aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Analysis/ModuleSummaryAnalysis.cpp
blob: aa144883f6a8ed5b5fa88ac7e1393842a23b6425 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
//===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass builds a ModuleSummaryIndex object for the module, to be written
// to bitcode or LLVM assembly.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/ModuleSummaryAnalysis.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/StackSafetyAnalysis.h"
#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/InitializePasses.h"
#include "llvm/Object/ModuleSymbolTable.h"
#include "llvm/Object/SymbolicFile.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "module-summary-analysis"

// Option to force edges cold which will block importing when the
// -import-cold-multiplier is set to 0. Useful for debugging.
FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold =
    FunctionSummary::FSHT_None;
cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC(
    "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold),
    cl::desc("Force all edges in the function summary to cold"),
    cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."),
               clEnumValN(FunctionSummary::FSHT_AllNonCritical,
                          "all-non-critical", "All non-critical edges."),
               clEnumValN(FunctionSummary::FSHT_All, "all", "All edges.")));

cl::opt<std::string> ModuleSummaryDotFile(
    "module-summary-dot-file", cl::init(""), cl::Hidden,
    cl::value_desc("filename"),
    cl::desc("File to emit dot graph of new summary into."));

// Walk through the operands of a given User via worklist iteration and populate
// the set of GlobalValue references encountered. Invoked either on an
// Instruction or a GlobalVariable (which walks its initializer).
// Return true if any of the operands contains blockaddress. This is important
// to know when computing summary for global var, because if global variable
// references basic block address we can't import it separately from function
// containing that basic block. For simplicity we currently don't import such
// global vars at all. When importing function we aren't interested if any
// instruction in it takes an address of any basic block, because instruction
// can only take an address of basic block located in the same function.
static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser,
                         SetVector<ValueInfo> &RefEdges,
                         SmallPtrSet<const User *, 8> &Visited) {
  bool HasBlockAddress = false;
  SmallVector<const User *, 32> Worklist;
  Worklist.push_back(CurUser);

  while (!Worklist.empty()) {
    const User *U = Worklist.pop_back_val();

    if (!Visited.insert(U).second)
      continue;

    const auto *CB = dyn_cast<CallBase>(U);

    for (const auto &OI : U->operands()) {
      const User *Operand = dyn_cast<User>(OI);
      if (!Operand)
        continue;
      if (isa<BlockAddress>(Operand)) {
        HasBlockAddress = true;
        continue;
      }
      if (auto *GV = dyn_cast<GlobalValue>(Operand)) {
        // We have a reference to a global value. This should be added to
        // the reference set unless it is a callee. Callees are handled
        // specially by WriteFunction and are added to a separate list.
        if (!(CB && CB->isCallee(&OI)))
          RefEdges.insert(Index.getOrInsertValueInfo(GV));
        continue;
      }
      Worklist.push_back(Operand);
    }
  }
  return HasBlockAddress;
}

static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount,
                                          ProfileSummaryInfo *PSI) {
  if (!PSI)
    return CalleeInfo::HotnessType::Unknown;
  if (PSI->isHotCount(ProfileCount))
    return CalleeInfo::HotnessType::Hot;
  if (PSI->isColdCount(ProfileCount))
    return CalleeInfo::HotnessType::Cold;
  return CalleeInfo::HotnessType::None;
}

static bool isNonRenamableLocal(const GlobalValue &GV) {
  return GV.hasSection() && GV.hasLocalLinkage();
}

/// Determine whether this call has all constant integer arguments (excluding
/// "this") and summarize it to VCalls or ConstVCalls as appropriate.
static void addVCallToSet(DevirtCallSite Call, GlobalValue::GUID Guid,
                          SetVector<FunctionSummary::VFuncId> &VCalls,
                          SetVector<FunctionSummary::ConstVCall> &ConstVCalls) {
  std::vector<uint64_t> Args;
  // Start from the second argument to skip the "this" pointer.
  for (auto &Arg : drop_begin(Call.CB.args())) { 
    auto *CI = dyn_cast<ConstantInt>(Arg);
    if (!CI || CI->getBitWidth() > 64) {
      VCalls.insert({Guid, Call.Offset});
      return;
    }
    Args.push_back(CI->getZExtValue());
  }
  ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)});
}

/// If this intrinsic call requires that we add information to the function
/// summary, do so via the non-constant reference arguments.
static void addIntrinsicToSummary(
    const CallInst *CI, SetVector<GlobalValue::GUID> &TypeTests,
    SetVector<FunctionSummary::VFuncId> &TypeTestAssumeVCalls,
    SetVector<FunctionSummary::VFuncId> &TypeCheckedLoadVCalls,
    SetVector<FunctionSummary::ConstVCall> &TypeTestAssumeConstVCalls,
    SetVector<FunctionSummary::ConstVCall> &TypeCheckedLoadConstVCalls,
    DominatorTree &DT) {
  switch (CI->getCalledFunction()->getIntrinsicID()) {
  case Intrinsic::type_test: {
    auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
    auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
    if (!TypeId)
      break;
    GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());

    // Produce a summary from type.test intrinsics. We only summarize type.test
    // intrinsics that are used other than by an llvm.assume intrinsic.
    // Intrinsics that are assumed are relevant only to the devirtualization
    // pass, not the type test lowering pass.
    bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) {
      auto *AssumeCI = dyn_cast<CallInst>(CIU.getUser());
      if (!AssumeCI)
        return true;
      Function *F = AssumeCI->getCalledFunction();
      return !F || F->getIntrinsicID() != Intrinsic::assume;
    });
    if (HasNonAssumeUses)
      TypeTests.insert(Guid);

    SmallVector<DevirtCallSite, 4> DevirtCalls;
    SmallVector<CallInst *, 4> Assumes;
    findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
    for (auto &Call : DevirtCalls)
      addVCallToSet(Call, Guid, TypeTestAssumeVCalls,
                    TypeTestAssumeConstVCalls);

    break;
  }

  case Intrinsic::type_checked_load: {
    auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2));
    auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
    if (!TypeId)
      break;
    GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());

    SmallVector<DevirtCallSite, 4> DevirtCalls;
    SmallVector<Instruction *, 4> LoadedPtrs;
    SmallVector<Instruction *, 4> Preds;
    bool HasNonCallUses = false;
    findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
                                               HasNonCallUses, CI, DT);
    // Any non-call uses of the result of llvm.type.checked.load will
    // prevent us from optimizing away the llvm.type.test.
    if (HasNonCallUses)
      TypeTests.insert(Guid);
    for (auto &Call : DevirtCalls)
      addVCallToSet(Call, Guid, TypeCheckedLoadVCalls,
                    TypeCheckedLoadConstVCalls);

    break;
  }
  default:
    break;
  }
}

static bool isNonVolatileLoad(const Instruction *I) {
  if (const auto *LI = dyn_cast<LoadInst>(I))
    return !LI->isVolatile();

  return false;
}

static bool isNonVolatileStore(const Instruction *I) {
  if (const auto *SI = dyn_cast<StoreInst>(I))
    return !SI->isVolatile();

  return false;
}

static void computeFunctionSummary(
    ModuleSummaryIndex &Index, const Module &M, const Function &F,
    BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT,
    bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted,
    bool IsThinLTO,
    std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
  // Summary not currently supported for anonymous functions, they should
  // have been named.
  assert(F.hasName());

  unsigned NumInsts = 0;
  // Map from callee ValueId to profile count. Used to accumulate profile
  // counts for all static calls to a given callee.
  MapVector<ValueInfo, CalleeInfo> CallGraphEdges;
  SetVector<ValueInfo> RefEdges, LoadRefEdges, StoreRefEdges;
  SetVector<GlobalValue::GUID> TypeTests;
  SetVector<FunctionSummary::VFuncId> TypeTestAssumeVCalls,
      TypeCheckedLoadVCalls;
  SetVector<FunctionSummary::ConstVCall> TypeTestAssumeConstVCalls,
      TypeCheckedLoadConstVCalls;
  ICallPromotionAnalysis ICallAnalysis;
  SmallPtrSet<const User *, 8> Visited;

  // Add personality function, prefix data and prologue data to function's ref
  // list.
  findRefEdges(Index, &F, RefEdges, Visited);
  std::vector<const Instruction *> NonVolatileLoads;
  std::vector<const Instruction *> NonVolatileStores;

  bool HasInlineAsmMaybeReferencingInternal = false;
  for (const BasicBlock &BB : F)
    for (const Instruction &I : BB) {
      if (isa<DbgInfoIntrinsic>(I))
        continue;
      ++NumInsts;
      // Regular LTO module doesn't participate in ThinLTO import,
      // so no reference from it can be read/writeonly, since this
      // would require importing variable as local copy
      if (IsThinLTO) {
        if (isNonVolatileLoad(&I)) {
          // Postpone processing of non-volatile load instructions
          // See comments below
          Visited.insert(&I);
          NonVolatileLoads.push_back(&I);
          continue;
        } else if (isNonVolatileStore(&I)) {
          Visited.insert(&I);
          NonVolatileStores.push_back(&I);
          // All references from second operand of store (destination address)
          // can be considered write-only if they're not referenced by any
          // non-store instruction. References from first operand of store
          // (stored value) can't be treated either as read- or as write-only
          // so we add them to RefEdges as we do with all other instructions
          // except non-volatile load.
          Value *Stored = I.getOperand(0);
          if (auto *GV = dyn_cast<GlobalValue>(Stored))
            // findRefEdges will try to examine GV operands, so instead
            // of calling it we should add GV to RefEdges directly.
            RefEdges.insert(Index.getOrInsertValueInfo(GV));
          else if (auto *U = dyn_cast<User>(Stored))
            findRefEdges(Index, U, RefEdges, Visited);
          continue;
        }
      }
      findRefEdges(Index, &I, RefEdges, Visited);
      const auto *CB = dyn_cast<CallBase>(&I);
      if (!CB)
        continue;

      const auto *CI = dyn_cast<CallInst>(&I);
      // Since we don't know exactly which local values are referenced in inline
      // assembly, conservatively mark the function as possibly referencing
      // a local value from inline assembly to ensure we don't export a
      // reference (which would require renaming and promotion of the
      // referenced value).
      if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm())
        HasInlineAsmMaybeReferencingInternal = true;

      auto *CalledValue = CB->getCalledOperand();
      auto *CalledFunction = CB->getCalledFunction();
      if (CalledValue && !CalledFunction) {
        CalledValue = CalledValue->stripPointerCasts();
        // Stripping pointer casts can reveal a called function.
        CalledFunction = dyn_cast<Function>(CalledValue);
      }
      // Check if this is an alias to a function. If so, get the
      // called aliasee for the checks below.
      if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
        assert(!CalledFunction && "Expected null called function in callsite for alias");
        CalledFunction = dyn_cast<Function>(GA->getBaseObject());
      }
      // Check if this is a direct call to a known function or a known
      // intrinsic, or an indirect call with profile data.
      if (CalledFunction) {
        if (CI && CalledFunction->isIntrinsic()) {
          addIntrinsicToSummary(
              CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls,
              TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT);
          continue;
        }
        // We should have named any anonymous globals
        assert(CalledFunction->hasName());
        auto ScaledCount = PSI->getProfileCount(*CB, BFI);
        auto Hotness = ScaledCount ? getHotness(ScaledCount.getValue(), PSI)
                                   : CalleeInfo::HotnessType::Unknown;
        if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None)
          Hotness = CalleeInfo::HotnessType::Cold;

        // Use the original CalledValue, in case it was an alias. We want
        // to record the call edge to the alias in that case. Eventually
        // an alias summary will be created to associate the alias and
        // aliasee.
        auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo(
            cast<GlobalValue>(CalledValue))];
        ValueInfo.updateHotness(Hotness);
        // Add the relative block frequency to CalleeInfo if there is no profile
        // information.
        if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) {
          uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency();
          uint64_t EntryFreq = BFI->getEntryFreq();
          ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq);
        }
      } else {
        // Skip inline assembly calls.
        if (CI && CI->isInlineAsm())
          continue;
        // Skip direct calls.
        if (!CalledValue || isa<Constant>(CalledValue))
          continue;

        // Check if the instruction has a callees metadata. If so, add callees
        // to CallGraphEdges to reflect the references from the metadata, and
        // to enable importing for subsequent indirect call promotion and
        // inlining.
        if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) {
          for (auto &Op : MD->operands()) {
            Function *Callee = mdconst::extract_or_null<Function>(Op);
            if (Callee)
              CallGraphEdges[Index.getOrInsertValueInfo(Callee)];
          }
        }

        uint32_t NumVals, NumCandidates;
        uint64_t TotalCount;
        auto CandidateProfileData =
            ICallAnalysis.getPromotionCandidatesForInstruction(
                &I, NumVals, TotalCount, NumCandidates);
        for (auto &Candidate : CandidateProfileData)
          CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)]
              .updateHotness(getHotness(Candidate.Count, PSI));
      }
    }
  Index.addBlockCount(F.size());

  std::vector<ValueInfo> Refs;
  if (IsThinLTO) {
    auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs,
                           SetVector<ValueInfo> &Edges,
                           SmallPtrSet<const User *, 8> &Cache) {
      for (const auto *I : Instrs) {
        Cache.erase(I);
        findRefEdges(Index, I, Edges, Cache);
      }
    };

    // By now we processed all instructions in a function, except
    // non-volatile loads and non-volatile value stores. Let's find
    // ref edges for both of instruction sets
    AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited);
    // We can add some values to the Visited set when processing load
    // instructions which are also used by stores in NonVolatileStores.
    // For example this can happen if we have following code:
    //
    // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
    // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
    //
    // After processing loads we'll add bitcast to the Visited set, and if
    // we use the same set while processing stores, we'll never see store
    // to @bar and @bar will be mistakenly treated as readonly.
    SmallPtrSet<const llvm::User *, 8> StoreCache;
    AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache);

    // If both load and store instruction reference the same variable
    // we won't be able to optimize it. Add all such reference edges
    // to RefEdges set.
    for (auto &VI : StoreRefEdges)
      if (LoadRefEdges.remove(VI))
        RefEdges.insert(VI);

    unsigned RefCnt = RefEdges.size();
    // All new reference edges inserted in two loops below are either
    // read or write only. They will be grouped in the end of RefEdges
    // vector, so we can use a single integer value to identify them.
    for (auto &VI : LoadRefEdges)
      RefEdges.insert(VI);

    unsigned FirstWORef = RefEdges.size();
    for (auto &VI : StoreRefEdges)
      RefEdges.insert(VI);

    Refs = RefEdges.takeVector();
    for (; RefCnt < FirstWORef; ++RefCnt)
      Refs[RefCnt].setReadOnly();

    for (; RefCnt < Refs.size(); ++RefCnt)
      Refs[RefCnt].setWriteOnly();
  } else {
    Refs = RefEdges.takeVector();
  }
  // Explicit add hot edges to enforce importing for designated GUIDs for
  // sample PGO, to enable the same inlines as the profiled optimized binary.
  for (auto &I : F.getImportGUIDs())
    CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness(
        ForceSummaryEdgesCold == FunctionSummary::FSHT_All
            ? CalleeInfo::HotnessType::Cold
            : CalleeInfo::HotnessType::Critical);

  bool NonRenamableLocal = isNonRenamableLocal(F);
  bool NotEligibleForImport =
      NonRenamableLocal || HasInlineAsmMaybeReferencingInternal;
  GlobalValueSummary::GVFlags Flags(F.getLinkage(), NotEligibleForImport,
                                    /* Live = */ false, F.isDSOLocal(),
                                    F.hasLinkOnceODRLinkage() && F.hasGlobalUnnamedAddr());
  FunctionSummary::FFlags FunFlags{
      F.hasFnAttribute(Attribute::ReadNone),
      F.hasFnAttribute(Attribute::ReadOnly),
      F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(),
      // FIXME: refactor this to use the same code that inliner is using.
      // Don't try to import functions with noinline attribute.
      F.getAttributes().hasFnAttribute(Attribute::NoInline),
      F.hasFnAttribute(Attribute::AlwaysInline)};
  std::vector<FunctionSummary::ParamAccess> ParamAccesses;
  if (auto *SSI = GetSSICallback(F))
    ParamAccesses = SSI->getParamAccesses(Index); 
  auto FuncSummary = std::make_unique<FunctionSummary>(
      Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs),
      CallGraphEdges.takeVector(), TypeTests.takeVector(),
      TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(),
      TypeTestAssumeConstVCalls.takeVector(),
      TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses));
  if (NonRenamableLocal)
    CantBePromoted.insert(F.getGUID());
  Index.addGlobalValueSummary(F, std::move(FuncSummary));
}

/// Find function pointers referenced within the given vtable initializer
/// (or subset of an initializer) \p I. The starting offset of \p I within
/// the vtable initializer is \p StartingOffset. Any discovered function
/// pointers are added to \p VTableFuncs along with their cumulative offset
/// within the initializer.
static void findFuncPointers(const Constant *I, uint64_t StartingOffset,
                             const Module &M, ModuleSummaryIndex &Index,
                             VTableFuncList &VTableFuncs) {
  // First check if this is a function pointer.
  if (I->getType()->isPointerTy()) {
    auto Fn = dyn_cast<Function>(I->stripPointerCasts());
    // We can disregard __cxa_pure_virtual as a possible call target, as
    // calls to pure virtuals are UB.
    if (Fn && Fn->getName() != "__cxa_pure_virtual")
      VTableFuncs.push_back({Index.getOrInsertValueInfo(Fn), StartingOffset});
    return;
  }

  // Walk through the elements in the constant struct or array and recursively
  // look for virtual function pointers.
  const DataLayout &DL = M.getDataLayout();
  if (auto *C = dyn_cast<ConstantStruct>(I)) {
    StructType *STy = dyn_cast<StructType>(C->getType());
    assert(STy);
    const StructLayout *SL = DL.getStructLayout(C->getType());

    for (StructType::element_iterator EB = STy->element_begin(), EI = EB,
                                      EE = STy->element_end();
         EI != EE; ++EI) {
      auto Offset = SL->getElementOffset(EI - EB);
      unsigned Op = SL->getElementContainingOffset(Offset);
      findFuncPointers(cast<Constant>(I->getOperand(Op)),
                       StartingOffset + Offset, M, Index, VTableFuncs);
    }
  } else if (auto *C = dyn_cast<ConstantArray>(I)) {
    ArrayType *ATy = C->getType();
    Type *EltTy = ATy->getElementType();
    uint64_t EltSize = DL.getTypeAllocSize(EltTy);
    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
      findFuncPointers(cast<Constant>(I->getOperand(i)),
                       StartingOffset + i * EltSize, M, Index, VTableFuncs);
    }
  }
}

// Identify the function pointers referenced by vtable definition \p V.
static void computeVTableFuncs(ModuleSummaryIndex &Index,
                               const GlobalVariable &V, const Module &M,
                               VTableFuncList &VTableFuncs) {
  if (!V.isConstant())
    return;

  findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index,
                   VTableFuncs);

#ifndef NDEBUG
  // Validate that the VTableFuncs list is ordered by offset.
  uint64_t PrevOffset = 0;
  for (auto &P : VTableFuncs) {
    // The findVFuncPointers traversal should have encountered the
    // functions in offset order. We need to use ">=" since PrevOffset
    // starts at 0.
    assert(P.VTableOffset >= PrevOffset);
    PrevOffset = P.VTableOffset;
  }
#endif
}

/// Record vtable definition \p V for each type metadata it references.
static void
recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index,
                                       const GlobalVariable &V,
                                       SmallVectorImpl<MDNode *> &Types) {
  for (MDNode *Type : Types) {
    auto TypeID = Type->getOperand(1).get();

    uint64_t Offset =
        cast<ConstantInt>(
            cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
            ->getZExtValue();

    if (auto *TypeId = dyn_cast<MDString>(TypeID))
      Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString())
          .push_back({Offset, Index.getOrInsertValueInfo(&V)});
  }
}

static void computeVariableSummary(ModuleSummaryIndex &Index,
                                   const GlobalVariable &V,
                                   DenseSet<GlobalValue::GUID> &CantBePromoted,
                                   const Module &M,
                                   SmallVectorImpl<MDNode *> &Types) {
  SetVector<ValueInfo> RefEdges;
  SmallPtrSet<const User *, 8> Visited;
  bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited);
  bool NonRenamableLocal = isNonRenamableLocal(V);
  GlobalValueSummary::GVFlags Flags(V.getLinkage(), NonRenamableLocal,
                                    /* Live = */ false, V.isDSOLocal(),
                                    V.hasLinkOnceODRLinkage() && V.hasGlobalUnnamedAddr());

  VTableFuncList VTableFuncs;
  // If splitting is not enabled, then we compute the summary information
  // necessary for index-based whole program devirtualization.
  if (!Index.enableSplitLTOUnit()) {
    Types.clear();
    V.getMetadata(LLVMContext::MD_type, Types);
    if (!Types.empty()) {
      // Identify the function pointers referenced by this vtable definition.
      computeVTableFuncs(Index, V, M, VTableFuncs);

      // Record this vtable definition for each type metadata it references.
      recordTypeIdCompatibleVtableReferences(Index, V, Types);
    }
  }

  // Don't mark variables we won't be able to internalize as read/write-only.
  bool CanBeInternalized =
      !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() &&
      !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass();
  bool Constant = V.isConstant();
  GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized,
                                       Constant ? false : CanBeInternalized,
                                       Constant, V.getVCallVisibility());
  auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags,
                                                         RefEdges.takeVector());
  if (NonRenamableLocal)
    CantBePromoted.insert(V.getGUID());
  if (HasBlockAddress)
    GVarSummary->setNotEligibleToImport();
  if (!VTableFuncs.empty())
    GVarSummary->setVTableFuncs(VTableFuncs);
  Index.addGlobalValueSummary(V, std::move(GVarSummary));
}

static void
computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A,
                    DenseSet<GlobalValue::GUID> &CantBePromoted) {
  bool NonRenamableLocal = isNonRenamableLocal(A);
  GlobalValueSummary::GVFlags Flags(A.getLinkage(), NonRenamableLocal,
                                    /* Live = */ false, A.isDSOLocal(),
                                    A.hasLinkOnceODRLinkage() && A.hasGlobalUnnamedAddr());
  auto AS = std::make_unique<AliasSummary>(Flags);
  auto *Aliasee = A.getBaseObject();
  auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID());
  assert(AliaseeVI && "Alias expects aliasee summary to be available");
  assert(AliaseeVI.getSummaryList().size() == 1 &&
         "Expected a single entry per aliasee in per-module index");
  AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get());
  if (NonRenamableLocal)
    CantBePromoted.insert(A.getGUID());
  Index.addGlobalValueSummary(A, std::move(AS));
}

// Set LiveRoot flag on entries matching the given value name.
static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) {
  if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name)))
    for (auto &Summary : VI.getSummaryList())
      Summary->setLive(true);
}

ModuleSummaryIndex llvm::buildModuleSummaryIndex(
    const Module &M,
    std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback,
    ProfileSummaryInfo *PSI,
    std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
  assert(PSI);
  bool EnableSplitLTOUnit = false;
  if (auto *MD = mdconst::extract_or_null<ConstantInt>(
          M.getModuleFlag("EnableSplitLTOUnit")))
    EnableSplitLTOUnit = MD->getZExtValue();
  ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit);

  // Identify the local values in the llvm.used and llvm.compiler.used sets,
  // which should not be exported as they would then require renaming and
  // promotion, but we may have opaque uses e.g. in inline asm. We collect them
  // here because we use this information to mark functions containing inline
  // assembly calls as not importable.
  SmallPtrSet<GlobalValue *, 8> LocalsUsed;
  SmallPtrSet<GlobalValue *, 8> Used;
  // First collect those in the llvm.used set.
  collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ false);
  // Next collect those in the llvm.compiler.used set.
  collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ true);
  DenseSet<GlobalValue::GUID> CantBePromoted;
  for (auto *V : Used) {
    if (V->hasLocalLinkage()) {
      LocalsUsed.insert(V);
      CantBePromoted.insert(V->getGUID());
    }
  }

  bool HasLocalInlineAsmSymbol = false;
  if (!M.getModuleInlineAsm().empty()) {
    // Collect the local values defined by module level asm, and set up
    // summaries for these symbols so that they can be marked as NoRename,
    // to prevent export of any use of them in regular IR that would require
    // renaming within the module level asm. Note we don't need to create a
    // summary for weak or global defs, as they don't need to be flagged as
    // NoRename, and defs in module level asm can't be imported anyway.
    // Also, any values used but not defined within module level asm should
    // be listed on the llvm.used or llvm.compiler.used global and marked as
    // referenced from there.
    ModuleSymbolTable::CollectAsmSymbols(
        M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) {
          // Symbols not marked as Weak or Global are local definitions.
          if (Flags & (object::BasicSymbolRef::SF_Weak |
                       object::BasicSymbolRef::SF_Global))
            return;
          HasLocalInlineAsmSymbol = true;
          GlobalValue *GV = M.getNamedValue(Name);
          if (!GV)
            return;
          assert(GV->isDeclaration() && "Def in module asm already has definition");
          GlobalValueSummary::GVFlags GVFlags(GlobalValue::InternalLinkage,
                                              /* NotEligibleToImport = */ true,
                                              /* Live = */ true,
                                              /* Local */ GV->isDSOLocal(),
                                              GV->hasLinkOnceODRLinkage() && GV->hasGlobalUnnamedAddr());
          CantBePromoted.insert(GV->getGUID());
          // Create the appropriate summary type.
          if (Function *F = dyn_cast<Function>(GV)) {
            std::unique_ptr<FunctionSummary> Summary =
                std::make_unique<FunctionSummary>(
                    GVFlags, /*InstCount=*/0,
                    FunctionSummary::FFlags{
                        F->hasFnAttribute(Attribute::ReadNone),
                        F->hasFnAttribute(Attribute::ReadOnly),
                        F->hasFnAttribute(Attribute::NoRecurse),
                        F->returnDoesNotAlias(),
                        /* NoInline = */ false,
                        F->hasFnAttribute(Attribute::AlwaysInline)},
                    /*EntryCount=*/0, ArrayRef<ValueInfo>{},
                    ArrayRef<FunctionSummary::EdgeTy>{},
                    ArrayRef<GlobalValue::GUID>{},
                    ArrayRef<FunctionSummary::VFuncId>{},
                    ArrayRef<FunctionSummary::VFuncId>{},
                    ArrayRef<FunctionSummary::ConstVCall>{},
                    ArrayRef<FunctionSummary::ConstVCall>{},
                    ArrayRef<FunctionSummary::ParamAccess>{});
            Index.addGlobalValueSummary(*GV, std::move(Summary));
          } else {
            std::unique_ptr<GlobalVarSummary> Summary =
                std::make_unique<GlobalVarSummary>(
                    GVFlags,
                    GlobalVarSummary::GVarFlags(
                        false, false, cast<GlobalVariable>(GV)->isConstant(),
                        GlobalObject::VCallVisibilityPublic),
                    ArrayRef<ValueInfo>{});
            Index.addGlobalValueSummary(*GV, std::move(Summary));
          }
        });
  }

  bool IsThinLTO = true;
  if (auto *MD =
          mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
    IsThinLTO = MD->getZExtValue();

  // Compute summaries for all functions defined in module, and save in the
  // index.
  for (auto &F : M) {
    if (F.isDeclaration())
      continue;

    DominatorTree DT(const_cast<Function &>(F));
    BlockFrequencyInfo *BFI = nullptr;
    std::unique_ptr<BlockFrequencyInfo> BFIPtr;
    if (GetBFICallback)
      BFI = GetBFICallback(F);
    else if (F.hasProfileData()) {
      LoopInfo LI{DT};
      BranchProbabilityInfo BPI{F, LI};
      BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI);
      BFI = BFIPtr.get();
    }

    computeFunctionSummary(Index, M, F, BFI, PSI, DT,
                           !LocalsUsed.empty() || HasLocalInlineAsmSymbol,
                           CantBePromoted, IsThinLTO, GetSSICallback);
  }

  // Compute summaries for all variables defined in module, and save in the
  // index.
  SmallVector<MDNode *, 2> Types;
  for (const GlobalVariable &G : M.globals()) {
    if (G.isDeclaration())
      continue;
    computeVariableSummary(Index, G, CantBePromoted, M, Types);
  }

  // Compute summaries for all aliases defined in module, and save in the
  // index.
  for (const GlobalAlias &A : M.aliases())
    computeAliasSummary(Index, A, CantBePromoted);

  for (auto *V : LocalsUsed) {
    auto *Summary = Index.getGlobalValueSummary(*V);
    assert(Summary && "Missing summary for global value");
    Summary->setNotEligibleToImport();
  }

  // The linker doesn't know about these LLVM produced values, so we need
  // to flag them as live in the index to ensure index-based dead value
  // analysis treats them as live roots of the analysis.
  setLiveRoot(Index, "llvm.used");
  setLiveRoot(Index, "llvm.compiler.used");
  setLiveRoot(Index, "llvm.global_ctors");
  setLiveRoot(Index, "llvm.global_dtors");
  setLiveRoot(Index, "llvm.global.annotations");

  for (auto &GlobalList : Index) {
    // Ignore entries for references that are undefined in the current module.
    if (GlobalList.second.SummaryList.empty())
      continue;

    assert(GlobalList.second.SummaryList.size() == 1 &&
           "Expected module's index to have one summary per GUID");
    auto &Summary = GlobalList.second.SummaryList[0];
    if (!IsThinLTO) {
      Summary->setNotEligibleToImport();
      continue;
    }

    bool AllRefsCanBeExternallyReferenced =
        llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) {
          return !CantBePromoted.count(VI.getGUID());
        });
    if (!AllRefsCanBeExternallyReferenced) {
      Summary->setNotEligibleToImport();
      continue;
    }

    if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) {
      bool AllCallsCanBeExternallyReferenced = llvm::all_of(
          FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) {
            return !CantBePromoted.count(Edge.first.getGUID());
          });
      if (!AllCallsCanBeExternallyReferenced)
        Summary->setNotEligibleToImport();
    }
  }

  if (!ModuleSummaryDotFile.empty()) {
    std::error_code EC;
    raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_None);
    if (EC)
      report_fatal_error(Twine("Failed to open dot file ") +
                         ModuleSummaryDotFile + ": " + EC.message() + "\n");
    Index.exportToDot(OSDot, {});
  }

  return Index;
}

AnalysisKey ModuleSummaryIndexAnalysis::Key;

ModuleSummaryIndex
ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
  ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M);
  auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
  bool NeedSSI = needsParamAccessSummary(M);
  return buildModuleSummaryIndex(
      M,
      [&FAM](const Function &F) {
        return &FAM.getResult<BlockFrequencyAnalysis>(
            *const_cast<Function *>(&F));
      },
      &PSI,
      [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * {
        return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>(
                             const_cast<Function &>(F))
                       : nullptr;
      });
}

char ModuleSummaryIndexWrapperPass::ID = 0;

INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
                      "Module Summary Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass)
INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
                    "Module Summary Analysis", false, true)

ModulePass *llvm::createModuleSummaryIndexWrapperPass() {
  return new ModuleSummaryIndexWrapperPass();
}

ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
    : ModulePass(ID) {
  initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
}

bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) {
  auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
  bool NeedSSI = needsParamAccessSummary(M);
  Index.emplace(buildModuleSummaryIndex(
      M,
      [this](const Function &F) {
        return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>(
                         *const_cast<Function *>(&F))
                     .getBFI());
      },
      PSI,
      [&](const Function &F) -> const StackSafetyInfo * {
        return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>(
                              const_cast<Function &>(F))
                              .getResult()
                       : nullptr;
      }));
  return false;
}

bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) {
  Index.reset();
  return false;
}

void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequired<BlockFrequencyInfoWrapperPass>();
  AU.addRequired<ProfileSummaryInfoWrapperPass>();
  AU.addRequired<StackSafetyInfoWrapperPass>();
}

char ImmutableModuleSummaryIndexWrapperPass::ID = 0;

ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass(
    const ModuleSummaryIndex *Index)
    : ImmutablePass(ID), Index(Index) {
  initializeImmutableModuleSummaryIndexWrapperPassPass(
      *PassRegistry::getPassRegistry());
}

void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage(
    AnalysisUsage &AU) const {
  AU.setPreservesAll();
}

ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass(
    const ModuleSummaryIndex *Index) {
  return new ImmutableModuleSummaryIndexWrapperPass(Index);
}

INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info",
                "Module summary info", false, true)