aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/include/llvm/Support/Parallel.h
blob: ac053bb4cce8bffd24c9888bf4e2f9579e0a1650 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
#pragma once

#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif

//===- llvm/Support/Parallel.h - Parallel algorithms ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_SUPPORT_PARALLEL_H
#define LLVM_SUPPORT_PARALLEL_H

#include "llvm/ADT/STLExtras.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Threading.h"

#include <algorithm>
#include <condition_variable>
#include <functional>
#include <mutex>

namespace llvm {

namespace parallel {

// Strategy for the default executor used by the parallel routines provided by
// this file. It defaults to using all hardware threads and should be
// initialized before the first use of parallel routines.
extern ThreadPoolStrategy strategy;

namespace detail {

#if LLVM_ENABLE_THREADS

class Latch {
  uint32_t Count;
  mutable std::mutex Mutex;
  mutable std::condition_variable Cond;

public:
  explicit Latch(uint32_t Count = 0) : Count(Count) {}
  ~Latch() { sync(); }

  void inc() {
    std::lock_guard<std::mutex> lock(Mutex);
    ++Count;
  }

  void dec() {
    std::lock_guard<std::mutex> lock(Mutex);
    if (--Count == 0)
      Cond.notify_all();
  }

  void sync() const {
    std::unique_lock<std::mutex> lock(Mutex);
    Cond.wait(lock, [&] { return Count == 0; });
  }
};

class TaskGroup {
  Latch L;
  bool Parallel;

public:
  TaskGroup();
  ~TaskGroup();

  void spawn(std::function<void()> f);

  void sync() const { L.sync(); }
};

const ptrdiff_t MinParallelSize = 1024;

/// Inclusive median.
template <class RandomAccessIterator, class Comparator>
RandomAccessIterator medianOf3(RandomAccessIterator Start,
                               RandomAccessIterator End,
                               const Comparator &Comp) {
  RandomAccessIterator Mid = Start + (std::distance(Start, End) / 2);
  return Comp(*Start, *(End - 1))
             ? (Comp(*Mid, *(End - 1)) ? (Comp(*Start, *Mid) ? Mid : Start)
                                       : End - 1)
             : (Comp(*Mid, *Start) ? (Comp(*(End - 1), *Mid) ? Mid : End - 1)
                                   : Start);
}

template <class RandomAccessIterator, class Comparator>
void parallel_quick_sort(RandomAccessIterator Start, RandomAccessIterator End,
                         const Comparator &Comp, TaskGroup &TG, size_t Depth) {
  // Do a sequential sort for small inputs.
  if (std::distance(Start, End) < detail::MinParallelSize || Depth == 0) {
    llvm::sort(Start, End, Comp);
    return;
  }

  // Partition.
  auto Pivot = medianOf3(Start, End, Comp);
  // Move Pivot to End.
  std::swap(*(End - 1), *Pivot);
  Pivot = std::partition(Start, End - 1, [&Comp, End](decltype(*Start) V) {
    return Comp(V, *(End - 1));
  });
  // Move Pivot to middle of partition.
  std::swap(*Pivot, *(End - 1));

  // Recurse.
  TG.spawn([=, &Comp, &TG] {
    parallel_quick_sort(Start, Pivot, Comp, TG, Depth - 1);
  });
  parallel_quick_sort(Pivot + 1, End, Comp, TG, Depth - 1);
}

template <class RandomAccessIterator, class Comparator>
void parallel_sort(RandomAccessIterator Start, RandomAccessIterator End,
                   const Comparator &Comp) {
  TaskGroup TG;
  parallel_quick_sort(Start, End, Comp, TG,
                      llvm::Log2_64(std::distance(Start, End)) + 1);
}

// TaskGroup has a relatively high overhead, so we want to reduce
// the number of spawn() calls. We'll create up to 1024 tasks here.
// (Note that 1024 is an arbitrary number. This code probably needs
// improving to take the number of available cores into account.)
enum { MaxTasksPerGroup = 1024 };

template <class IterTy, class FuncTy>
void parallel_for_each(IterTy Begin, IterTy End, FuncTy Fn) {
  // Limit the number of tasks to MaxTasksPerGroup to limit job scheduling
  // overhead on large inputs.
  ptrdiff_t TaskSize = std::distance(Begin, End) / MaxTasksPerGroup;
  if (TaskSize == 0)
    TaskSize = 1;

  TaskGroup TG;
  while (TaskSize < std::distance(Begin, End)) {
    TG.spawn([=, &Fn] { std::for_each(Begin, Begin + TaskSize, Fn); });
    Begin += TaskSize;
  }
  std::for_each(Begin, End, Fn);
}

template <class IndexTy, class FuncTy>
void parallel_for_each_n(IndexTy Begin, IndexTy End, FuncTy Fn) {
  // Limit the number of tasks to MaxTasksPerGroup to limit job scheduling
  // overhead on large inputs.
  ptrdiff_t TaskSize = (End - Begin) / MaxTasksPerGroup;
  if (TaskSize == 0)
    TaskSize = 1;

  TaskGroup TG;
  IndexTy I = Begin;
  for (; I + TaskSize < End; I += TaskSize) {
    TG.spawn([=, &Fn] {
      for (IndexTy J = I, E = I + TaskSize; J != E; ++J)
        Fn(J);
    });
  }
  for (IndexTy J = I; J < End; ++J)
    Fn(J);
}

template <class IterTy, class ResultTy, class ReduceFuncTy,
          class TransformFuncTy>
ResultTy parallel_transform_reduce(IterTy Begin, IterTy End, ResultTy Init,
                                   ReduceFuncTy Reduce,
                                   TransformFuncTy Transform) {
  // Limit the number of tasks to MaxTasksPerGroup to limit job scheduling
  // overhead on large inputs.
  size_t NumInputs = std::distance(Begin, End);
  if (NumInputs == 0)
    return std::move(Init);
  size_t NumTasks = std::min(static_cast<size_t>(MaxTasksPerGroup), NumInputs);
  std::vector<ResultTy> Results(NumTasks, Init);
  {
    // Each task processes either TaskSize or TaskSize+1 inputs. Any inputs
    // remaining after dividing them equally amongst tasks are distributed as
    // one extra input over the first tasks.
    TaskGroup TG;
    size_t TaskSize = NumInputs / NumTasks;
    size_t RemainingInputs = NumInputs % NumTasks;
    IterTy TBegin = Begin;
    for (size_t TaskId = 0; TaskId < NumTasks; ++TaskId) {
      IterTy TEnd = TBegin + TaskSize + (TaskId < RemainingInputs ? 1 : 0);
      TG.spawn([=, &Transform, &Reduce, &Results] {
        // Reduce the result of transformation eagerly within each task.
        ResultTy R = Init;
        for (IterTy It = TBegin; It != TEnd; ++It)
          R = Reduce(R, Transform(*It));
        Results[TaskId] = R;
      });
      TBegin = TEnd;
    }
    assert(TBegin == End);
  }

  // Do a final reduction. There are at most 1024 tasks, so this only adds
  // constant single-threaded overhead for large inputs. Hopefully most
  // reductions are cheaper than the transformation.
  ResultTy FinalResult = std::move(Results.front());
  for (ResultTy &PartialResult :
       makeMutableArrayRef(Results.data() + 1, Results.size() - 1))
    FinalResult = Reduce(FinalResult, std::move(PartialResult));
  return std::move(FinalResult);
}

#endif

} // namespace detail
} // namespace parallel

template <class RandomAccessIterator,
          class Comparator = std::less<
              typename std::iterator_traits<RandomAccessIterator>::value_type>>
void parallelSort(RandomAccessIterator Start, RandomAccessIterator End,
                  const Comparator &Comp = Comparator()) {
#if LLVM_ENABLE_THREADS
  if (parallel::strategy.ThreadsRequested != 1) {
    parallel::detail::parallel_sort(Start, End, Comp);
    return;
  }
#endif
  llvm::sort(Start, End, Comp);
}

template <class IterTy, class FuncTy>
void parallelForEach(IterTy Begin, IterTy End, FuncTy Fn) {
#if LLVM_ENABLE_THREADS
  if (parallel::strategy.ThreadsRequested != 1) {
    parallel::detail::parallel_for_each(Begin, End, Fn);
    return;
  }
#endif
  std::for_each(Begin, End, Fn);
}

template <class FuncTy>
void parallelForEachN(size_t Begin, size_t End, FuncTy Fn) {
#if LLVM_ENABLE_THREADS
  if (parallel::strategy.ThreadsRequested != 1) {
    parallel::detail::parallel_for_each_n(Begin, End, Fn);
    return;
  }
#endif
  for (size_t I = Begin; I != End; ++I)
    Fn(I);
}

template <class IterTy, class ResultTy, class ReduceFuncTy,
          class TransformFuncTy>
ResultTy parallelTransformReduce(IterTy Begin, IterTy End, ResultTy Init,
                                 ReduceFuncTy Reduce,
                                 TransformFuncTy Transform) {
#if LLVM_ENABLE_THREADS
  if (parallel::strategy.ThreadsRequested != 1) {
    return parallel::detail::parallel_transform_reduce(Begin, End, Init, Reduce,
                                                       Transform);
  }
#endif
  for (IterTy I = Begin; I != End; ++I)
    Init = Reduce(std::move(Init), Transform(*I));
  return std::move(Init);
}

// Range wrappers.
template <class RangeTy,
          class Comparator = std::less<decltype(*std::begin(RangeTy()))>>
void parallelSort(RangeTy &&R, const Comparator &Comp = Comparator()) {
  parallelSort(std::begin(R), std::end(R), Comp);
}

template <class RangeTy, class FuncTy>
void parallelForEach(RangeTy &&R, FuncTy Fn) {
  parallelForEach(std::begin(R), std::end(R), Fn);
}

template <class RangeTy, class ResultTy, class ReduceFuncTy,
          class TransformFuncTy>
ResultTy parallelTransformReduce(RangeTy &&R, ResultTy Init,
                                 ReduceFuncTy Reduce,
                                 TransformFuncTy Transform) {
  return parallelTransformReduce(std::begin(R), std::end(R), Init, Reduce,
                                 Transform);
}

// Parallel for-each, but with error handling.
template <class RangeTy, class FuncTy>
Error parallelForEachError(RangeTy &&R, FuncTy Fn) {
  // The transform_reduce algorithm requires that the initial value be copyable.
  // Error objects are uncopyable. We only need to copy initial success values,
  // so work around this mismatch via the C API. The C API represents success
  // values with a null pointer. The joinErrors discards null values and joins
  // multiple errors into an ErrorList.
  return unwrap(parallelTransformReduce(
      std::begin(R), std::end(R), wrap(Error::success()),
      [](LLVMErrorRef Lhs, LLVMErrorRef Rhs) {
        return wrap(joinErrors(unwrap(Lhs), unwrap(Rhs)));
      },
      [&Fn](auto &&V) { return wrap(Fn(V)); }));
}

} // namespace llvm

#endif // LLVM_SUPPORT_PARALLEL_H

#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif