aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Analysis/MustExecute.cpp
blob: 1e7626013eedba1976049c0581333588907696f7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
//===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/MustExecute.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/AssemblyAnnotationWriter.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

#define DEBUG_TYPE "must-execute"

const DenseMap<BasicBlock *, ColorVector> &
LoopSafetyInfo::getBlockColors() const {
  return BlockColors;
}

void LoopSafetyInfo::copyColors(BasicBlock *New, BasicBlock *Old) {
  ColorVector &ColorsForNewBlock = BlockColors[New];
  ColorVector &ColorsForOldBlock = BlockColors[Old];
  ColorsForNewBlock = ColorsForOldBlock;
}

bool SimpleLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
  (void)BB;
  return anyBlockMayThrow();
}

bool SimpleLoopSafetyInfo::anyBlockMayThrow() const {
  return MayThrow;
}

void SimpleLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
  assert(CurLoop != nullptr && "CurLoop can't be null");
  BasicBlock *Header = CurLoop->getHeader();
  // Iterate over header and compute safety info.
  HeaderMayThrow = !isGuaranteedToTransferExecutionToSuccessor(Header);
  MayThrow = HeaderMayThrow;
  // Iterate over loop instructions and compute safety info.
  // Skip header as it has been computed and stored in HeaderMayThrow.
  // The first block in loopinfo.Blocks is guaranteed to be the header.
  assert(Header == *CurLoop->getBlocks().begin() &&
         "First block must be header");
  for (Loop::block_iterator BB = std::next(CurLoop->block_begin()),
                            BBE = CurLoop->block_end();
       (BB != BBE) && !MayThrow; ++BB)
    MayThrow |= !isGuaranteedToTransferExecutionToSuccessor(*BB);

  computeBlockColors(CurLoop);
}

bool ICFLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
  return ICF.hasICF(BB);
}

bool ICFLoopSafetyInfo::anyBlockMayThrow() const {
  return MayThrow;
}

void ICFLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
  assert(CurLoop != nullptr && "CurLoop can't be null");
  ICF.clear();
  MW.clear();
  MayThrow = false;
  // Figure out the fact that at least one block may throw.
  for (auto &BB : CurLoop->blocks())
    if (ICF.hasICF(&*BB)) {
      MayThrow = true;
      break;
    }
  computeBlockColors(CurLoop);
}

void ICFLoopSafetyInfo::insertInstructionTo(const Instruction *Inst,
                                            const BasicBlock *BB) {
  ICF.insertInstructionTo(Inst, BB);
  MW.insertInstructionTo(Inst, BB);
}

void ICFLoopSafetyInfo::removeInstruction(const Instruction *Inst) {
  ICF.removeInstruction(Inst);
  MW.removeInstruction(Inst);
}

void LoopSafetyInfo::computeBlockColors(const Loop *CurLoop) {
  // Compute funclet colors if we might sink/hoist in a function with a funclet
  // personality routine.
  Function *Fn = CurLoop->getHeader()->getParent();
  if (Fn->hasPersonalityFn())
    if (Constant *PersonalityFn = Fn->getPersonalityFn())
      if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn)))
        BlockColors = colorEHFunclets(*Fn);
}

/// Return true if we can prove that the given ExitBlock is not reached on the
/// first iteration of the given loop.  That is, the backedge of the loop must
/// be executed before the ExitBlock is executed in any dynamic execution trace.
static bool CanProveNotTakenFirstIteration(const BasicBlock *ExitBlock,
                                           const DominatorTree *DT,
                                           const Loop *CurLoop) {
  auto *CondExitBlock = ExitBlock->getSinglePredecessor();
  if (!CondExitBlock)
    // expect unique exits
    return false;
  assert(CurLoop->contains(CondExitBlock) && "meaning of exit block");
  auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator());
  if (!BI || !BI->isConditional())
    return false;
  // If condition is constant and false leads to ExitBlock then we always
  // execute the true branch.
  if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition()))
    return BI->getSuccessor(Cond->getZExtValue() ? 1 : 0) == ExitBlock;
  auto *Cond = dyn_cast<CmpInst>(BI->getCondition());
  if (!Cond)
    return false;
  // todo: this would be a lot more powerful if we used scev, but all the
  // plumbing is currently missing to pass a pointer in from the pass
  // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known
  auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0));
  auto *RHS = Cond->getOperand(1);
  if (!LHS || LHS->getParent() != CurLoop->getHeader())
    return false;
  auto DL = ExitBlock->getModule()->getDataLayout();
  auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader());
  auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(),
                                          IVStart, RHS,
                                          {DL, /*TLI*/ nullptr,
                                              DT, /*AC*/ nullptr, BI});
  auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull);
  if (!SimpleCst)
    return false;
  if (ExitBlock == BI->getSuccessor(0))
    return SimpleCst->isZeroValue();
  assert(ExitBlock == BI->getSuccessor(1) && "implied by above");
  return SimpleCst->isAllOnesValue();
}

/// Collect all blocks from \p CurLoop which lie on all possible paths from
/// the header of \p CurLoop (inclusive) to BB (exclusive) into the set
/// \p Predecessors. If \p BB is the header, \p Predecessors will be empty.
static void collectTransitivePredecessors(
    const Loop *CurLoop, const BasicBlock *BB,
    SmallPtrSetImpl<const BasicBlock *> &Predecessors) {
  assert(Predecessors.empty() && "Garbage in predecessors set?");
  assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
  if (BB == CurLoop->getHeader())
    return;
  SmallVector<const BasicBlock *, 4> WorkList;
  for (auto *Pred : predecessors(BB)) {
    Predecessors.insert(Pred);
    WorkList.push_back(Pred);
  }
  while (!WorkList.empty()) {
    auto *Pred = WorkList.pop_back_val();
    assert(CurLoop->contains(Pred) && "Should only reach loop blocks!");
    // We are not interested in backedges and we don't want to leave loop.
    if (Pred == CurLoop->getHeader())
      continue;
    // TODO: If BB lies in an inner loop of CurLoop, this will traverse over all
    // blocks of this inner loop, even those that are always executed AFTER the
    // BB. It may make our analysis more conservative than it could be, see test
    // @nested and @nested_no_throw in test/Analysis/MustExecute/loop-header.ll.
    // We can ignore backedge of all loops containing BB to get a sligtly more
    // optimistic result.
    for (auto *PredPred : predecessors(Pred))
      if (Predecessors.insert(PredPred).second)
        WorkList.push_back(PredPred);
  }
}

bool LoopSafetyInfo::allLoopPathsLeadToBlock(const Loop *CurLoop,
                                             const BasicBlock *BB,
                                             const DominatorTree *DT) const {
  assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");

  // Fast path: header is always reached once the loop is entered.
  if (BB == CurLoop->getHeader())
    return true;

  // Collect all transitive predecessors of BB in the same loop. This set will
  // be a subset of the blocks within the loop.
  SmallPtrSet<const BasicBlock *, 4> Predecessors;
  collectTransitivePredecessors(CurLoop, BB, Predecessors);

  // Make sure that all successors of, all predecessors of BB which are not
  // dominated by BB, are either:
  // 1) BB,
  // 2) Also predecessors of BB,
  // 3) Exit blocks which are not taken on 1st iteration.
  // Memoize blocks we've already checked.
  SmallPtrSet<const BasicBlock *, 4> CheckedSuccessors;
  for (auto *Pred : Predecessors) {
    // Predecessor block may throw, so it has a side exit.
    if (blockMayThrow(Pred))
      return false;

    // BB dominates Pred, so if Pred runs, BB must run.
    // This is true when Pred is a loop latch.
    if (DT->dominates(BB, Pred))
      continue;

    for (auto *Succ : successors(Pred))
      if (CheckedSuccessors.insert(Succ).second &&
          Succ != BB && !Predecessors.count(Succ))
        // By discharging conditions that are not executed on the 1st iteration,
        // we guarantee that *at least* on the first iteration all paths from
        // header that *may* execute will lead us to the block of interest. So
        // that if we had virtually peeled one iteration away, in this peeled
        // iteration the set of predecessors would contain only paths from
        // header to BB without any exiting edges that may execute.
        //
        // TODO: We only do it for exiting edges currently. We could use the
        // same function to skip some of the edges within the loop if we know
        // that they will not be taken on the 1st iteration.
        //
        // TODO: If we somehow know the number of iterations in loop, the same
        // check may be done for any arbitrary N-th iteration as long as N is
        // not greater than minimum number of iterations in this loop.
        if (CurLoop->contains(Succ) ||
            !CanProveNotTakenFirstIteration(Succ, DT, CurLoop))
          return false;
  }

  // All predecessors can only lead us to BB.
  return true;
}

/// Returns true if the instruction in a loop is guaranteed to execute at least
/// once.
bool SimpleLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
                                                 const DominatorTree *DT,
                                                 const Loop *CurLoop) const {
  // If the instruction is in the header block for the loop (which is very
  // common), it is always guaranteed to dominate the exit blocks.  Since this
  // is a common case, and can save some work, check it now.
  if (Inst.getParent() == CurLoop->getHeader())
    // If there's a throw in the header block, we can't guarantee we'll reach
    // Inst unless we can prove that Inst comes before the potential implicit
    // exit.  At the moment, we use a (cheap) hack for the common case where
    // the instruction of interest is the first one in the block.
    return !HeaderMayThrow ||
           Inst.getParent()->getFirstNonPHIOrDbg() == &Inst;

  // If there is a path from header to exit or latch that doesn't lead to our
  // instruction's block, return false.
  return allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
}

bool ICFLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
                                              const DominatorTree *DT,
                                              const Loop *CurLoop) const {
  return !ICF.isDominatedByICFIFromSameBlock(&Inst) &&
         allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
}

bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const BasicBlock *BB,
                                                 const Loop *CurLoop) const {
  assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");

  // Fast path: there are no instructions before header.
  if (BB == CurLoop->getHeader())
    return true;

  // Collect all transitive predecessors of BB in the same loop. This set will
  // be a subset of the blocks within the loop.
  SmallPtrSet<const BasicBlock *, 4> Predecessors;
  collectTransitivePredecessors(CurLoop, BB, Predecessors);
  // Find if there any instruction in either predecessor that could write
  // to memory.
  for (auto *Pred : Predecessors)
    if (MW.mayWriteToMemory(Pred))
      return false;
  return true;
}

bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const Instruction &I,
                                                 const Loop *CurLoop) const {
  auto *BB = I.getParent();
  assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
  return !MW.isDominatedByMemoryWriteFromSameBlock(&I) &&
         doesNotWriteMemoryBefore(BB, CurLoop);
}

namespace {
struct MustExecutePrinter : public FunctionPass {

  static char ID; // Pass identification, replacement for typeid
  MustExecutePrinter() : FunctionPass(ID) {
    initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry());
  }
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesAll();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
  }
  bool runOnFunction(Function &F) override;
};
struct MustBeExecutedContextPrinter : public ModulePass {
  static char ID;

  MustBeExecutedContextPrinter() : ModulePass(ID) {
    initializeMustBeExecutedContextPrinterPass(
        *PassRegistry::getPassRegistry());
  }
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesAll();
  }
  bool runOnModule(Module &M) override;
};
}

char MustExecutePrinter::ID = 0;
INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute",
                      "Instructions which execute on loop entry", false, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute",
                    "Instructions which execute on loop entry", false, true)

FunctionPass *llvm::createMustExecutePrinter() {
  return new MustExecutePrinter();
}

char MustBeExecutedContextPrinter::ID = 0;
INITIALIZE_PASS_BEGIN(MustBeExecutedContextPrinter,
                      "print-must-be-executed-contexts",
                      "print the must-be-executed-context for all instructions",
                      false, true)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(MustBeExecutedContextPrinter,
                    "print-must-be-executed-contexts",
                    "print the must-be-executed-context for all instructions",
                    false, true)

ModulePass *llvm::createMustBeExecutedContextPrinter() {
  return new MustBeExecutedContextPrinter();
}

bool MustBeExecutedContextPrinter::runOnModule(Module &M) {
  // We provide non-PM analysis here because the old PM doesn't like to query
  // function passes from a module pass.
  SmallVector<std::unique_ptr<PostDominatorTree>, 8> PDTs;
  SmallVector<std::unique_ptr<DominatorTree>, 8> DTs;
  SmallVector<std::unique_ptr<LoopInfo>, 8> LIs;

  GetterTy<LoopInfo> LIGetter = [&](const Function &F) {
    DTs.push_back(std::make_unique<DominatorTree>(const_cast<Function &>(F)));
    LIs.push_back(std::make_unique<LoopInfo>(*DTs.back()));
    return LIs.back().get();
  };
  GetterTy<DominatorTree> DTGetter = [&](const Function &F) {
    DTs.push_back(std::make_unique<DominatorTree>(const_cast<Function&>(F)));
    return DTs.back().get();
  };
  GetterTy<PostDominatorTree> PDTGetter = [&](const Function &F) {
    PDTs.push_back(
        std::make_unique<PostDominatorTree>(const_cast<Function &>(F)));
    return PDTs.back().get();
  };
  MustBeExecutedContextExplorer Explorer(
      /* ExploreInterBlock */ true,
      /* ExploreCFGForward */ true,
      /* ExploreCFGBackward */ true, LIGetter, DTGetter, PDTGetter);

  for (Function &F : M) {
    for (Instruction &I : instructions(F)) {
      dbgs() << "-- Explore context of: " << I << "\n";
      for (const Instruction *CI : Explorer.range(&I))
        dbgs() << "  [F: " << CI->getFunction()->getName() << "] " << *CI
               << "\n";
    }
  }

  return false;
}

static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) {
  // TODO: merge these two routines.  For the moment, we display the best
  // result obtained by *either* implementation.  This is a bit unfair since no
  // caller actually gets the full power at the moment.
  SimpleLoopSafetyInfo LSI;
  LSI.computeLoopSafetyInfo(L);
  return LSI.isGuaranteedToExecute(I, DT, L) ||
    isGuaranteedToExecuteForEveryIteration(&I, L);
}

namespace {
/// An assembly annotator class to print must execute information in
/// comments.
class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter {
  DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec;

public:
  MustExecuteAnnotatedWriter(const Function &F,
                             DominatorTree &DT, LoopInfo &LI) {
    for (auto &I: instructions(F)) {
      Loop *L = LI.getLoopFor(I.getParent());
      while (L) {
        if (isMustExecuteIn(I, L, &DT)) {
          MustExec[&I].push_back(L);
        }
        L = L->getParentLoop();
      };
    }
  }
  MustExecuteAnnotatedWriter(const Module &M,
                             DominatorTree &DT, LoopInfo &LI) {
    for (auto &F : M)
    for (auto &I: instructions(F)) {
      Loop *L = LI.getLoopFor(I.getParent());
      while (L) {
        if (isMustExecuteIn(I, L, &DT)) {
          MustExec[&I].push_back(L);
        }
        L = L->getParentLoop();
      };
    }
  }


  void printInfoComment(const Value &V, formatted_raw_ostream &OS) override {
    if (!MustExec.count(&V))
      return;

    const auto &Loops = MustExec.lookup(&V);
    const auto NumLoops = Loops.size();
    if (NumLoops > 1)
      OS << " ; (mustexec in " << NumLoops << " loops: ";
    else
      OS << " ; (mustexec in: ";

    bool first = true;
    for (const Loop *L : Loops) {
      if (!first)
        OS << ", ";
      first = false;
      OS << L->getHeader()->getName();
    }
    OS << ")";
  }
};
} // namespace

bool MustExecutePrinter::runOnFunction(Function &F) {
  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();

  MustExecuteAnnotatedWriter Writer(F, DT, LI);
  F.print(dbgs(), &Writer);

  return false;
}

/// Return true if \p L might be an endless loop.
static bool maybeEndlessLoop(const Loop &L) {
  if (L.getHeader()->getParent()->hasFnAttribute(Attribute::WillReturn))
    return false;
  // TODO: Actually try to prove it is not.
  // TODO: If maybeEndlessLoop is going to be expensive, cache it.
  return true;
}

bool llvm::mayContainIrreducibleControl(const Function &F, const LoopInfo *LI) {
  if (!LI)
    return false;
  using RPOTraversal = ReversePostOrderTraversal<const Function *>;
  RPOTraversal FuncRPOT(&F);
  return containsIrreducibleCFG<const BasicBlock *, const RPOTraversal,
                                const LoopInfo>(FuncRPOT, *LI);
}

/// Lookup \p Key in \p Map and return the result, potentially after
/// initializing the optional through \p Fn(\p args).
template <typename K, typename V, typename FnTy, typename... ArgsTy>
static V getOrCreateCachedOptional(K Key, DenseMap<K, Optional<V>> &Map,
                                   FnTy &&Fn, ArgsTy&&... args) {
  Optional<V> &OptVal = Map[Key];
  if (!OptVal.hasValue())
    OptVal = Fn(std::forward<ArgsTy>(args)...);
  return OptVal.getValue();
}

const BasicBlock *
MustBeExecutedContextExplorer::findForwardJoinPoint(const BasicBlock *InitBB) {
  const LoopInfo *LI = LIGetter(*InitBB->getParent());
  const PostDominatorTree *PDT = PDTGetter(*InitBB->getParent());

  LLVM_DEBUG(dbgs() << "\tFind forward join point for " << InitBB->getName()
                    << (LI ? " [LI]" : "") << (PDT ? " [PDT]" : ""));

  const Function &F = *InitBB->getParent();
  const Loop *L = LI ? LI->getLoopFor(InitBB) : nullptr;
  const BasicBlock *HeaderBB = L ? L->getHeader() : InitBB;
  bool WillReturnAndNoThrow = (F.hasFnAttribute(Attribute::WillReturn) ||
                               (L && !maybeEndlessLoop(*L))) &&
                              F.doesNotThrow();
  LLVM_DEBUG(dbgs() << (L ? " [in loop]" : "")
                    << (WillReturnAndNoThrow ? " [WillReturn] [NoUnwind]" : "")
                    << "\n");

  // Determine the adjacent blocks in the given direction but exclude (self)
  // loops under certain circumstances.
  SmallVector<const BasicBlock *, 8> Worklist;
  for (const BasicBlock *SuccBB : successors(InitBB)) {
    bool IsLatch = SuccBB == HeaderBB;
    // Loop latches are ignored in forward propagation if the loop cannot be
    // endless and may not throw: control has to go somewhere.
    if (!WillReturnAndNoThrow || !IsLatch)
      Worklist.push_back(SuccBB);
  }
  LLVM_DEBUG(dbgs() << "\t\t#Worklist: " << Worklist.size() << "\n");

  // If there are no other adjacent blocks, there is no join point.
  if (Worklist.empty())
    return nullptr;

  // If there is one adjacent block, it is the join point.
  if (Worklist.size() == 1)
    return Worklist[0];

  // Try to determine a join block through the help of the post-dominance
  // tree. If no tree was provided, we perform simple pattern matching for one
  // block conditionals and one block loops only.
  const BasicBlock *JoinBB = nullptr;
  if (PDT)
    if (const auto *InitNode = PDT->getNode(InitBB))
      if (const auto *IDomNode = InitNode->getIDom())
        JoinBB = IDomNode->getBlock();

  if (!JoinBB && Worklist.size() == 2) {
    const BasicBlock *Succ0 = Worklist[0];
    const BasicBlock *Succ1 = Worklist[1];
    const BasicBlock *Succ0UniqueSucc = Succ0->getUniqueSuccessor();
    const BasicBlock *Succ1UniqueSucc = Succ1->getUniqueSuccessor();
    if (Succ0UniqueSucc == InitBB) {
      // InitBB -> Succ0 -> InitBB
      // InitBB -> Succ1  = JoinBB
      JoinBB = Succ1;
    } else if (Succ1UniqueSucc == InitBB) {
      // InitBB -> Succ1 -> InitBB
      // InitBB -> Succ0  = JoinBB
      JoinBB = Succ0;
    } else if (Succ0 == Succ1UniqueSucc) {
      // InitBB ->          Succ0 = JoinBB
      // InitBB -> Succ1 -> Succ0 = JoinBB
      JoinBB = Succ0;
    } else if (Succ1 == Succ0UniqueSucc) {
      // InitBB -> Succ0 -> Succ1 = JoinBB
      // InitBB ->          Succ1 = JoinBB
      JoinBB = Succ1;
    } else if (Succ0UniqueSucc == Succ1UniqueSucc) {
      // InitBB -> Succ0 -> JoinBB
      // InitBB -> Succ1 -> JoinBB
      JoinBB = Succ0UniqueSucc;
    }
  }

  if (!JoinBB && L)
    JoinBB = L->getUniqueExitBlock();

  if (!JoinBB)
    return nullptr;

  LLVM_DEBUG(dbgs() << "\t\tJoin block candidate: " << JoinBB->getName() << "\n");

  // In forward direction we check if control will for sure reach JoinBB from
  // InitBB, thus it can not be "stopped" along the way. Ways to "stop" control
  // are: infinite loops and instructions that do not necessarily transfer
  // execution to their successor. To check for them we traverse the CFG from
  // the adjacent blocks to the JoinBB, looking at all intermediate blocks.

  // If we know the function is "will-return" and "no-throw" there is no need
  // for futher checks.
  if (!F.hasFnAttribute(Attribute::WillReturn) || !F.doesNotThrow()) {

    auto BlockTransfersExecutionToSuccessor = [](const BasicBlock *BB) {
      return isGuaranteedToTransferExecutionToSuccessor(BB);
    };

    SmallPtrSet<const BasicBlock *, 16> Visited;
    while (!Worklist.empty()) {
      const BasicBlock *ToBB = Worklist.pop_back_val();
      if (ToBB == JoinBB)
        continue;

      // Make sure all loops in-between are finite.
      if (!Visited.insert(ToBB).second) {
        if (!F.hasFnAttribute(Attribute::WillReturn)) {
          if (!LI)
            return nullptr;

          bool MayContainIrreducibleControl = getOrCreateCachedOptional(
              &F, IrreducibleControlMap, mayContainIrreducibleControl, F, LI);
          if (MayContainIrreducibleControl)
            return nullptr;

          const Loop *L = LI->getLoopFor(ToBB);
          if (L && maybeEndlessLoop(*L))
            return nullptr;
        }

        continue;
      }

      // Make sure the block has no instructions that could stop control
      // transfer.
      bool TransfersExecution = getOrCreateCachedOptional(
          ToBB, BlockTransferMap, BlockTransfersExecutionToSuccessor, ToBB);
      if (!TransfersExecution)
        return nullptr;

      append_range(Worklist, successors(ToBB));
    }
  }

  LLVM_DEBUG(dbgs() << "\tJoin block: " << JoinBB->getName() << "\n");
  return JoinBB;
}
const BasicBlock *
MustBeExecutedContextExplorer::findBackwardJoinPoint(const BasicBlock *InitBB) {
  const LoopInfo *LI = LIGetter(*InitBB->getParent());
  const DominatorTree *DT = DTGetter(*InitBB->getParent());
  LLVM_DEBUG(dbgs() << "\tFind backward join point for " << InitBB->getName()
                    << (LI ? " [LI]" : "") << (DT ? " [DT]" : ""));

  // Try to determine a join block through the help of the dominance tree. If no
  // tree was provided, we perform simple pattern matching for one block
  // conditionals only.
  if (DT)
    if (const auto *InitNode = DT->getNode(InitBB))
      if (const auto *IDomNode = InitNode->getIDom())
        return IDomNode->getBlock();

  const Loop *L = LI ? LI->getLoopFor(InitBB) : nullptr;
  const BasicBlock *HeaderBB = L ? L->getHeader() : nullptr;

  // Determine the predecessor blocks but ignore backedges.
  SmallVector<const BasicBlock *, 8> Worklist;
  for (const BasicBlock *PredBB : predecessors(InitBB)) {
    bool IsBackedge =
        (PredBB == InitBB) || (HeaderBB == InitBB && L->contains(PredBB));
    // Loop backedges are ignored in backwards propagation: control has to come
    // from somewhere.
    if (!IsBackedge)
      Worklist.push_back(PredBB);
  }

  // If there are no other predecessor blocks, there is no join point.
  if (Worklist.empty())
    return nullptr;

  // If there is one predecessor block, it is the join point.
  if (Worklist.size() == 1)
    return Worklist[0];

  const BasicBlock *JoinBB = nullptr;
  if (Worklist.size() == 2) {
    const BasicBlock *Pred0 = Worklist[0];
    const BasicBlock *Pred1 = Worklist[1];
    const BasicBlock *Pred0UniquePred = Pred0->getUniquePredecessor();
    const BasicBlock *Pred1UniquePred = Pred1->getUniquePredecessor();
    if (Pred0 == Pred1UniquePred) {
      // InitBB <-          Pred0 = JoinBB
      // InitBB <- Pred1 <- Pred0 = JoinBB
      JoinBB = Pred0;
    } else if (Pred1 == Pred0UniquePred) {
      // InitBB <- Pred0 <- Pred1 = JoinBB
      // InitBB <-          Pred1 = JoinBB
      JoinBB = Pred1;
    } else if (Pred0UniquePred == Pred1UniquePred) {
      // InitBB <- Pred0 <- JoinBB
      // InitBB <- Pred1 <- JoinBB
      JoinBB = Pred0UniquePred;
    }
  }

  if (!JoinBB && L)
    JoinBB = L->getHeader();

  // In backwards direction there is no need to show termination of previous
  // instructions. If they do not terminate, the code afterward is dead, making
  // any information/transformation correct anyway.
  return JoinBB;
}

const Instruction *
MustBeExecutedContextExplorer::getMustBeExecutedNextInstruction(
    MustBeExecutedIterator &It, const Instruction *PP) {
  if (!PP)
    return PP;
  LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP << "\n");

  // If we explore only inside a given basic block we stop at terminators.
  if (!ExploreInterBlock && PP->isTerminator()) {
    LLVM_DEBUG(dbgs() << "\tReached terminator in intra-block mode, done\n");
    return nullptr;
  }

  // If we do not traverse the call graph we check if we can make progress in
  // the current function. First, check if the instruction is guaranteed to
  // transfer execution to the successor.
  bool TransfersExecution = isGuaranteedToTransferExecutionToSuccessor(PP);
  if (!TransfersExecution)
    return nullptr;

  // If this is not a terminator we know that there is a single instruction
  // after this one that is executed next if control is transfered. If not,
  // we can try to go back to a call site we entered earlier. If none exists, we
  // do not know any instruction that has to be executd next.
  if (!PP->isTerminator()) {
    const Instruction *NextPP = PP->getNextNode();
    LLVM_DEBUG(dbgs() << "\tIntermediate instruction does transfer control\n");
    return NextPP;
  }

  // Finally, we have to handle terminators, trivial ones first.
  assert(PP->isTerminator() && "Expected a terminator!");

  // A terminator without a successor is not handled yet.
  if (PP->getNumSuccessors() == 0) {
    LLVM_DEBUG(dbgs() << "\tUnhandled terminator\n");
    return nullptr;
  }

  // A terminator with a single successor, we will continue at the beginning of
  // that one.
  if (PP->getNumSuccessors() == 1) {
    LLVM_DEBUG(
        dbgs() << "\tUnconditional terminator, continue with successor\n");
    return &PP->getSuccessor(0)->front();
  }

  // Multiple successors mean we need to find the join point where control flow
  // converges again. We use the findForwardJoinPoint helper function with
  // information about the function and helper analyses, if available.
  if (const BasicBlock *JoinBB = findForwardJoinPoint(PP->getParent()))
    return &JoinBB->front();

  LLVM_DEBUG(dbgs() << "\tNo join point found\n");
  return nullptr;
}

const Instruction *
MustBeExecutedContextExplorer::getMustBeExecutedPrevInstruction(
    MustBeExecutedIterator &It, const Instruction *PP) {
  if (!PP)
    return PP;

  bool IsFirst = !(PP->getPrevNode());
  LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP
                    << (IsFirst ? " [IsFirst]" : "") << "\n");

  // If we explore only inside a given basic block we stop at the first
  // instruction.
  if (!ExploreInterBlock && IsFirst) {
    LLVM_DEBUG(dbgs() << "\tReached block front in intra-block mode, done\n");
    return nullptr;
  }

  // The block and function that contains the current position.
  const BasicBlock *PPBlock = PP->getParent();

  // If we are inside a block we know what instruction was executed before, the
  // previous one.
  if (!IsFirst) {
    const Instruction *PrevPP = PP->getPrevNode();
    LLVM_DEBUG(
        dbgs() << "\tIntermediate instruction, continue with previous\n");
    // We did not enter a callee so we simply return the previous instruction.
    return PrevPP;
  }

  // Finally, we have to handle the case where the program point is the first in
  // a block but not in the function. We use the findBackwardJoinPoint helper
  // function with information about the function and helper analyses, if
  // available.
  if (const BasicBlock *JoinBB = findBackwardJoinPoint(PPBlock))
    return &JoinBB->back();

  LLVM_DEBUG(dbgs() << "\tNo join point found\n");
  return nullptr;
}

MustBeExecutedIterator::MustBeExecutedIterator(
    MustBeExecutedContextExplorer &Explorer, const Instruction *I)
    : Explorer(Explorer), CurInst(I) {
  reset(I);
}

void MustBeExecutedIterator::reset(const Instruction *I) {
  Visited.clear();
  resetInstruction(I);
}

void MustBeExecutedIterator::resetInstruction(const Instruction *I) {
  CurInst = I;
  Head = Tail = nullptr;
  Visited.insert({I, ExplorationDirection::FORWARD});
  Visited.insert({I, ExplorationDirection::BACKWARD});
  if (Explorer.ExploreCFGForward)
    Head = I;
  if (Explorer.ExploreCFGBackward)
    Tail = I;
}

const Instruction *MustBeExecutedIterator::advance() {
  assert(CurInst && "Cannot advance an end iterator!");
  Head = Explorer.getMustBeExecutedNextInstruction(*this, Head);
  if (Head && Visited.insert({Head, ExplorationDirection ::FORWARD}).second)
    return Head;
  Head = nullptr;

  Tail = Explorer.getMustBeExecutedPrevInstruction(*this, Tail);
  if (Tail && Visited.insert({Tail, ExplorationDirection ::BACKWARD}).second)
    return Tail;
  Tail = nullptr;
  return nullptr;
}

PreservedAnalyses MustExecutePrinterPass::run(Function &F,
                                              FunctionAnalysisManager &AM) {
  auto &LI = AM.getResult<LoopAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);

  MustExecuteAnnotatedWriter Writer(F, DT, LI);
  F.print(OS, &Writer);
  return PreservedAnalyses::all();
}

PreservedAnalyses
MustBeExecutedContextPrinterPass::run(Module &M, ModuleAnalysisManager &AM) {
  FunctionAnalysisManager &FAM =
      AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
  GetterTy<const LoopInfo> LIGetter = [&](const Function &F) {
    return &FAM.getResult<LoopAnalysis>(const_cast<Function &>(F));
  };
  GetterTy<const DominatorTree> DTGetter = [&](const Function &F) {
    return &FAM.getResult<DominatorTreeAnalysis>(const_cast<Function &>(F));
  };
  GetterTy<const PostDominatorTree> PDTGetter = [&](const Function &F) {
    return &FAM.getResult<PostDominatorTreeAnalysis>(const_cast<Function &>(F));
  };

  MustBeExecutedContextExplorer Explorer(
      /* ExploreInterBlock */ true,
      /* ExploreCFGForward */ true,
      /* ExploreCFGBackward */ true, LIGetter, DTGetter, PDTGetter);

  for (Function &F : M) {
    for (Instruction &I : instructions(F)) {
      OS << "-- Explore context of: " << I << "\n";
      for (const Instruction *CI : Explorer.range(&I))
        OS << "  [F: " << CI->getFunction()->getName() << "] " << *CI << "\n";
    }
  }
  return PreservedAnalyses::all();
}