1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===- HashTable.h - PDB Hash Table -----------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_DEBUGINFO_PDB_NATIVE_HASHTABLE_H
#define LLVM_DEBUGINFO_PDB_NATIVE_HASHTABLE_H
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/ADT/iterator.h"
#include "llvm/DebugInfo/PDB/Native/RawError.h"
#include "llvm/Support/BinaryStreamReader.h"
#include "llvm/Support/BinaryStreamWriter.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include <cstdint>
#include <iterator>
#include <utility>
#include <vector>
namespace llvm {
class BinaryStreamReader;
class BinaryStreamWriter;
namespace pdb {
Error readSparseBitVector(BinaryStreamReader &Stream, SparseBitVector<> &V);
Error writeSparseBitVector(BinaryStreamWriter &Writer, SparseBitVector<> &Vec);
template <typename ValueT> class HashTable;
template <typename ValueT>
class HashTableIterator
: public iterator_facade_base<HashTableIterator<ValueT>,
std::forward_iterator_tag,
const std::pair<uint32_t, ValueT>> {
friend HashTable<ValueT>;
HashTableIterator(const HashTable<ValueT> &Map, uint32_t Index,
bool IsEnd)
: Map(&Map), Index(Index), IsEnd(IsEnd) {}
public:
HashTableIterator(const HashTable<ValueT> &Map) : Map(&Map) {
int I = Map.Present.find_first();
if (I == -1) {
Index = 0;
IsEnd = true;
} else {
Index = static_cast<uint32_t>(I);
IsEnd = false;
}
}
HashTableIterator(const HashTableIterator &R) = default;
HashTableIterator &operator=(const HashTableIterator &R) {
Map = R.Map;
return *this;
}
bool operator==(const HashTableIterator &R) const {
if (IsEnd && R.IsEnd)
return true;
if (IsEnd != R.IsEnd)
return false;
return (Map == R.Map) && (Index == R.Index);
}
const std::pair<uint32_t, ValueT> &operator*() const {
assert(Map->Present.test(Index));
return Map->Buckets[Index];
}
// Implement postfix op++ in terms of prefix op++ by using the superclass
// implementation.
using iterator_facade_base<HashTableIterator<ValueT>,
std::forward_iterator_tag,
const std::pair<uint32_t, ValueT>>::operator++;
HashTableIterator &operator++() {
while (Index < Map->Buckets.size()) {
++Index;
if (Map->Present.test(Index))
return *this;
}
IsEnd = true;
return *this;
}
private:
bool isEnd() const { return IsEnd; }
uint32_t index() const { return Index; }
const HashTable<ValueT> *Map;
uint32_t Index;
bool IsEnd;
};
template <typename ValueT>
class HashTable {
struct Header {
support::ulittle32_t Size;
support::ulittle32_t Capacity;
};
using BucketList = std::vector<std::pair<uint32_t, ValueT>>;
public:
using const_iterator = HashTableIterator<ValueT>;
friend const_iterator;
HashTable() { Buckets.resize(8); }
explicit HashTable(uint32_t Capacity) {
Buckets.resize(Capacity);
}
Error load(BinaryStreamReader &Stream) {
const Header *H;
if (auto EC = Stream.readObject(H))
return EC;
if (H->Capacity == 0)
return make_error<RawError>(raw_error_code::corrupt_file,
"Invalid Hash Table Capacity");
if (H->Size > maxLoad(H->Capacity))
return make_error<RawError>(raw_error_code::corrupt_file,
"Invalid Hash Table Size");
Buckets.resize(H->Capacity);
if (auto EC = readSparseBitVector(Stream, Present))
return EC;
if (Present.count() != H->Size)
return make_error<RawError>(raw_error_code::corrupt_file,
"Present bit vector does not match size!");
if (auto EC = readSparseBitVector(Stream, Deleted))
return EC;
if (Present.intersects(Deleted))
return make_error<RawError>(raw_error_code::corrupt_file,
"Present bit vector intersects deleted!");
for (uint32_t P : Present) {
if (auto EC = Stream.readInteger(Buckets[P].first))
return EC;
const ValueT *Value;
if (auto EC = Stream.readObject(Value))
return EC;
Buckets[P].second = *Value;
}
return Error::success();
}
uint32_t calculateSerializedLength() const {
uint32_t Size = sizeof(Header);
constexpr int BitsPerWord = 8 * sizeof(uint32_t);
int NumBitsP = Present.find_last() + 1;
int NumBitsD = Deleted.find_last() + 1;
uint32_t NumWordsP = alignTo(NumBitsP, BitsPerWord) / BitsPerWord;
uint32_t NumWordsD = alignTo(NumBitsD, BitsPerWord) / BitsPerWord;
// Present bit set number of words (4 bytes), followed by that many actual
// words (4 bytes each).
Size += sizeof(uint32_t);
Size += NumWordsP * sizeof(uint32_t);
// Deleted bit set number of words (4 bytes), followed by that many actual
// words (4 bytes each).
Size += sizeof(uint32_t);
Size += NumWordsD * sizeof(uint32_t);
// One (Key, ValueT) pair for each entry Present.
Size += (sizeof(uint32_t) + sizeof(ValueT)) * size();
return Size;
}
Error commit(BinaryStreamWriter &Writer) const {
Header H;
H.Size = size();
H.Capacity = capacity();
if (auto EC = Writer.writeObject(H))
return EC;
if (auto EC = writeSparseBitVector(Writer, Present))
return EC;
if (auto EC = writeSparseBitVector(Writer, Deleted))
return EC;
for (const auto &Entry : *this) {
if (auto EC = Writer.writeInteger(Entry.first))
return EC;
if (auto EC = Writer.writeObject(Entry.second))
return EC;
}
return Error::success();
}
void clear() {
Buckets.resize(8);
Present.clear();
Deleted.clear();
}
bool empty() const { return size() == 0; }
uint32_t capacity() const { return Buckets.size(); }
uint32_t size() const { return Present.count(); }
const_iterator begin() const { return const_iterator(*this); }
const_iterator end() const { return const_iterator(*this, 0, true); }
/// Find the entry whose key has the specified hash value, using the specified
/// traits defining hash function and equality.
template <typename Key, typename TraitsT>
const_iterator find_as(const Key &K, TraitsT &Traits) const {
uint32_t H = Traits.hashLookupKey(K) % capacity();
uint32_t I = H;
Optional<uint32_t> FirstUnused;
do {
if (isPresent(I)) {
if (Traits.storageKeyToLookupKey(Buckets[I].first) == K)
return const_iterator(*this, I, false);
} else {
if (!FirstUnused)
FirstUnused = I;
// Insertion occurs via linear probing from the slot hint, and will be
// inserted at the first empty / deleted location. Therefore, if we are
// probing and find a location that is neither present nor deleted, then
// nothing must have EVER been inserted at this location, and thus it is
// not possible for a matching value to occur later.
if (!isDeleted(I))
break;
}
I = (I + 1) % capacity();
} while (I != H);
// The only way FirstUnused would not be set is if every single entry in the
// table were Present. But this would violate the load factor constraints
// that we impose, so it should never happen.
assert(FirstUnused);
return const_iterator(*this, *FirstUnused, true);
}
/// Set the entry using a key type that the specified Traits can convert
/// from a real key to an internal key.
template <typename Key, typename TraitsT>
bool set_as(const Key &K, ValueT V, TraitsT &Traits) {
return set_as_internal(K, std::move(V), Traits, None);
}
template <typename Key, typename TraitsT>
ValueT get(const Key &K, TraitsT &Traits) const {
auto Iter = find_as(K, Traits);
assert(Iter != end());
return (*Iter).second;
}
protected:
bool isPresent(uint32_t K) const { return Present.test(K); }
bool isDeleted(uint32_t K) const { return Deleted.test(K); }
BucketList Buckets;
mutable SparseBitVector<> Present;
mutable SparseBitVector<> Deleted;
private:
/// Set the entry using a key type that the specified Traits can convert
/// from a real key to an internal key.
template <typename Key, typename TraitsT>
bool set_as_internal(const Key &K, ValueT V, TraitsT &Traits,
Optional<uint32_t> InternalKey) {
auto Entry = find_as(K, Traits);
if (Entry != end()) {
assert(isPresent(Entry.index()));
assert(Traits.storageKeyToLookupKey(Buckets[Entry.index()].first) == K);
// We're updating, no need to do anything special.
Buckets[Entry.index()].second = V;
return false;
}
auto &B = Buckets[Entry.index()];
assert(!isPresent(Entry.index()));
assert(Entry.isEnd());
B.first = InternalKey ? *InternalKey : Traits.lookupKeyToStorageKey(K);
B.second = V;
Present.set(Entry.index());
Deleted.reset(Entry.index());
grow(Traits);
assert((find_as(K, Traits)) != end());
return true;
}
static uint32_t maxLoad(uint32_t capacity) { return capacity * 2 / 3 + 1; }
template <typename TraitsT>
void grow(TraitsT &Traits) {
uint32_t S = size();
uint32_t MaxLoad = maxLoad(capacity());
if (S < maxLoad(capacity()))
return;
assert(capacity() != UINT32_MAX && "Can't grow Hash table!");
uint32_t NewCapacity = (capacity() <= INT32_MAX) ? MaxLoad * 2 : UINT32_MAX;
// Growing requires rebuilding the table and re-hashing every item. Make a
// copy with a larger capacity, insert everything into the copy, then swap
// it in.
HashTable NewMap(NewCapacity);
for (auto I : Present) {
auto LookupKey = Traits.storageKeyToLookupKey(Buckets[I].first);
NewMap.set_as_internal(LookupKey, Buckets[I].second, Traits,
Buckets[I].first);
}
Buckets.swap(NewMap.Buckets);
std::swap(Present, NewMap.Present);
std::swap(Deleted, NewMap.Deleted);
assert(capacity() == NewCapacity);
assert(size() == S);
}
};
} // end namespace pdb
} // end namespace llvm
#endif // LLVM_DEBUGINFO_PDB_NATIVE_HASHTABLE_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|