.isPhysical() || SrcReg.isPhysical())
    return false;
  // Give up if the types don't match.
  if (MRI.getType(DstReg) != MRI.getType(SrcReg))
    return false;
  // Replace if either DstReg has no constraints or the register
  // constraints match.
  return !MRI.getRegClassOrRegBank(DstReg) ||
         MRI.getRegClassOrRegBank(DstReg) == MRI.getRegClassOrRegBank(SrcReg);
}

bool llvm::isTriviallyDead(const MachineInstr &MI,
                           const MachineRegisterInfo &MRI) {
  // FIXME: This logical is mostly duplicated with 
  // DeadMachineInstructionElim::isDead. Why is LOCAL_ESCAPE not considered in 
  // MachineInstr::isLabel? 
 
  // Don't delete frame allocation labels. 
  if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE) 
    return false; 
 
  // If we can move an instruction, we can remove it.  Otherwise, it has
  // a side-effect of some sort.
  bool SawStore = false;
  if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore) && !MI.isPHI())
    return false;

  // Instructions without side-effects are dead iff they only define dead vregs.
  for (auto &MO : MI.operands()) {
    if (!MO.isReg() || !MO.isDef())
      continue;

    Register Reg = MO.getReg();
    if (Register::isPhysicalRegister(Reg) || !MRI.use_nodbg_empty(Reg))
      return false;
  }
  return true;
}

static void reportGISelDiagnostic(DiagnosticSeverity Severity,
                                  MachineFunction &MF,
                                  const TargetPassConfig &TPC,
                                  MachineOptimizationRemarkEmitter &MORE,
                                  MachineOptimizationRemarkMissed &R) {
  bool IsFatal = Severity == DS_Error &&
                 TPC.isGlobalISelAbortEnabled();
  // Print the function name explicitly if we don't have a debug location (which
  // makes the diagnostic less useful) or if we're going to emit a raw error.
  if (!R.getLocation().isValid() || IsFatal)
    R << (" (in function: " + MF.getName() + ")").str();

  if (IsFatal)
    report_fatal_error(R.getMsg());
  else
    MORE.emit(R);
}

void llvm::reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC,
                              MachineOptimizationRemarkEmitter &MORE,
                              MachineOptimizationRemarkMissed &R) {
  reportGISelDiagnostic(DS_Warning, MF, TPC, MORE, R);
}

void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
                              MachineOptimizationRemarkEmitter &MORE,
                              MachineOptimizationRemarkMissed &R) {
  MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
  reportGISelDiagnostic(DS_Error, MF, TPC, MORE, R);
}

void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
                              MachineOptimizationRemarkEmitter &MORE,
                              const char *PassName, StringRef Msg,
                              const MachineInstr &MI) {
  MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ",
                                    MI.getDebugLoc(), MI.getParent());
  R << Msg;
  // Printing MI is expensive;  only do it if expensive remarks are enabled.
  if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName))
    R << ": " << ore::MNV("Inst", MI);
  reportGISelFailure(MF, TPC, MORE, R);
}

Optional<APInt> llvm::getConstantVRegVal(Register VReg, 
                                         const MachineRegisterInfo &MRI) { 
  Optional<ValueAndVReg> ValAndVReg =
      getConstantVRegValWithLookThrough(VReg, MRI, /*LookThroughInstrs*/ false);
  assert((!ValAndVReg || ValAndVReg->VReg == VReg) &&
         "Value found while looking through instrs");
  if (!ValAndVReg)
    return None;
  return ValAndVReg->Value;
}

Optional<int64_t> llvm::getConstantVRegSExtVal(Register VReg, 
                                               const MachineRegisterInfo &MRI) { 
  Optional<APInt> Val = getConstantVRegVal(VReg, MRI); 
  if (Val && Val->getBitWidth() <= 64) 
    return Val->getSExtValue(); 
  return None; 
} 
 
Optional<ValueAndVReg> llvm::getConstantVRegValWithLookThrough(
    Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs,
    bool HandleFConstant, bool LookThroughAnyExt) { 
  SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes;
  MachineInstr *MI;
  auto IsConstantOpcode = [HandleFConstant](unsigned Opcode) {
    return Opcode == TargetOpcode::G_CONSTANT ||
           (HandleFConstant && Opcode == TargetOpcode::G_FCONSTANT);
  };
  auto GetImmediateValue = [HandleFConstant,
                            &MRI](const MachineInstr &MI) -> Optional<APInt> {
    const MachineOperand &CstVal = MI.getOperand(1);
    if (!CstVal.isImm() && !CstVal.isCImm() &&
        (!HandleFConstant || !CstVal.isFPImm()))
      return None;
    if (!CstVal.isFPImm()) {
      unsigned BitWidth =
          MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
      APInt Val = CstVal.isImm() ? APInt(BitWidth, CstVal.getImm())
                                 : CstVal.getCImm()->getValue();
      assert(Val.getBitWidth() == BitWidth &&
             "Value bitwidth doesn't match definition type");
      return Val;
    }
    return CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
  };
  while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI->getOpcode()) &&
         LookThroughInstrs) {
    switch (MI->getOpcode()) {
    case TargetOpcode::G_ANYEXT: 
      if (!LookThroughAnyExt) 
        return None; 
      LLVM_FALLTHROUGH; 
    case TargetOpcode::G_TRUNC:
    case TargetOpcode::G_SEXT:
    case TargetOpcode::G_ZEXT:
      SeenOpcodes.push_back(std::make_pair(
          MI->getOpcode(),
          MRI.getType(MI->getOperand(0).getReg()).getSizeInBits()));
      VReg = MI->getOperand(1).getReg();
      break;
    case TargetOpcode::COPY:
      VReg = MI->getOperand(1).getReg();
      if (Register::isPhysicalRegister(VReg))
        return None;
      break;
    case TargetOpcode::G_INTTOPTR:
      VReg = MI->getOperand(1).getReg();
      break;
    default:
      return None;
    }
  }
  if (!MI || !IsConstantOpcode(MI->getOpcode()))
    return None;

  Optional<APInt> MaybeVal = GetImmediateValue(*MI);
  if (!MaybeVal)
    return None;
  APInt &Val = *MaybeVal;
  while (!SeenOpcodes.empty()) {
    std::pair<unsigned, unsigned> OpcodeAndSize = SeenOpcodes.pop_back_val();
    switch (OpcodeAndSize.first) {
    case TargetOpcode::G_TRUNC:
      Val = Val.trunc(OpcodeAndSize.second);
      break;
    case TargetOpcode::G_ANYEXT: 
    case TargetOpcode::G_SEXT:
      Val = Val.sext(OpcodeAndSize.second);
      break;
    case TargetOpcode::G_ZEXT:
      Val = Val.zext(OpcodeAndSize.second);
      break;
    }
  }

  return ValueAndVReg{Val, VReg}; 
}

const ConstantFP * 
llvm::getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI) {
  MachineInstr *MI = MRI.getVRegDef(VReg);
  if (TargetOpcode::G_FCONSTANT != MI->getOpcode())
    return nullptr;
  return MI->getOperand(1).getFPImm();
}

Optional<DefinitionAndSourceRegister> 
llvm::getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) { 
  Register DefSrcReg = Reg;
  auto *DefMI = MRI.getVRegDef(Reg);
  auto DstTy = MRI.getType(DefMI->getOperand(0).getReg());
  if (!DstTy.isValid())
    return None;
  while (DefMI->getOpcode() == TargetOpcode::COPY) {
    Register SrcReg = DefMI->getOperand(1).getReg();
    auto SrcTy = MRI.getType(SrcReg);
    if (!SrcTy.isValid()) 
      break;
    DefMI = MRI.getVRegDef(SrcReg);
    DefSrcReg = SrcReg;
  }
  return DefinitionAndSourceRegister{DefMI, DefSrcReg};
}

MachineInstr *llvm::getDefIgnoringCopies(Register Reg, 
                                         const MachineRegisterInfo &MRI) { 
  Optional<DefinitionAndSourceRegister> DefSrcReg =
      getDefSrcRegIgnoringCopies(Reg, MRI);
  return DefSrcReg ? DefSrcReg->MI : nullptr;
}

Register llvm::getSrcRegIgnoringCopies(Register Reg,
                                       const MachineRegisterInfo &MRI) {
  Optional<DefinitionAndSourceRegister> DefSrcReg =
      getDefSrcRegIgnoringCopies(Reg, MRI);
  return DefSrcReg ? DefSrcReg->Reg : Register();
}

MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg, 
                                 const MachineRegisterInfo &MRI) { 
  MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI);
  return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr;
}

APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) {
  if (Size == 32)
    return APFloat(float(Val));
  if (Size == 64)
    return APFloat(Val);
  if (Size != 16)
    llvm_unreachable("Unsupported FPConstant size");
  bool Ignored;
  APFloat APF(Val);
  APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
  return APF;
}

Optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode, const Register Op1,
                                        const Register Op2,
                                        const MachineRegisterInfo &MRI) {
  auto MaybeOp2Cst = getConstantVRegVal(Op2, MRI);
  if (!MaybeOp2Cst)
    return None;

  auto MaybeOp1Cst = getConstantVRegVal(Op1, MRI);
  if (!MaybeOp1Cst)
    return None;

  const APInt &C1 = *MaybeOp1Cst; 
  const APInt &C2 = *MaybeOp2Cst; 
  switch (Opcode) {
  default:
    break;
  case TargetOpcode::G_ADD:
    return C1 + C2;
  case TargetOpcode::G_AND:
    return C1 & C2;
  case TargetOpcode::G_ASHR:
    return C1.ashr(C2);
  case TargetOpcode::G_LSHR:
    return C1.lshr(C2);
  case TargetOpcode::G_MUL:
    return C1 * C2;
  case TargetOpcode::G_OR:
    return C1 | C2;
  case TargetOpcode::G_SHL:
    return C1 << C2;
  case TargetOpcode::G_SUB:
    return C1 - C2;
  case TargetOpcode::G_XOR:
    return C1 ^ C2;
  case TargetOpcode::G_UDIV:
    if (!C2.getBoolValue())
      break;
    return C1.udiv(C2);
  case TargetOpcode::G_SDIV:
    if (!C2.getBoolValue())
      break;
    return C1.sdiv(C2);
  case TargetOpcode::G_UREM:
    if (!C2.getBoolValue())
      break;
    return C1.urem(C2);
  case TargetOpcode::G_SREM:
    if (!C2.getBoolValue())
      break;
    return C1.srem(C2);
  }

  return None;
}

bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI,
                           bool SNaN) {
  const MachineInstr *DefMI = MRI.getVRegDef(Val);
  if (!DefMI)
    return false;

  const TargetMachine& TM = DefMI->getMF()->getTarget(); 
  if (DefMI->getFlag(MachineInstr::FmNoNans) || TM.Options.NoNaNsFPMath) 
    return true;

  if (SNaN) {
    // FP operations quiet. For now, just handle the ones inserted during
    // legalization.
    switch (DefMI->getOpcode()) {
    case TargetOpcode::G_FPEXT:
    case TargetOpcode::G_FPTRUNC:
    case TargetOpcode::G_FCANONICALIZE:
      return true;
    default:
      return false;
    }
  }

  return false;
}

Align llvm::inferAlignFromPtrInfo(MachineFunction &MF,
                                  const MachinePointerInfo &MPO) {
  auto PSV = MPO.V.dyn_cast<const PseudoSourceValue *>();
  if (auto FSPV = dyn_cast_or_null<FixedStackPseudoSourceValue>(PSV)) {
    MachineFrameInfo &MFI = MF.getFrameInfo();
    return commonAlignment(MFI.getObjectAlign(FSPV->getFrameIndex()),
                           MPO.Offset);
  }

  return Align(1);
}

Register llvm::getFunctionLiveInPhysReg(MachineFunction &MF, 
                                        const TargetInstrInfo &TII, 
                                        MCRegister PhysReg, 
                                        const TargetRegisterClass &RC, 
                                        LLT RegTy) { 
  DebugLoc DL; // FIXME: Is no location the right choice? 
  MachineBasicBlock &EntryMBB = MF.front(); 
  MachineRegisterInfo &MRI = MF.getRegInfo(); 
  Register LiveIn = MRI.getLiveInVirtReg(PhysReg); 
  if (LiveIn) { 
    MachineInstr *Def = MRI.getVRegDef(LiveIn); 
    if (Def) { 
      // FIXME: Should the verifier check this is in the entry block? 
      assert(Def->getParent() == &EntryMBB && "live-in copy not in entry block"); 
      return LiveIn; 
    } 
 
    // It's possible the incoming argument register and copy was added during 
    // lowering, but later deleted due to being/becoming dead. If this happens, 
    // re-insert the copy. 
  } else { 
    // The live in register was not present, so add it. 
    LiveIn = MF.addLiveIn(PhysReg, &RC); 
    if (RegTy.isValid()) 
      MRI.setType(LiveIn, RegTy); 
  } 
 
  BuildMI(EntryMBB, EntryMBB.begin(), DL, TII.get(TargetOpcode::COPY), LiveIn) 
    .addReg(PhysReg); 
  if (!EntryMBB.isLiveIn(PhysReg)) 
    EntryMBB.addLiveIn(PhysReg); 
  return LiveIn; 
} 
 
Optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode, const Register Op1,
                                        uint64_t Imm,
                                        const MachineRegisterInfo &MRI) {
  auto MaybeOp1Cst = getConstantVRegVal(Op1, MRI);
  if (MaybeOp1Cst) {
    switch (Opcode) {
    default:
      break;
    case TargetOpcode::G_SEXT_INREG: { 
      LLT Ty = MRI.getType(Op1); 
      return MaybeOp1Cst->trunc(Imm).sext(Ty.getScalarSizeInBits()); 
    }
    } 
  }
  return None;
}

bool llvm::isKnownToBeAPowerOfTwo(Register Reg, const MachineRegisterInfo &MRI, 
                                  GISelKnownBits *KB) { 
  Optional<DefinitionAndSourceRegister> DefSrcReg = 
      getDefSrcRegIgnoringCopies(Reg, MRI); 
  if (!DefSrcReg) 
    return false; 
 
  const MachineInstr &MI = *DefSrcReg->MI; 
  const LLT Ty = MRI.getType(Reg); 
 
  switch (MI.getOpcode()) { 
  case TargetOpcode::G_CONSTANT: { 
    unsigned BitWidth = Ty.getScalarSizeInBits(); 
    const ConstantInt *CI = MI.getOperand(1).getCImm(); 
    return CI->getValue().zextOrTrunc(BitWidth).isPowerOf2(); 
  } 
  case TargetOpcode::G_SHL: { 
    // A left-shift of a constant one will have exactly one bit set because 
    // shifting the bit off the end is undefined. 
 
    // TODO: Constant splat 
    if (auto ConstLHS = getConstantVRegVal(MI.getOperand(1).getReg(), MRI)) { 
      if (*ConstLHS == 1) 
        return true; 
    } 
 
    break; 
  } 
  case TargetOpcode::G_LSHR: { 
    if (auto ConstLHS = getConstantVRegVal(MI.getOperand(1).getReg(), MRI)) { 
      if (ConstLHS->isSignMask()) 
        return true; 
    } 
 
    break; 
  } 
  default: 
    break; 
  } 
 
  // TODO: Are all operands of a build vector constant powers of two? 
  if (!KB) 
    return false; 
 
  // More could be done here, though the above checks are enough 
  // to handle some common cases. 
 
  // Fall back to computeKnownBits to catch other known cases. 
  KnownBits Known = KB->getKnownBits(Reg); 
  return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 
} 
 
void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) {
  AU.addPreserved<StackProtector>();
}

static unsigned getLCMSize(unsigned OrigSize, unsigned TargetSize) { 
  unsigned Mul = OrigSize * TargetSize; 
  unsigned GCDSize = greatestCommonDivisor(OrigSize, TargetSize); 
  return Mul / GCDSize; 
} 

LLT llvm::getLCMType(LLT OrigTy, LLT TargetTy) { 
  const unsigned OrigSize = OrigTy.getSizeInBits(); 
  const unsigned TargetSize = TargetTy.getSizeInBits(); 
 
  if (OrigSize == TargetSize) 
    return OrigTy; 
 
  if (OrigTy.isVector()) { 
    const LLT OrigElt = OrigTy.getElementType(); 
 
    if (TargetTy.isVector()) { 
      const LLT TargetElt = TargetTy.getElementType(); 
 
      if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) { 
        int GCDElts = greatestCommonDivisor(OrigTy.getNumElements(), 
                                            TargetTy.getNumElements()); 
        // Prefer the original element type. 
        int Mul = OrigTy.getNumElements() * TargetTy.getNumElements(); 
        return LLT::vector(Mul / GCDElts, OrigTy.getElementType()); 
      } 
    } else { 
      if (OrigElt.getSizeInBits() == TargetSize) 
        return OrigTy; 
    } 
 
    unsigned LCMSize = getLCMSize(OrigSize, TargetSize); 
    return LLT::vector(LCMSize / OrigElt.getSizeInBits(), OrigElt); 
  }

  if (TargetTy.isVector()) { 
    unsigned LCMSize = getLCMSize(OrigSize, TargetSize); 
    return LLT::vector(LCMSize / OrigSize, OrigTy); 
  }

  unsigned LCMSize = getLCMSize(OrigSize, TargetSize); 

  // Preserve pointer types. 
  if (LCMSize == OrigSize) 
    return OrigTy; 
  if (LCMSize == TargetSize) 
    return TargetTy; 

  return LLT::scalar(LCMSize); 
} 
 
LLT llvm::getGCDType(LLT OrigTy, LLT TargetTy) { 
  const unsigned OrigSize = OrigTy.getSizeInBits(); 
  const unsigned TargetSize = TargetTy.getSizeInBits(); 
 
  if (OrigSize == TargetSize) 
    return OrigTy; 
 
  if (OrigTy.isVector()) { 
    LLT OrigElt = OrigTy.getElementType(); 
    if (TargetTy.isVector()) { 
      LLT TargetElt = TargetTy.getElementType(); 
      if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) { 
        int GCD = greatestCommonDivisor(OrigTy.getNumElements(), 
                                        TargetTy.getNumElements()); 
        return LLT::scalarOrVector(GCD, OrigElt); 
      } 
    } else { 
      // If the source is a vector of pointers, return a pointer element. 
      if (OrigElt.getSizeInBits() == TargetSize) 
        return OrigElt; 
    } 
 
    unsigned GCD = greatestCommonDivisor(OrigSize, TargetSize); 
    if (GCD == OrigElt.getSizeInBits()) 
      return OrigElt; 
 
    // If we can't produce the original element type, we have to use a smaller 
    // scalar. 
    if (GCD < OrigElt.getSizeInBits()) 
      return LLT::scalar(GCD); 
    return LLT::vector(GCD / OrigElt.getSizeInBits(), OrigElt); 
  }

  if (TargetTy.isVector()) { 
    // Try to preserve the original element type. 
    LLT TargetElt = TargetTy.getElementType(); 
    if (TargetElt.getSizeInBits() == OrigSize) 
      return OrigTy; 
  } 
 
  unsigned GCD = greatestCommonDivisor(OrigSize, TargetSize); 
  return LLT::scalar(GCD); 
}

Optional<int> llvm::getSplatIndex(MachineInstr &MI) { 
  assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 
         "Only G_SHUFFLE_VECTOR can have a splat index!"); 
  ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 
  auto FirstDefinedIdx = find_if(Mask, [](int Elt) { return Elt >= 0; }); 
 
  // If all elements are undefined, this shuffle can be considered a splat. 
  // Return 0 for better potential for callers to simplify. 
  if (FirstDefinedIdx == Mask.end()) 
    return 0; 
 
  // Make sure all remaining elements are either undef or the same 
  // as the first non-undef value. 
  int SplatValue = *FirstDefinedIdx; 
  if (any_of(make_range(std::next(FirstDefinedIdx), Mask.end()), 
             [&SplatValue](int Elt) { return Elt >= 0 && Elt != SplatValue; })) 
    return None; 
 
  return SplatValue; 
} 
 
static bool isBuildVectorOp(unsigned Opcode) { 
  return Opcode == TargetOpcode::G_BUILD_VECTOR || 
         Opcode == TargetOpcode::G_BUILD_VECTOR_TRUNC; 
} 
 
// TODO: Handle mixed undef elements. 
static bool isBuildVectorConstantSplat(const MachineInstr &MI, 
                                       const MachineRegisterInfo &MRI, 
                                       int64_t SplatValue) { 
  if (!isBuildVectorOp(MI.getOpcode())) 
    return false; 
 
  const unsigned NumOps = MI.getNumOperands(); 
  for (unsigned I = 1; I != NumOps; ++I) { 
    Register Element = MI.getOperand(I).getReg(); 
    if (!mi_match(Element, MRI, m_SpecificICst(SplatValue))) 
      return false; 
  }

  return true; 
} 
 
Optional<int64_t> 
llvm::getBuildVectorConstantSplat(const MachineInstr &MI, 
                                  const MachineRegisterInfo &MRI) { 
  if (!isBuildVectorOp(MI.getOpcode())) 
    return None; 
 
  const unsigned NumOps = MI.getNumOperands(); 
  Optional<int64_t> Scalar; 
  for (unsigned I = 1; I != NumOps; ++I) { 
    Register Element = MI.getOperand(I).getReg(); 
    int64_t ElementValue; 
    if (!mi_match(Element, MRI, m_ICst(ElementValue))) 
      return None; 
    if (!Scalar) 
      Scalar = ElementValue; 
    else if (*Scalar != ElementValue) 
      return None; 
  }

  return Scalar; 
} 

bool llvm::isBuildVectorAllZeros(const MachineInstr &MI, 
                                 const MachineRegisterInfo &MRI) { 
  return isBuildVectorConstantSplat(MI, MRI, 0); 
}
 
bool llvm::isBuildVectorAllOnes(const MachineInstr &MI, 
                                const MachineRegisterInfo &MRI) { 
  return isBuildVectorConstantSplat(MI, MRI, -1); 
} 
 
bool llvm::isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector, 
                          bool IsFP) { 
  switch (TLI.getBooleanContents(IsVector, IsFP)) { 
  case TargetLowering::UndefinedBooleanContent: 
    return Val & 0x1; 
  case TargetLowering::ZeroOrOneBooleanContent: 
    return Val == 1; 
  case TargetLowering::ZeroOrNegativeOneBooleanContent: 
    return Val == -1; 
  } 
  llvm_unreachable("Invalid boolean contents"); 
} 
 
int64_t llvm::getICmpTrueVal(const TargetLowering &TLI, bool IsVector, 
                             bool IsFP) { 
  switch (TLI.getBooleanContents(IsVector, IsFP)) { 
  case TargetLowering::UndefinedBooleanContent: 
  case TargetLowering::ZeroOrOneBooleanContent: 
    return 1; 
  case TargetLowering::ZeroOrNegativeOneBooleanContent: 
    return -1; 
  } 
  llvm_unreachable("Invalid boolean contents"); 
}