aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Analysis/DevelopmentModeInlineAdvisor.cpp
blob: 728c83a6d6792d2b03a4616eebd5d5b08606f1d3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
//===- DevelopmentModeInlineAdvisor.cpp - runtime-loadable model runner  --===// 
// 
//                     The LLVM Compiler Infrastructure 
// 
// This file is distributed under the University of Illinois Open Source 
// License. See LICENSE.TXT for details. 
// 
//===----------------------------------------------------------------------===// 
// 
// This file implements a model runner using Tensorflow C APIs, allowing the 
// loading of a model from a command line option. 
// 
//===----------------------------------------------------------------------===// 
#include "llvm/Config/config.h" 
#if defined(LLVM_HAVE_TF_API) 
 
#include "llvm/Analysis/CallGraph.h" 
#include "llvm/Analysis/InlineSizeEstimatorAnalysis.h" 
#include "llvm/Analysis/MLInlineAdvisor.h" 
#include "llvm/Analysis/Utils/TFUtils.h" 
#include "llvm/IR/LLVMContext.h" 
#include "llvm/Support/CommandLine.h" 
#include "llvm/Support/ManagedStatic.h" 
 
#include <vector> 
 
using namespace llvm; 
 
static cl::opt<std::string> TrainingLog( 
    "training-log", cl::Hidden, 
    cl::desc("Path where the development - mode inlining log is saved.")); 
 
static cl::opt<std::string> TFModelUnderTrainingPath( 
    "ml-inliner-model-under-training", cl::Hidden, 
    cl::desc(R"(Path to SavedModel from the previous training iteration. 
The directory is also expected to contain a JSON specification of the  
outputs expected to be logged, where the first entry must be the  
inlining decision. The file containing the specification should be  
called output_spec.json. The expected JSON value is an array of  
dictionaries. Each dictionary should have 2 keys:  
 
- "tensor_spec, followed by the TensorSpec description of the 
output; and  
- "logging_name", a string indicating the name to use when 
logging the output values.  
 
Example: 
[ 
  { 
    "logging_name" : "some_name",  
    "tensor_spec" : {  
      "name" : "model_name",  
      "port" : 0, 
      "shape" : [2, 3], 
      "type" : "float" 
      } 
  } 
] 
 
The first value must always correspond to the decision.)")); 
 
static cl::opt<std::string> TFOutputSpecOverride( 
    "ml-inliner-output-spec-override", cl::Hidden, 
    cl::desc("Override the path to the output spec json file. See " 
             "-ml-inliner-model-under-training documentation for the " 
             "specification of that file.")); 
 
static cl::opt<std::string> TFFeedPrefix("ml-inliner-trained-model-feed-prefix", 
                                         cl::Hidden, cl::init("action_"), 
                                         cl::desc("Prefix for feature names.")); 
 
namespace { 
/// An InlineEvent, used by TrainingLogger. 
struct InlineEvent { 
  /// What the default policy's decision would have been. 
  int64_t DefaultDecision = 0; 
 
  /// What we advised. When training off the default policy, this is the same as 
  /// DefaultDecision. 
  int64_t AdvisedDecision = 0; 
 
  /// What actually happened. This would be 'false' in the case of an inline 
  /// error, even if AdvisedDecision were true, otherwise it agrees with 
  /// AdvisedDecision. 
  bool Effect = false; 
 
  /// What the change in size was: size_after - size_before 
  int64_t Reward = 0; 
}; 
 
/// Collect data we may use for training a model, and write it as a textual 
/// Tensorflow SequenceExample 
/// (https://www.tensorflow.org/api_docs/python/tf/train/SequenceExample) 
/// protobuf (https://developers.google.com/protocol-buffers). 
/// Because this is a protobuf, we cannot just stream the events as they come. 
/// Internally, TrainingLogger stores data in column-major format, because that 
/// lines up with how TF SequenceExample represents it. 
class ModelUnderTrainingRunner; 
class TrainingLogger final { 
public: 
  TrainingLogger(StringRef LogFileName, const ModelUnderTrainingRunner *MUTR); 
 
  /// Log one inlining event. 
  void logInlineEvent(const InlineEvent &Event, 
                      const MLModelRunner &ModelRunner); 
 
  /// Print the stored tensors. 
  void print(); 
 
private: 
  StringRef LogFileName; 
  const ModelUnderTrainingRunner *const MUTR; 
  std::unique_ptr<Logger> L; 
  std::vector<bool> Effects; 
  /// There's at least one output. We'll set this to a different value if MUTR 
  /// is avaliable. 
  size_t OutputCount = 1; 
  /// Set these 2 clearly OOB, to make sure we set them later. 
  size_t DefaultDecisionPos = std::numeric_limits<size_t>::max(); 
  size_t DecisionPos = std::numeric_limits<size_t>::max(); 
}; 
 
/// An extension of the MLInlineAdvisor for the 'development' mode, targeting 
/// the offline training scenario. Note that training happens outside of the 
/// compiler, this facility is concerned with producing training data ("logs"). 
/// This InlineAdvisor can operate in the following modes: 
/// 
/// 1) collect logs for the default policy. This is useful for bootstrapping 
/// training, which will be considerably faster by starting from a reasonable 
/// policy. 
/// 
/// 2) collect logs for the ML policy, using a model from a previous 
/// training. Potentially, that model uses internally some small random 
/// perturbation of its weights, to induce exploration (setting this up is the 
/// responsibility of the training algorithm). The logs would then be used to 
/// retrain and improve on this model. 
/// 
/// 3) use the provided model, with no logging. This is useful for end to end 
/// validation - the model, in this case, is a release candidate and shouldn't 
/// have random perturbations. It is a convenience feature: rather than needing 
/// to take the release candidate model and compile it in 'release' mode, 
/// validate it, then potentially discard it, it's easier to just pass the model 
/// to the compiler, albeit compilation would be slower, as a one-off. Once the 
/// model behaves satisfactorily, it can be compiled AOT, for efficiency, in 
/// release mode. The expectation is that a well-trained model provides a good 
/// policy over a sufficiently diverse codebase, over many changes (i.e. 
/// training happens seldom). 
class DevelopmentModeMLInlineAdvisor : public MLInlineAdvisor { 
public: 
  DevelopmentModeMLInlineAdvisor( 
      Module &M, ModuleAnalysisManager &MAM, 
      std::unique_ptr<MLModelRunner> ModelRunner, 
      std::function<bool(CallBase &)> GetDefaultAdvice, bool IsDoingInference, 
      std::unique_ptr<TrainingLogger> Logger); 
 
  size_t getTotalSizeEstimate(); 
 
  virtual ~DevelopmentModeMLInlineAdvisor(); 
  void updateNativeSizeEstimate(int64_t Change) { 
    *CurrentNativeSize += Change; 
  } 
  void resetNativeSize(Function *F) { 
    FAM.invalidate<InlineSizeEstimatorAnalysis>(*F); 
  } 
 
  std::unique_ptr<MLInlineAdvice> 
  getAdviceFromModel(CallBase &CB, OptimizationRemarkEmitter &ORE) override; 
 
  Optional<size_t> getNativeSizeEstimate(const Function &F) const; 
 
private: 
  bool isLogging() const { return !!Logger; } 
  std::unique_ptr<MLInlineAdvice> getMandatoryAdviceImpl(CallBase &CB) override; 
 
  std::function<bool(CallBase &)> GetDefaultAdvice; 
  const bool IsDoingInference; 
  std::unique_ptr<TrainingLogger> Logger; 
 
  const Optional<int32_t> InitialNativeSize; 
  Optional<int32_t> CurrentNativeSize; 
}; 
 
/// A variant of MLInlineAdvice that tracks all non-trivial inlining 
/// decisions, for training/logging. 
class LoggingMLInlineAdvice : public MLInlineAdvice { 
public: 
  LoggingMLInlineAdvice(DevelopmentModeMLInlineAdvisor *Advisor, CallBase &CB, 
                        OptimizationRemarkEmitter &ORE, bool Recommendation, 
                        TrainingLogger &Logger, 
                        Optional<size_t> CallerSizeEstimateBefore, 
                        Optional<size_t> CalleeSizeEstimateBefore, 
                        bool DefaultDecision, bool Mandatory = false) 
      : MLInlineAdvice(Advisor, CB, ORE, Recommendation), Logger(Logger), 
        CallerSizeEstimateBefore(CallerSizeEstimateBefore), 
        CalleeSizeEstimateBefore(CalleeSizeEstimateBefore), 
        DefaultDecision(DefaultDecision), Mandatory(Mandatory) {} 
 
  virtual ~LoggingMLInlineAdvice() = default; 
 
private: 
  DevelopmentModeMLInlineAdvisor *getAdvisor() const { 
    return static_cast<DevelopmentModeMLInlineAdvisor *>(Advisor); 
  } 
  void recordInliningImpl() override { 
    MLInlineAdvice::recordInliningImpl(); 
    getAdvisor()->resetNativeSize(Caller); 
    int Reward = std::numeric_limits<int>::max(); 
    if (InlineSizeEstimatorAnalysis::isEvaluatorRequested() && 
        !getAdvisor()->isForcedToStop()) { 
      int NativeSizeAfter = *getAdvisor()->getNativeSizeEstimate(*Caller) + 
                            *CalleeSizeEstimateBefore; 
      Reward = NativeSizeAfter - 
               (*CallerSizeEstimateBefore + *CalleeSizeEstimateBefore); 
      getAdvisor()->updateNativeSizeEstimate(Reward); 
    } 
    log(Reward, /*Success=*/true); 
  } 
 
  void recordInliningWithCalleeDeletedImpl() override { 
    MLInlineAdvice::recordInliningWithCalleeDeletedImpl(); 
    getAdvisor()->resetNativeSize(Caller); 
    if (InlineSizeEstimatorAnalysis::isEvaluatorRequested() && 
        !getAdvisor()->isForcedToStop()) { 
      int NativeSizeAfter = *getAdvisor()->getNativeSizeEstimate(*Caller); 
      int Reward = NativeSizeAfter - 
                   (*CallerSizeEstimateBefore + *CalleeSizeEstimateBefore); 
      getAdvisor()->updateNativeSizeEstimate(Reward); 
      log(Reward, /*Success=*/true); 
    } 
  } 
 
  void recordUnsuccessfulInliningImpl(const InlineResult &Result) override { 
    MLInlineAdvice::recordUnsuccessfulInliningImpl(Result); 
    log(NoReward, /*Success=*/false); 
  } 
 
  void recordUnattemptedInliningImpl() override { 
    MLInlineAdvice::recordUnattemptedInliningImpl(); 
    log(NoReward, /*Success=*/false); 
  } 
 
  void log(int64_t Reward, bool Success) { 
    if (Mandatory) 
      return; 
    InlineEvent Event; 
    Event.AdvisedDecision = isInliningRecommended(); 
    Event.DefaultDecision = DefaultDecision; 
    Event.Effect = Success; 
    Event.Reward = Reward; 
    Logger.logInlineEvent(Event, getAdvisor()->getModelRunner()); 
  } 
 
  static const int64_t NoReward = 0; 
  TrainingLogger &Logger; 
  const Optional<size_t> CallerSizeEstimateBefore; 
  const Optional<size_t> CalleeSizeEstimateBefore; 
  const int64_t DefaultDecision; 
  const int64_t Mandatory; 
}; 
 
/// A pseudo model runner. We use it to store feature values when collecting 
/// logs for the default policy, but never ask it to 'run'. 
class NoInferenceModelRunner : public MLModelRunner { 
public: 
  NoInferenceModelRunner(LLVMContext &Ctx) 
      : MLModelRunner(Ctx), Features(NumberOfFeatures) {} 
  void setFeature(FeatureIndex Index, int64_t Value) override { 
    Features[static_cast<int>(Index)] = Value; 
  } 
 
  int64_t getFeature(int Index) const override { return Features[Index]; } 
  bool run() override { 
    llvm_unreachable("We shouldn't call run on this model runner."); 
  } 
 
private: 
  InlineFeatures Features; 
}; 
 
/// ModelUnderTrainingRunner - training mode implementation. It uses TF C APIs 
/// to dynamically load and evaluate a TF SavedModel 
/// (https://www.tensorflow.org/guide/saved_model). Runtime performance is 
/// sacrificed for ease of use while training. 
class ModelUnderTrainingRunner final : public MLModelRunner { 
public: 
  ModelUnderTrainingRunner(LLVMContext &Ctx, const std::string &ModelPath); 
 
  bool run() override; 
 
  // Disallows copy and assign. 
  ModelUnderTrainingRunner(const ModelUnderTrainingRunner &) = delete; 
  ModelUnderTrainingRunner & 
  operator=(const ModelUnderTrainingRunner &) = delete; 
 
  void setFeature(FeatureIndex Index, int64_t Value) override; 
  int64_t getFeature(int Index) const override; 
  bool isValid() const { return !!Evaluator; } 
 
  const std::vector<LoggedFeatureSpec> &outputLoggedFeatureSpecs() const { 
    return OutputSpecs; 
  } 
 
  const Optional<TFModelEvaluator::EvaluationResult> & 
  lastEvaluationResult() const { 
    return LastEvaluationResult; 
  } 
 
private: 
  std::unique_ptr<TFModelEvaluator> Evaluator; 
  std::vector<LoggedFeatureSpec> OutputSpecs; 
  Optional<TFModelEvaluator::EvaluationResult> LastEvaluationResult; 
 
  // The training framework needs some additional features. 
  const std::vector<TensorSpec> TrainingOnlyFeatures{ 
      TensorSpec::createSpec<int64_t>(TFFeedPrefix + "inlining_default", {1}), 
      TensorSpec::createSpec<float>(TFFeedPrefix + "discount", {1}), 
      TensorSpec::createSpec<float>(TFFeedPrefix + "reward", {1}), 
      TensorSpec::createSpec<int32_t>(TFFeedPrefix + "step_type", {1})}; 
}; 
} // namespace 
 
TrainingLogger::TrainingLogger(StringRef LogFileName, 
                               const ModelUnderTrainingRunner *MUTR) 
    : LogFileName(LogFileName), MUTR(MUTR) { 
  // The first output is the inlining decision. 
  if (MUTR) 
    OutputCount = MUTR->outputLoggedFeatureSpecs().size(); 
  std::vector<LoggedFeatureSpec> FT; 
 
  for (size_t I = 0; I < NumberOfFeatures; ++I) 
    FT.push_back( 
        {TensorSpec::createSpec<int64_t>(FeatureNameMap.at(I), {1}), None}); 
  if (MUTR && MUTR->outputLoggedFeatureSpecs().size() > 1) 
    append_range(FT, drop_begin(MUTR->outputLoggedFeatureSpecs())); 
 
  DefaultDecisionPos = FT.size(); 
  FT.push_back( 
      {TensorSpec::createSpec<int64_t>(DefaultDecisionName, {1}), None}); 
 
  DecisionPos = FT.size(); 
  FT.push_back({TensorSpec::createSpec<int64_t>(DecisionName, {1}), None}); 
 
  L = std::make_unique<Logger>( 
      FT, TensorSpec::createSpec<int64_t>(RewardName, {1}), 
      InlineSizeEstimatorAnalysis::isEvaluatorRequested()); 
} 
 
/// Log one inlining event. 
void TrainingLogger::logInlineEvent(const InlineEvent &Event, 
                                    const MLModelRunner &ModelRunner) { 
  size_t CurrentFeature = 0; 
  for (; CurrentFeature < NumberOfFeatures; ++CurrentFeature) { 
    int64_t F = ModelRunner.getFeature(CurrentFeature); 
    L->logTensorValue(CurrentFeature, &F); 
  } 
 
  for (size_t I = 1; I < OutputCount; ++I) { 
    const auto &Result = *MUTR->lastEvaluationResult(); 
    auto &Spec = MUTR->outputLoggedFeatureSpecs()[I].Spec; 
    const char *RawData = 
        reinterpret_cast<const char *>(Result.getUntypedTensorValue(I)); 
    L->logTensorValue(CurrentFeature, RawData, 
                      Spec.getElementCount() * Spec.getElementByteSize()); 
    ++CurrentFeature; 
  } 
 
  assert(CurrentFeature == DefaultDecisionPos); 
  L->logTensorValue(DefaultDecisionPos, &Event.DefaultDecision); 
  L->logTensorValue(DecisionPos, &Event.AdvisedDecision); 
  if (InlineSizeEstimatorAnalysis::isEvaluatorRequested()) 
    L->logReward(Event.Reward); 
 
  // For debugging / later use 
  Effects.push_back(Event.Effect); 
} 
 
void TrainingLogger::print() { 
  std::error_code EC; 
  raw_fd_ostream OutFile(LogFileName, EC); 
  L->print(OutFile); 
} 
 
DevelopmentModeMLInlineAdvisor::DevelopmentModeMLInlineAdvisor( 
    Module &M, ModuleAnalysisManager &MAM, 
    std::unique_ptr<MLModelRunner> ModelRunner, 
    std::function<bool(CallBase &)> GetDefaultAdvice, bool IsDoingInference, 
    std::unique_ptr<TrainingLogger> Logger) 
    : MLInlineAdvisor(M, MAM, std::move(ModelRunner)), 
      GetDefaultAdvice(GetDefaultAdvice), IsDoingInference(IsDoingInference), 
      Logger(std::move(Logger)), 
      InitialNativeSize(isLogging() ? getTotalSizeEstimate() : 0), 
      CurrentNativeSize(InitialNativeSize) { 
  // We cannot have the case of neither inference nor logging. 
  assert(IsDoingInference || isLogging()); 
} 
 
DevelopmentModeMLInlineAdvisor::~DevelopmentModeMLInlineAdvisor() { 
  if (isLogging()) 
    Logger->print(); 
} 
 
Optional<size_t> 
DevelopmentModeMLInlineAdvisor::getNativeSizeEstimate(const Function &F) const { 
  if (!InlineSizeEstimatorAnalysis::isEvaluatorRequested()) 
    return None; 
  auto &R = 
      FAM.getResult<InlineSizeEstimatorAnalysis>(const_cast<Function &>(F)); 
  if (!R) { 
    F.getParent()->getContext().emitError( 
        "Native size estimator is not present."); 
    return 0; 
  } 
  return *R; 
} 
 
std::unique_ptr<MLInlineAdvice> 
DevelopmentModeMLInlineAdvisor::getMandatoryAdviceImpl(CallBase &CB) { 
  return std::make_unique<LoggingMLInlineAdvice>( 
      /*Advisor=*/this, 
      /*CB=*/CB, /*ORE=*/getCallerORE(CB), /*Recommendation=*/true, 
      /*Logger=*/*Logger, 
      /*CallerSizeEstimateBefore=*/getNativeSizeEstimate(*CB.getCaller()), 
      /*CalleeSizeEstimateBefore=*/ 
      getNativeSizeEstimate(*CB.getCalledFunction()), 
      /*DefaultDecision=*/true, /*Mandatory*/ true); 
} 
 
std::unique_ptr<MLInlineAdvice> 
DevelopmentModeMLInlineAdvisor::getAdviceFromModel( 
    CallBase &CB, OptimizationRemarkEmitter &ORE) { 
  if (IsDoingInference && !isLogging()) 
    return MLInlineAdvisor::getAdviceFromModel(CB, ORE); 
 
  bool DefaultAdvice = GetDefaultAdvice(CB); 
  auto Recommendation = IsDoingInference ? ModelRunner->run() : DefaultAdvice; 
  return std::make_unique<LoggingMLInlineAdvice>( 
      /*Advisor=*/this, 
      /*CB=*/CB, /*ORE=*/ORE, /*Recommendation=*/Recommendation, 
      /*Logger=*/*Logger, 
      /*CallerSizeEstimateBefore=*/getNativeSizeEstimate(*CB.getCaller()), 
      /*CalleeSizeEstimateBefore=*/ 
      getNativeSizeEstimate(*CB.getCalledFunction()), 
      /*DefaultDecision=*/DefaultAdvice); 
} 
 
size_t DevelopmentModeMLInlineAdvisor::getTotalSizeEstimate() { 
  if (!InlineSizeEstimatorAnalysis::isEvaluatorRequested()) 
    return 0; 
  size_t Ret = 0; 
  for (auto &F : M) { 
    if (F.isDeclaration()) 
      continue; 
    if (isFunctionDeleted(&F)) 
      continue; 
    Ret += *getNativeSizeEstimate(F); 
  } 
  return Ret; 
} 
 
ModelUnderTrainingRunner::ModelUnderTrainingRunner(LLVMContext &Ctx, 
                                                   const std::string &ModelPath) 
    : MLModelRunner(Ctx) { 
  std::vector<TensorSpec> InputSpecs; 
  for (size_t I = 0; I < NumberOfFeatures; ++I) 
    InputSpecs.push_back( 
        TensorSpec::createSpec<int64_t>(TFFeedPrefix + FeatureNameMap[I], {1})); 
  append_range(InputSpecs, TrainingOnlyFeatures); 
  if (auto MaybeOutSpecs = 
          loadOutputSpecs(Ctx, DecisionName, ModelPath, TFOutputSpecOverride)) 
    OutputSpecs = std::move(*MaybeOutSpecs); 
  else 
    return; 
 
  Evaluator = std::make_unique<TFModelEvaluator>( 
      ModelPath, InputSpecs, [&](size_t I) { return OutputSpecs[I].Spec; }, 
      OutputSpecs.size()); 
  if (!Evaluator || !Evaluator->isValid()) { 
    Ctx.emitError("Failed to create inliner saved model evaluator"); 
    Evaluator.reset(); 
    return; 
  } 
} 
 
bool ModelUnderTrainingRunner::run() { 
  LastEvaluationResult = Evaluator->evaluate(); 
  if (!LastEvaluationResult.hasValue()) { 
    Ctx.emitError("Error evaluating model."); 
    return false; 
  } 
  int64_t Decision = *LastEvaluationResult->getTensorValue<int64_t>(0); 
  return static_cast<bool>(Decision); 
} 
 
int64_t ModelUnderTrainingRunner::getFeature(int Index) const { 
  return *Evaluator->getInput<int64_t>(Index); 
} 
 
void ModelUnderTrainingRunner::setFeature(FeatureIndex Index, int64_t Value) { 
  size_t NumericIndex = static_cast<size_t>(Index); 
  *(Evaluator->getInput<int64_t>(NumericIndex)) = Value; 
} 
 
std::unique_ptr<InlineAdvisor> llvm::getDevelopmentModeAdvisor( 
    Module &M, ModuleAnalysisManager &MAM, 
    std::function<bool(CallBase &)> GetDefaultAdvice) { 
  auto &Ctx = M.getContext(); 
  std::unique_ptr<MLModelRunner> Runner; 
  ModelUnderTrainingRunner *MUTRPtr = nullptr; 
  bool IsDoingInference = false; 
  if (TFModelUnderTrainingPath.empty()) 
    Runner.reset(new NoInferenceModelRunner(Ctx)); 
  else { 
    auto MUTR = std::make_unique<ModelUnderTrainingRunner>( 
        Ctx, TFModelUnderTrainingPath); 
    if (!MUTR || !MUTR->isValid()) { 
      Ctx.emitError("Could not load the policy model from the provided path"); 
      return nullptr; 
    } 
    IsDoingInference = true; 
    MUTRPtr = MUTR.get(); 
    Runner = std::move(MUTR); 
  } 
  std::unique_ptr<TrainingLogger> Logger; 
  if (!TrainingLog.empty()) 
    Logger = std::make_unique<TrainingLogger>(TrainingLog, MUTRPtr); 
 
  return std::make_unique<DevelopmentModeMLInlineAdvisor>( 
      M, MAM, std::move(Runner), GetDefaultAdvice, IsDoingInference, 
      std::move(Logger)); 
} 
#endif // defined(LLVM_HAVE_TF_API)