aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Analysis/MLInlineAdvisor.cpp
blob: d152a42069125426551754e53d265f4c599ccdc7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
//===- MLInlineAdvisor.cpp - machine learned InlineAdvisor ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the interface between the inliner and a learned model.
// It delegates model evaluation to either the AOT compiled model (the
// 'release' mode) or a runtime-loaded model (the 'development' case).
//
//===----------------------------------------------------------------------===//
#include "llvm/Config/config.h" 
#if defined(LLVM_HAVE_TF_AOT) || defined(LLVM_HAVE_TF_API) 
 
#include <limits>
#include <unordered_map>
#include <unordered_set>

#include "llvm/ADT/SCCIterator.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/FunctionPropertiesAnalysis.h" 
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/MLInlineAdvisor.h"
#include "llvm/Analysis/MLModelRunner.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Path.h"

using namespace llvm;

#define DEBUG_TYPE "inline-ml"

static cl::opt<float> SizeIncreaseThreshold(
    "ml-advisor-size-increase-threshold", cl::Hidden,
    cl::desc("Maximum factor by which expected native size may increase before "
             "blocking any further inlining."),
    cl::init(2.0));

const std::array<std::string, NumberOfFeatures> llvm::FeatureNameMap{
#define POPULATE_NAMES(INDEX_NAME, NAME, COMMENT) NAME,
    INLINE_FEATURE_ITERATOR(POPULATE_NAMES)
#undef POPULATE_NAMES
};

const char *const llvm::DecisionName = "inlining_decision";
const char *const llvm::DefaultDecisionName = "inlining_default";
const char *const llvm::RewardName = "delta_size";

CallBase *getInlinableCS(Instruction &I) {
  if (auto *CS = dyn_cast<CallBase>(&I))
    if (Function *Callee = CS->getCalledFunction()) {
      if (!Callee->isDeclaration()) {
        return CS;
      }
    }
  return nullptr;
}

MLInlineAdvisor::MLInlineAdvisor(Module &M, ModuleAnalysisManager &MAM,
                                 std::unique_ptr<MLModelRunner> Runner)
    : InlineAdvisor(
          M, MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager()), 
      ModelRunner(std::move(Runner)), CG(new CallGraph(M)), 
      InitialIRSize(getModuleIRSize()), CurrentIRSize(InitialIRSize) {
  assert(ModelRunner);

  // Extract the 'call site height' feature - the position of a call site
  // relative to the farthest statically reachable SCC node. We don't mutate
  // this value while inlining happens. Empirically, this feature proved
  // critical in behavioral cloning - i.e. training a model to mimic the manual
  // heuristic's decisions - and, thus, equally important for training for
  // improvement.
  for (auto I = scc_begin(CG.get()); !I.isAtEnd(); ++I) {
    const std::vector<CallGraphNode *> &CGNodes = *I;
    unsigned Level = 0;
    for (auto *CGNode : CGNodes) {
      Function *F = CGNode->getFunction();
      if (!F || F->isDeclaration())
        continue;
      for (auto &I : instructions(F)) {
        if (auto *CS = getInlinableCS(I)) {
          auto *Called = CS->getCalledFunction();
          auto Pos = FunctionLevels.find(Called);
          // In bottom up traversal, an inlinable callee is either in the
          // same SCC, or to a function in a visited SCC. So not finding its
          // level means we haven't visited it yet, meaning it's in this SCC.
          if (Pos == FunctionLevels.end())
            continue;
          Level = std::max(Level, Pos->second + 1);
        }
      }
    }
    for (auto *CGNode : CGNodes) {
      Function *F = CGNode->getFunction();
      if (F && !F->isDeclaration())
        FunctionLevels[F] = Level;
    }
  }
}

void MLInlineAdvisor::onPassEntry() {
  // Function passes executed between InlinerPass runs may have changed the
  // module-wide features.
  NodeCount = 0;
  EdgeCount = 0;
  for (auto &F : M)
    if (!F.isDeclaration()) {
      ++NodeCount;
      EdgeCount += getLocalCalls(F);
    }
}

int64_t MLInlineAdvisor::getLocalCalls(Function &F) {
  return FAM.getResult<FunctionPropertiesAnalysis>(F) 
      .DirectCallsToDefinedFunctions; 
}

// Update the internal state of the advisor, and force invalidate feature
// analysis. Currently, we maintain minimal (and very simple) global state - the
// number of functions and the number of static calls. We also keep track of the
// total IR size in this module, to stop misbehaving policies at a certain bloat
// factor (SizeIncreaseThreshold)
void MLInlineAdvisor::onSuccessfulInlining(const MLInlineAdvice &Advice,
                                           bool CalleeWasDeleted) {
  assert(!ForceStop);
  Function *Caller = Advice.getCaller();
  Function *Callee = Advice.getCallee();

  // The caller features aren't valid anymore.
  FAM.invalidate<FunctionPropertiesAnalysis>(*Caller); 
  int64_t IRSizeAfter =
      getIRSize(*Caller) + (CalleeWasDeleted ? 0 : Advice.CalleeIRSize);
  CurrentIRSize += IRSizeAfter - (Advice.CallerIRSize + Advice.CalleeIRSize);
  if (CurrentIRSize > SizeIncreaseThreshold * InitialIRSize)
    ForceStop = true;

  // We can delta-update module-wide features. We know the inlining only changed
  // the caller, and maybe the callee (by deleting the latter).
  // Nodes are simple to update.
  // For edges, we 'forget' the edges that the caller and callee used to have
  // before inlining, and add back what they currently have together.
  int64_t NewCallerAndCalleeEdges =
      FAM.getResult<FunctionPropertiesAnalysis>(*Caller) 
          .DirectCallsToDefinedFunctions;

  if (CalleeWasDeleted)
    --NodeCount;
  else
    NewCallerAndCalleeEdges += 
        FAM.getResult<FunctionPropertiesAnalysis>(*Callee) 
            .DirectCallsToDefinedFunctions; 
  EdgeCount += (NewCallerAndCalleeEdges - Advice.CallerAndCalleeEdges);
  assert(CurrentIRSize >= 0 && EdgeCount >= 0 && NodeCount >= 0);
}

int64_t MLInlineAdvisor::getModuleIRSize() const {
  int64_t Ret = 0;
  for (auto &F : CG->getModule())
    if (!F.isDeclaration())
      Ret += getIRSize(F);
  return Ret;
}

std::unique_ptr<InlineAdvice> MLInlineAdvisor::getAdviceImpl(CallBase &CB) { 
  auto &Caller = *CB.getCaller();
  auto &Callee = *CB.getCalledFunction();

  auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
    return FAM.getResult<AssumptionAnalysis>(F);
  };
  auto &TIR = FAM.getResult<TargetIRAnalysis>(Callee);
  auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(Caller);

  auto MandatoryKind = InlineAdvisor::getMandatoryKind(CB, FAM, ORE); 
  // If this is a "never inline" case, there won't be any changes to internal
  // state we need to track, so we can just return the base InlineAdvice, which
  // will do nothing interesting.
  // Same thing if this is a recursive case.
  if (MandatoryKind == InlineAdvisor::MandatoryInliningKind::Never || 
      &Caller == &Callee)
    return getMandatoryAdvice(CB, false); 

  bool Mandatory = 
      MandatoryKind == InlineAdvisor::MandatoryInliningKind::Always; 

  // If we need to stop, we won't want to track anymore any state changes, so
  // we just return the base InlineAdvice, which acts as a noop.
  if (ForceStop) {
    ORE.emit([&] {
      return OptimizationRemarkMissed(DEBUG_TYPE, "ForceStop", &CB)
             << "Won't attempt inlining because module size grew too much.";
    });
    return std::make_unique<InlineAdvice>(this, CB, ORE, Mandatory);
  }

  int CostEstimate = 0;
  if (!Mandatory) {
    auto IsCallSiteInlinable =
        llvm::getInliningCostEstimate(CB, TIR, GetAssumptionCache);
    if (!IsCallSiteInlinable) {
      // We can't inline this for correctness reasons, so return the base
      // InlineAdvice, as we don't care about tracking any state changes (which
      // won't happen).
      return std::make_unique<InlineAdvice>(this, CB, ORE, false);
    }
    CostEstimate = *IsCallSiteInlinable;
  }

  if (Mandatory)
    return getMandatoryAdvice(CB, true); 

  auto NrCtantParams = 0;
  for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
    NrCtantParams += (isa<Constant>(*I));
  }

  auto &CallerBefore = FAM.getResult<FunctionPropertiesAnalysis>(Caller); 
  auto &CalleeBefore = FAM.getResult<FunctionPropertiesAnalysis>(Callee); 

  ModelRunner->setFeature(FeatureIndex::CalleeBasicBlockCount,
                          CalleeBefore.BasicBlockCount);
  ModelRunner->setFeature(FeatureIndex::CallSiteHeight,
                          FunctionLevels[&Caller]);
  ModelRunner->setFeature(FeatureIndex::NodeCount, NodeCount);
  ModelRunner->setFeature(FeatureIndex::NrCtantParams, NrCtantParams);
  ModelRunner->setFeature(FeatureIndex::CostEstimate, CostEstimate);
  ModelRunner->setFeature(FeatureIndex::EdgeCount, EdgeCount);
  ModelRunner->setFeature(FeatureIndex::CallerUsers, CallerBefore.Uses);
  ModelRunner->setFeature(FeatureIndex::CallerConditionallyExecutedBlocks,
                          CallerBefore.BlocksReachedFromConditionalInstruction);
  ModelRunner->setFeature(FeatureIndex::CallerBasicBlockCount,
                          CallerBefore.BasicBlockCount);
  ModelRunner->setFeature(FeatureIndex::CalleeConditionallyExecutedBlocks,
                          CalleeBefore.BlocksReachedFromConditionalInstruction);
  ModelRunner->setFeature(FeatureIndex::CalleeUsers, CalleeBefore.Uses);
  return getAdviceFromModel(CB, ORE);
}

std::unique_ptr<MLInlineAdvice>
MLInlineAdvisor::getAdviceFromModel(CallBase &CB,
                                    OptimizationRemarkEmitter &ORE) {
  return std::make_unique<MLInlineAdvice>(this, CB, ORE, ModelRunner->run());
}

std::unique_ptr<InlineAdvice> MLInlineAdvisor::getMandatoryAdvice(CallBase &CB, 
                                                                  bool Advice) { 
  // Make sure we track inlinings in all cases - mandatory or not. 
  if (Advice && !ForceStop) 
    return getMandatoryAdviceImpl(CB); 
 
  // If this is a "never inline" case, there won't be any changes to internal 
  // state we need to track, so we can just return the base InlineAdvice, which 
  // will do nothing interesting. 
  // Same if we are forced to stop - we don't track anymore. 
  return std::make_unique<InlineAdvice>(this, CB, getCallerORE(CB), Advice); 
} 
 
std::unique_ptr<MLInlineAdvice>
MLInlineAdvisor::getMandatoryAdviceImpl(CallBase &CB) { 
  return std::make_unique<MLInlineAdvice>(this, CB, getCallerORE(CB), true); 
}

void MLInlineAdvice::reportContextForRemark(
    DiagnosticInfoOptimizationBase &OR) {
  using namespace ore;
  OR << NV("Callee", Callee->getName());
  for (size_t I = 0; I < NumberOfFeatures; ++I)
    OR << NV(FeatureNameMap[I], getAdvisor()->getModelRunner().getFeature(I));
  OR << NV("ShouldInline", isInliningRecommended());
}

void MLInlineAdvice::recordInliningImpl() {
  ORE.emit([&]() {
    OptimizationRemark R(DEBUG_TYPE, "InliningSuccess", DLoc, Block);
    reportContextForRemark(R);
    return R;
  });
  getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ false);
}

void MLInlineAdvice::recordInliningWithCalleeDeletedImpl() {
  ORE.emit([&]() {
    OptimizationRemark R(DEBUG_TYPE, "InliningSuccessWithCalleeDeleted", DLoc,
                         Block);
    reportContextForRemark(R);
    return R;
  });
  getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ true);
}

void MLInlineAdvice::recordUnsuccessfulInliningImpl(
    const InlineResult &Result) {
  ORE.emit([&]() {
    OptimizationRemarkMissed R(DEBUG_TYPE, "InliningAttemptedAndUnsuccessful",
                               DLoc, Block);
    reportContextForRemark(R);
    return R;
  });
}
void MLInlineAdvice::recordUnattemptedInliningImpl() {
  ORE.emit([&]() {
    OptimizationRemarkMissed R(DEBUG_TYPE, "IniningNotAttempted", DLoc, Block);
    reportContextForRemark(R);
    return R;
  });
} 
#endif // defined(LLVM_HAVE_TF_AOT) || defined(LLVM_HAVE_TF_API)